## 2.9. 在用户空间做
一个第一次涉及内核问题的 Unix 程序员, 可能会紧张写一个模块. 编写一个用户程序来直接读写设备端口可能容易些.
确实, 有几个论据倾向于用户空间编程, 有时编写一个所谓的用户空间设备驱动对比钻研内核是一个明智的选择. 在本节, 我们讨论几个理由, 为什么你可能在用户空间编写驱动. 本书是关于内核空间驱动的, 但是, 所以我们不超越这个介绍性的讨论.
用户空间驱动的好处在于:
-
完整的 C 库可以连接. 驱动可以进行许多奇怪的任务, 不用依靠外面的程序(实现使用策略的工具程序, 常常随着驱动自身发布).
-
程序员可以在驱动代码上运行常用的调试器, 而不必走调试一个运行中的内核的弯路.
-
如果一个用户空间驱动挂起了, 你可简单地杀掉它. 驱动的问题不可能挂起整个系统, 除非被控制的硬件真的疯掉了.
-
用户内存是可交换的, 不象内核内存. 一个不常使用的却有很大一个驱动的设备不会占据别的程序可以用到的 RAM, 除了在它实际在用时.
-
一个精心设计的驱动程序仍然可以, 如同内核空间驱动, 允许对设备的并行存取.
-
如果你必须编写一个封闭源码的驱动, 用户空间的选项使你容易避免不明朗的许可的情况和改变的内核接口带来的问题.
例如, USB 驱动能够在用户空间编写; 看(仍然年幼) libusb 项目, 在 libusb.sourceforge.net 和 "gadgetfs" 在内核源码里. 另一个例子是 X 服务器: 它确切地知道它能处理哪些硬件, 哪些不能, 并且它提供图形资源给所有的 X 客户. 注意, 然而, 有一个缓慢但是固定的漂移向着基于 frame-buffer 的图形环境, X 服务器只是作为一个服务器, 基于一个内核空间的真实的设备驱动, 这个驱动负责真正的图形操作.
常常, 用户空间驱动的编写者完成一个服务器进程, 从内核接管作为单个代理的负责硬件控制的任务. 客户应用程序就可以连接到服务器来进行实际的操作; 因此, 一个聪明的驱动经常可以允许对设备的并行存取. 这就是 X 服务器如何工作的.
但是用户空间的设备驱动的方法有几个缺点. 最重要的是:
-
中断在用户空间无法用. 在某些平台上有对这个限制的解决方法, 例如在 IA32 体系上的 vm86 系统调用.
-
只可能通过内存映射 /dev/mem 来使用 DMA, 而且只有特权用户可以这样做.
-
存取 I/O 端口只能在调用 ioperm 或者 iopl 之后. 此外, 不是所有的平台支持这些系统调用, 而存取/dev/port可能太慢而无效率. 这些系统调用和设备文件都要求特权用户.
-
响应时间慢, 因为需要上下文切换在客户和硬件之间传递信息或动作.
-
更不好的是, 如果驱动已被交换到硬盘, 响应时间会长到不可接受. 使用 mlock 系统调用可能会有帮助, 但是常常的你将需要锁住许多内存页, 因为一个用户空间程序依赖大量的库代码. mlock, 也, 限制在授权用户上.
-
最重要的设备不能在用户空间处理, 包括但不限于, 网络接口和块设备.
如你所见, 用户空间驱动不能做的事情毕竟太多. 感兴趣的应用程序还是存在: 例如, 对 SCSI 扫描器设备的支持( 由 SANE 包实现 )和 CD 刻录器 ( 由 cdrecord 和别的工具实现 ). 在两种情况下, 用户级别的设备情况依赖 "SCSI gneric" 内核驱动, 它输出了低层的 SCSI 功能给用户程序, 因此它们可以驱动它们自己的硬件.
一种在用户空间工作的情况可能是有意义的, 当你开始处理新的没有用过的硬件时. 这样你可以学习去管理你的硬件, 不必担心挂起整个系统. 一旦你完成了, 在一个内核模块中封装软件就会是一个简单操作了.
