## 18.3. TTY 线路设置
当一个用户要改变一个 tty 设备的线路设置或者获取当前线路设置, 他调用一个许多的不同 termios 用户空间库函数或者直接对这个 tty 设备的节点调用 ioctl. tty 核心转换这 2 种接口为许多不同的 tty 驱动函数回调和 ioctl 调用.
### 18.3.1. set_termios 函数
大部分 termios 用户空间函数被库转换为一个对驱动节点的 ioctl 调用. 大量的不同的 tty ioctl 调用接着被 tty 核心转换为一个对 tty 驱动的单个 set_termios 函数调用. set_termios 调用需要决定哪个线路设置它被请求来改变, 接着在 tty 设备中做这些改变. tty 驱动必须能够解码所有的在 termios 结构中的不同设置并且响应任何需要的改变. 这是一个复杂的任务, 因为所有的线路设置以很多的方式被包装进 termios 结构.
一个 set_termios 函数应当做的第一件事情是决定任何事情是否真的需要改变. 这可使用下面的代码完成:
~~~
unsigned int cflag;
cflag = tty->termios->c_cflag;
/* check that they really want us to change something */
if (old_termios)
{
if ((cflag == old_termios->c_cflag) &&
(RELEVANT_IFLAG(tty->termios->c_iflag) == RELEVANT_IFLAG(old_termios->c_iflag))) {
printk(KERN_DEBUG " - nothing to change...\n");
return;
}
}
~~~
RELEVANT_IFLAG 宏定义为:
~~~
#define RELEVANT_IFLAG(iflag) ((iflag) & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK))
~~~
而且用在屏蔽掉 cflags 变量的重要位. 接着这个和原来的值比较, 并且看是否它们不同. 如果不, 什么不改变, 因此我们返回. 注意 old_termios 变量是第一个被检查来看是否它指向一个有效的结构, 在它被存取之前. 这是需要的, 因为有时这个变量被设为 NULL. 试图存取一个 NULL 指针成员会导致内核崩溃.
为查看需要的字节大小, CSIZE 位掩码可用来从 cflag 变量区分出正确的位. 如果这个大小无法知道, 习惯上确实是 8 个数据位. 这个可如下实现:
~~~
/* get the byte size */
switch (cflag & CSIZE)
{
case CS5:
printk(KERN_DEBUG " - data bits = 5\n");
break;
case CS6:
printk(KERN_DEBUG " - data bits = 6\n");
break;
case CS7:
printk(KERN_DEBUG " - data bits = 7\n");
break;
default:
case CS8:
printk(KERN_DEBUG " - data bits = 8\n");
break;
}
~~~
为决定需要的奇偶值, PARENB 位掩码可对 cflag 变量检查来告知是否任何奇偶要被设置. 如果这样, PARODD 位掩码可用来决定是否奇偶应当是奇或者偶. 这个的一个实现是:
~~~
/* determine the parity */
if (cflag & PARENB)
if (cflag & PARODD)
printk(KERN_DEBUG " - parity = odd\n");
else
printk(KERN_DEBUG " - parity = even\n");
else
printk(KERN_DEBUG " - parity = none\n");
~~~
请求的停止位也可使用 CSTOPB 位掩码从 cflag 变量中来知道. 一个实现是:
~~~
/* figure out the stop bits requested */
if (cflag & CSTOPB)
printk(KERN_DEBUG " - stop bits = 2\n");
else
printk(KERN_DEBUG " - stop bits = 1\n");
~~~
有 2 个基本的流控类型: 硬件和软件. 为确定是否用户要求硬件流控, CRTSCTS 位掩码用来对 cflag 变量检查. 它的一个例子是:
~~~
/* figure out the hardware flow control settings */
if (cflag & CRTSCTS)
printk(KERN_DEBUG " - RTS/CTS is enabled\n");
else
printk(KERN_DEBUG " - RTS/CTS is disabled\n");
~~~
确定软件流控的不同模式和不同的起停字符是有些复杂:
~~~
/* determine software flow control */
/* if we are implementing XON/XOFF, set the start and
* stop character in the device */
if (I_IXOFF(tty) || I_IXON(tty))
{
unsigned char stop_char = STOP_CHAR(tty);
unsigned char start_char = START_CHAR(tty);
/* if we are implementing INBOUND XON/XOFF */
if (I_IXOFF(tty))
printk(KERN_DEBUG " - INBOUND XON/XOFF is enabled, "
"XON = %2x, XOFF = %2x", start_char, stop_char);
else
printk(KERN_DEBUG" - INBOUND XON/XOFF is disabled");
/* if we are implementing OUTBOUND XON/XOFF */
if (I_IXON(tty))
printk(KERN_DEBUG" - OUTBOUND XON/XOFF is enabled, "
"XON = %2x, XOFF = %2x", start_char, stop_char);
else
printk(KERN_DEBUG" - OUTBOUND XON/XOFF is disabled");
}
~~~
最后, 波特率需要确定. tty 核心提供了一个函数, tty_get_baud_rate, 来帮助做这个. 这个函数返回一个整型数指示请求的波特率给特定的 tty 设备.
