## 6.7. 快速参考
本章介绍了下面的符号和头文件:
~~~
#include <linux/ioctl.h>
~~~
声明用来定义 ioctl 命令的宏定义. 当前被 <linux/fs.h> 包含.
~~~
_IOC_NRBITS
_IOC_TYPEBITS
_IOC_SIZEBITS
_IOC_DIRBITS
~~~
ioctl 命令的不同位段所使用的位数. 还有 4 个宏来指定 MASK 和 4 个指定 SHIFT, 但是它们主要是给内部使用. _IOC_SIZEBIT 是一个要检查的重要的值, 因为它跨体系改变.
~~~
_IOC_NONE
_IOC_READ
_IOC_WRITE
~~~
"方向"位段可能的值. "read" 和 "write" 是不同的位并且可相或来指定 read/write. 这些值是基于 0 的.
~~~
_IOC(dir,type,nr,size)
_IO(type,nr)
_IOR(type,nr,size)
_IOW(type,nr,size)
_IOWR(type,nr,size)
~~~
用来创建 ioclt 命令的宏定义.
~~~
_IOC_DIR(nr)
_IOC_TYPE(nr)
_IOC_NR(nr)
_IOC_SIZE(nr)
~~~
用来解码一个命令的宏定义. 特别地, _IOC_TYPE(nr) 是 _IOC_READ 和 _IOC_WRITE 的 OR 结合.
~~~
#include <asm/uaccess.h>
int access_ok(int type, const void *addr, unsigned long size);
~~~
检查一个用户空间的指针是可用的. access_ok 返回一个非零值, 如果应当允许存取.
~~~
VERIFY_READ
VERIFY_WRITE
~~~
access_ok 中 type 参数的可能取值. VERIFY_WRITE 是 VERIFY_READ 的超集.
~~~
#include <asm/uaccess.h>
int put_user(datum,ptr);
int get_user(local,ptr);
int __put_user(datum,ptr);
int __get_user(local,ptr);
~~~
用来存储或获取一个数据到或从用户空间的宏. 传送的字节数依赖 sizeof(*ptr). 常规的版本调用 access_ok , 而常规版本( __put_user 和 __get_user ) 假定 access_ok 已经被调用了.
~~~
#include <linux/capability.h>
~~~
定义各种 CAP_ 符号, 描述一个用户空间进程可有的能力.
~~~
int capable(int capability);
~~~
返回非零值如果进程有给定的能力.
~~~
#include <linux/wait.h>
typedef struct { /* ... */ } wait_queue_head_t;
void init_waitqueue_head(wait_queue_head_t *queue);
DECLARE_WAIT_QUEUE_HEAD(queue);
~~~
Linux 等待队列的定义类型. 一个 wait_queue_head_t 必须被明确在运行时使用 init_waitqueue_head 或者编译时使用 DEVLARE_WAIT_QUEUE_HEAD 进行初始化.
~~~
void wait_event(wait_queue_head_t q, int condition);
int wait_event_interruptible(wait_queue_head_t q, int condition);
int wait_event_timeout(wait_queue_head_t q, int condition, int time);
int wait_event_interruptible_timeout(wait_queue_head_t q, int condition,int time);
~~~
使进程在给定队列上睡眠, 直到给定条件值为真值.
~~~
void wake_up(struct wait_queue **q);
void wake_up_interruptible(struct wait_queue **q);
void wake_up_nr(struct wait_queue **q, int nr);
void wake_up_interruptible_nr(struct wait_queue **q, int nr);
void wake_up_all(struct wait_queue **q);
void wake_up_interruptible_all(struct wait_queue **q);
void wake_up_interruptible_sync(struct wait_queue **q);
~~~
唤醒在队列 q 上睡眠的进程. _interruptible 的形式只唤醒可中断的进程. 正常地, 只有一个互斥等待者被唤醒, 但是这个行为可被 _nr 或者 _all 形式所改变. _sync 版本在返回之前不重新调度 CPU.