- Linux设备驱动第三版
- 第 1 章 设备驱动简介
- 1.1. 驱动程序的角色
- 1.2. 划分内核
- 1.3. 设备和模块的分类
- 1.4. 安全问题
- 1.5. 版本编号
- 1.6. 版权条款
- 1.7. 加入内核开发社团
- 1.8. 本书的内容
- 第 2 章 建立和运行模块
- 2.1. 设置你的测试系统
- 2.2. Hello World 模块
- 2.3. 内核模块相比于应用程序
- 2.4. 编译和加载
- 2.5. 内核符号表
- 2.6. 预备知识
- 2.7. 初始化和关停
- 2.8. 模块参数
- 2.9. 在用户空间做
- 2.10. 快速参考
- 第 3 章 字符驱动
- 3.1. scull 的设计
- 3.2. 主次编号
- 3.3. 一些重要数据结构
- 3.4. 字符设备注册
- 3.5. open 和 release
- 3.6. scull 的内存使用
- 3.7. 读和写
- 3.8. 使用新设备
- 3.9. 快速参考
- 第 4 章 调试技术
- 4.1. 内核中的调试支持
- 4.2. 用打印调试
- 4.3. 用查询来调试
- 4.4. 使用观察来调试
- 4.5. 调试系统故障
- 4.6. 调试器和相关工具
- 第 5 章 并发和竞争情况
- 5.1. scull 中的缺陷
- 5.2. 并发和它的管理
- 5.3. 旗标和互斥体
- 5.4. Completions 机制
- 5.5. 自旋锁
- 5.6. 锁陷阱
- 5.7. 加锁的各种选择
- 5.8. 快速参考
- 第 6 章 高级字符驱动操作
- 6.1. ioctl 接口
- 6.2. 阻塞 I/O
- 6.3. poll 和 select
- 6.4. 异步通知
- 6.5. 移位一个设备
- 6.6. 在一个设备文件上的存取控制
- 6.7. 快速参考
- 第 7 章 时间, 延时, 和延后工作
- 7.1. 测量时间流失
- 7.2. 获知当前时间
- 7.3. 延后执行
- 7.4. 内核定时器
- 7.5. Tasklets 机制
- 7.6. 工作队列
- 7.7. 快速参考
- 第 8 章 分配内存
- 8.1. kmalloc 的真实故事
- 8.2. 后备缓存
- 8.3. get_free_page 和其友
- 8.4. 每-CPU 的变量
- 8.5. 获得大量缓冲
- 8.6. 快速参考
- 第 9 章 与硬件通讯
- 9.1. I/O 端口和 I/O 内存
- 9.2. 使用 I/O 端口
- 9.3. 一个 I/O 端口例子
- 9.4. 使用 I/O 内存
- 9.5. 快速参考
- 第 10 章 中断处理
- 10.1. 准备并口
- 10.2. 安装一个中断处理
- 10.3. 前和后半部
- 10.4. 中断共享
- 10.5. 中断驱动 I/O
- 10.6. 快速参考
- 第 11 章 内核中的数据类型
- 11.1. 标准 C 类型的使用
- 11.2. 安排一个明确大小给数据项
- 11.3. 接口特定的类型
- 11.4. 其他移植性问题
- 11.5. 链表
- 11.6. 快速参考
- 第 12 章 PCI 驱动
- 12.1. PCI 接口
- 12.2. 回顾: ISA
- 12.3. PC/104 和 PC/104+
- 12.4. 其他的 PC 总线
- 12.5. SBus
- 12.6. NuBus 总线
- 12.7. 外部总线
- 12.8. 快速参考
- 第 13 章 USB 驱动
- 13.1. USB 设备基础知识
- 13.2. USB 和 sysfs
- 13.3. USB 的 Urbs
- 13.4. 编写一个 USB 驱动
- 13.5. 无 urb 的 USB 传送
- 13.6. 快速参考
- 第 14 章 Linux 设备模型
- 14.1. Kobjects, Ksets 和 Subsystems
- 14.2. 低级 sysfs 操作
- 14.3. 热插拔事件产生
- 14.4. 总线, 设备, 和驱动
- 14.5. 类
- 14.6. 集成起来
- 14.7. 热插拔
- 14.8. 处理固件
- 14.9. 快速参考
- 第 15 章 内存映射和 DMA
- 15.1. Linux 中的内存管理
- 15.2. mmap 设备操作
- 15.3. 进行直接 I/O
- 15.4. 直接内存存取
- 15.5. 快速参考
- 第 16 章 块驱动
- 16.1. 注册
- 16.2. 块设备操作
- 16.3. 请求处理
- 16.4. 一些其他的细节
- 16.5. 快速参考
- 第 17 章 网络驱动
- 17.1. snull 是如何设计的
- 17.2. 连接到内核
- 17.3. net_device 结构的详情
- 17.4. 打开与关闭
- 17.5. 报文传送
- 17.6. 报文接收
- 17.7. 中断处理
- 17.8. 接收中断缓解
- 17.9. 连接状态的改变
- 17.10. Socket 缓存
- 17.11. MAC 地址解析
- 17.12. 定制 ioctl 命令
- 17.13. 统计信息
- 17.14. 多播
- 17.15. 几个其他细节
- 17.16. 快速参考
- 第 18 章 TTY 驱动
- 18.1. 一个小 TTY 驱动
- 18.2. tty_driver 函数指针
- 18.3. TTY 线路设置
- 18.4. ioctls 函数
- 18.5. TTY 设备的 proc 和 sysfs 处理
- 18.6. tty_driver 结构的细节
- 18.7. tty_operaions 结构的细节
- 18.8. tty_struct 结构的细节
- 18.9. 快速参考