~~~
/* get the baud rate wanted */
printk(KERN_DEBUG " - baud rate = %d", tty_get_baud_rate(tty));
~~~
现在 tty 驱动已经确定了所有的不同的线路设置, 它可以基于这些值正确设置硬件.
### 18.3.2. tiocmget 和 tiocmset
在 2.4 和老的内核, 常常有许多 tty ioctl 调用来获得和设置不同的控制线路设置. 这些被常量 TIOCMGET, TIOCMBIS, TIOCMBIC, 和 TIOCMSET 表示. TIOCMGET 用来获得内核的线路设置值, 并且对于 2.6 内核, 这个 ioctl 调用已经被转换为一个 tty 驱动回调函数, 称为 tiocmget. 其他的 3 个 ioctls 已经被简化并且现在用单个的 tty 驱动回调函数所代表, 称为 tiocmset.
tty 驱动中的 iocmget 函数被 tty 核心所调用, 当核心需要知道当前的特定 tty 设备的控制线的物理值. 这常常用来获取一个串口的 DTR 和 RTS 线的值. 如果 tty 驱动不能直接读串口的 MSR 或者 MCR 寄存器, 因为硬件不允许这样, 一个它们的拷贝应当在本地保持. 许多 USB-到-串口 驱动必须实现这类的"影子"变量. 这是这个函数能如何被实现, 任何一个本地的这些值的拷贝被保存:
~~~
static int tiny_tiocmget(struct tty_struct *tty, struct file *file)
{
struct tiny_serial *tiny = tty->driver_ data;
unsigned int result = 0;
unsigned int msr = tiny->msr;
unsigned int mcr = tiny->mcr;
result = ((mcr & MCR_DTR) ? TIOCM_DTR : 0) | /* DTR is set */
((mcr & MCR_RTS) ? TIOCM_RTS : 0) | /* RTS is set */
((mcr & MCR_LOOP) ? TIOCM_LOOP : 0) | /* LOOP is set */
((msr & MSR_CTS) ? TIOCM_CTS : 0) | /* CTS is set */
((msr & MSR_CD) ? TIOCM_CAR : 0) | /* Carrier detect is set*/
((msr & MSR_RI) ? TIOCM_RI : 0) | /* Ring Indicator is set */
((msr & MSR_DSR) ? TIOCM_DSR : 0); /* DSR is set */
return result;
}
~~~
在 tty 驱动中的 tiocmset 函数被 tty 核心调用, 当核心要设置一个特定 tty 设备的控制线值. tty 核心告知 tty 驱动设置什么值和清理什么, 通过传递它们用 2 个变量: set 和 clear. 这些变量包含一个应当改变的线路设置的位掩码. 一个 ioctl 调用从不请求驱动既设置又清理一个特殊的位在同一时间, 因此先发生什么操作没有关系. 这是一个例子, 关于这个函数如何能够由一个 tty 驱动实现:
~~~
static int tiny_tiocmset(struct tty_struct *tty, struct file *file, unsigned int set , unsigned int clear)
{
struct tiny_serial *tiny = tty->driver_data;
unsigned int mcr = tiny->mcr;
if (set & TIOCM_RTS)
mcr |= MCR_RTS;
if (set & TIOCM_DTR)
mcr |= MCR_RTS;
if (clear & TIOCM_RTS)
mcr &= ~MCR_RTS;
if (clear & TIOCM_DTR)
mcr &= ~MCR_RTS;