~~~
#include <linux/sched.h>
set_current_state(int state);
~~~
设置当前进程的执行状态. TASK_RUNNING 意味着它已经运行, 而睡眠状态是 TASK_INTERRUPTIBLE 和 TASK_UNINTERRUPTIBLE.
~~~
void schedule(void);
~~~
选择一个可运行的进程从运行队列中. 被选中的进程可是当前进程或者另外一个.
~~~
typedef struct { /* ... */ } wait_queue_t;
init_waitqueue_entry(wait_queue_t *entry, struct task_struct *task);
~~~
wait_queue_t 类型用来放置一个进程到一个等待队列.
~~~
void prepare_to_wait(wait_queue_head_t *queue, wait_queue_t *wait, int state);
void prepare_to_wait_exclusive(wait_queue_head_t *queue, wait_queue_t *wait, int state);
void finish_wait(wait_queue_head_t *queue, wait_queue_t *wait);
~~~
帮忙函数, 可用来编码一个手工睡眠.
~~~
void sleep_on(wiat_queue_head_t *queue);
void interruptible_sleep_on(wiat_queue_head_t *queue);
~~~
老式的不推荐的函数, 它们无条件地使当前进程睡眠.
~~~
#include <linux/poll.h>
void poll_wait(struct file *filp, wait_queue_head_t *q, poll_table *p);
~~~
将当前进程放入一个等待队列, 不立刻调度. 它被设计来被设备驱动的 poll 方法使用.
~~~
int fasync_helper(struct inode *inode, struct file *filp, int mode, struct fasync_struct **fa);
~~~
一个"帮忙者", 来实现 fasync 设备方法. mode 参数是传递给方法的相同的值, 而 fa 指针指向一个设备特定的 fasync_struct *.
~~~
void kill_fasync(struct fasync_struct *fa, int sig, int band);
~~~
如果这个驱动支持异步通知, 这个函数可用来发送一个信号到登记在 fa 中的进程.
~~~
int nonseekable_open(struct inode *inode, struct file *filp);
loff_t no_llseek(struct file *file, loff_t offset, int whence);
~~~
nonseekable_open 应当在任何不支持移位的设备的 open 方法中被调用. 这样的设备应当使用 no_llseek 作为它们的 llseek 方法.
- Linux设备驱动第三版
- 第 1 章 设备驱动简介
- 1.1. 驱动程序的角色
- 1.2. 划分内核
- 1.3. 设备和模块的分类
- 1.4. 安全问题
- 1.5. 版本编号
- 1.6. 版权条款
- 1.7. 加入内核开发社团
- 1.8. 本书的内容
- 第 2 章 建立和运行模块
- 2.1. 设置你的测试系统
- 2.2. Hello World 模块
- 2.3. 内核模块相比于应用程序
- 2.4. 编译和加载
- 2.5. 内核符号表
- 2.6. 预备知识
- 2.7. 初始化和关停
- 2.8. 模块参数
- 2.9. 在用户空间做
- 2.10. 快速参考
- 第 3 章 字符驱动
- 3.1. scull 的设计
- 3.2. 主次编号
- 3.3. 一些重要数据结构
- 3.4. 字符设备注册
- 3.5. open 和 release
- 3.6. scull 的内存使用
- 3.7. 读和写
- 3.8. 使用新设备
- 3.9. 快速参考
- 第 4 章 调试技术
- 4.1. 内核中的调试支持
- 4.2. 用打印调试
- 4.3. 用查询来调试
- 4.4. 使用观察来调试
- 4.5. 调试系统故障
- 4.6. 调试器和相关工具
- 第 5 章 并发和竞争情况
- 5.1. scull 中的缺陷
- 5.2. 并发和它的管理
- 5.3. 旗标和互斥体
- 5.4. Completions 机制
- 5.5. 自旋锁
- 5.6. 锁陷阱
- 5.7. 加锁的各种选择
- 5.8. 快速参考
- 第 6 章 高级字符驱动操作
- 6.1. ioctl 接口
- 6.2. 阻塞 I/O
- 6.3. poll 和 select
- 6.4. 异步通知
- 6.5. 移位一个设备
- 6.6. 在一个设备文件上的存取控制
- 6.7. 快速参考
- 第 7 章 时间, 延时, 和延后工作
- 7.1. 测量时间流失
- 7.2. 获知当前时间
- 7.3. 延后执行
- 7.4. 内核定时器
- 7.5. Tasklets 机制
- 7.6. 工作队列
- 7.7. 快速参考
- 第 8 章 分配内存
- 8.1. kmalloc 的真实故事
- 8.2. 后备缓存
- 8.3. get_free_page 和其友
- 8.4. 每-CPU 的变量
- 8.5. 获得大量缓冲
- 8.6. 快速参考
- 第 9 章 与硬件通讯
- 9.1. I/O 端口和 I/O 内存
- 9.2. 使用 I/O 端口
- 9.3. 一个 I/O 端口例子
- 9.4. 使用 I/O 内存
- 9.5. 快速参考
- 第 10 章 中断处理
- 10.1. 准备并口
- 10.2. 安装一个中断处理
- 10.3. 前和后半部
- 10.4. 中断共享
- 10.5. 中断驱动 I/O
- 10.6. 快速参考
- 第 11 章 内核中的数据类型
- 11.1. 标准 C 类型的使用
- 11.2. 安排一个明确大小给数据项
- 11.3. 接口特定的类型
- 11.4. 其他移植性问题
- 11.5. 链表
- 11.6. 快速参考
- 第 12 章 PCI 驱动
- 12.1. PCI 接口
- 12.2. 回顾: ISA
- 12.3. PC/104 和 PC/104+
- 12.4. 其他的 PC 总线
- 12.5. SBus
- 12.6. NuBus 总线
- 12.7. 外部总线
- 12.8. 快速参考
- 第 13 章 USB 驱动
- 13.1. USB 设备基础知识
- 13.2. USB 和 sysfs
- 13.3. USB 的 Urbs
- 13.4. 编写一个 USB 驱动
- 13.5. 无 urb 的 USB 传送
- 13.6. 快速参考
- 第 14 章 Linux 设备模型
- 14.1. Kobjects, Ksets 和 Subsystems
- 14.2. 低级 sysfs 操作
- 14.3. 热插拔事件产生
- 14.4. 总线, 设备, 和驱动
- 14.5. 类
- 14.6. 集成起来
- 14.7. 热插拔
- 14.8. 处理固件
- 14.9. 快速参考
- 第 15 章 内存映射和 DMA
- 15.1. Linux 中的内存管理
- 15.2. mmap 设备操作
- 15.3. 进行直接 I/O
- 15.4. 直接内存存取
- 15.5. 快速参考
- 第 16 章 块驱动
- 16.1. 注册
- 16.2. 块设备操作
- 16.3. 请求处理
- 16.4. 一些其他的细节
- 16.5. 快速参考
- 第 17 章 网络驱动
- 17.1. snull 是如何设计的
- 17.2. 连接到内核
- 17.3. net_device 结构的详情
- 17.4. 打开与关闭
- 17.5. 报文传送
- 17.6. 报文接收
- 17.7. 中断处理
- 17.8. 接收中断缓解
- 17.9. 连接状态的改变
- 17.10. Socket 缓存
- 17.11. MAC 地址解析
- 17.12. 定制 ioctl 命令
- 17.13. 统计信息
- 17.14. 多播
- 17.15. 几个其他细节
- 17.16. 快速参考
- 第 18 章 TTY 驱动
- 18.1. 一个小 TTY 驱动
- 18.2. tty_driver 函数指针
- 18.3. TTY 线路设置
- 18.4. ioctls 函数
- 18.5. TTY 设备的 proc 和 sysfs 处理
- 18.6. tty_driver 结构的细节
- 18.7. tty_operaions 结构的细节
- 18.8. tty_struct 结构的细节
- 18.9. 快速参考