/* set the new MCR value in the device */
tiny->mcr = mcr;
return 0;
}
~~~
- Linux设备驱动第三版
- 第 1 章 设备驱动简介
- 1.1. 驱动程序的角色
- 1.2. 划分内核
- 1.3. 设备和模块的分类
- 1.4. 安全问题
- 1.5. 版本编号
- 1.6. 版权条款
- 1.7. 加入内核开发社团
- 1.8. 本书的内容
- 第 2 章 建立和运行模块
- 2.1. 设置你的测试系统
- 2.2. Hello World 模块
- 2.3. 内核模块相比于应用程序
- 2.4. 编译和加载
- 2.5. 内核符号表
- 2.6. 预备知识
- 2.7. 初始化和关停
- 2.8. 模块参数
- 2.9. 在用户空间做
- 2.10. 快速参考
- 第 3 章 字符驱动
- 3.1. scull 的设计
- 3.2. 主次编号
- 3.3. 一些重要数据结构
- 3.4. 字符设备注册
- 3.5. open 和 release
- 3.6. scull 的内存使用
- 3.7. 读和写
- 3.8. 使用新设备
- 3.9. 快速参考
- 第 4 章 调试技术
- 4.1. 内核中的调试支持
- 4.2. 用打印调试
- 4.3. 用查询来调试
- 4.4. 使用观察来调试
- 4.5. 调试系统故障
- 4.6. 调试器和相关工具
- 第 5 章 并发和竞争情况
- 5.1. scull 中的缺陷
- 5.2. 并发和它的管理
- 5.3. 旗标和互斥体
- 5.4. Completions 机制
- 5.5. 自旋锁
- 5.6. 锁陷阱
- 5.7. 加锁的各种选择
- 5.8. 快速参考
- 第 6 章 高级字符驱动操作
- 6.1. ioctl 接口
- 6.2. 阻塞 I/O
- 6.3. poll 和 select
- 6.4. 异步通知
- 6.5. 移位一个设备
- 6.6. 在一个设备文件上的存取控制
- 6.7. 快速参考
- 第 7 章 时间, 延时, 和延后工作
- 7.1. 测量时间流失
- 7.2. 获知当前时间
- 7.3. 延后执行
- 7.4. 内核定时器
- 7.5. Tasklets 机制
- 7.6. 工作队列
- 7.7. 快速参考
- 第 8 章 分配内存
- 8.1. kmalloc 的真实故事
- 8.2. 后备缓存
- 8.3. get_free_page 和其友
- 8.4. 每-CPU 的变量
- 8.5. 获得大量缓冲
- 8.6. 快速参考
- 第 9 章 与硬件通讯
- 9.1. I/O 端口和 I/O 内存
- 9.2. 使用 I/O 端口
- 9.3. 一个 I/O 端口例子
- 9.4. 使用 I/O 内存
- 9.5. 快速参考
- 第 10 章 中断处理
- 10.1. 准备并口
- 10.2. 安装一个中断处理
- 10.3. 前和后半部
- 10.4. 中断共享
- 10.5. 中断驱动 I/O
- 10.6. 快速参考
- 第 11 章 内核中的数据类型
- 11.1. 标准 C 类型的使用
- 11.2. 安排一个明确大小给数据项
- 11.3. 接口特定的类型
- 11.4. 其他移植性问题
- 11.5. 链表
- 11.6. 快速参考
- 第 12 章 PCI 驱动
- 12.1. PCI 接口
- 12.2. 回顾: ISA
- 12.3. PC/104 和 PC/104+
- 12.4. 其他的 PC 总线
- 12.5. SBus
- 12.6. NuBus 总线
- 12.7. 外部总线
- 12.8. 快速参考
- 第 13 章 USB 驱动
- 13.1. USB 设备基础知识
- 13.2. USB 和 sysfs
- 13.3. USB 的 Urbs
- 13.4. 编写一个 USB 驱动
- 13.5. 无 urb 的 USB 传送
- 13.6. 快速参考
- 第 14 章 Linux 设备模型
- 14.1. Kobjects, Ksets 和 Subsystems
- 14.2. 低级 sysfs 操作
- 14.3. 热插拔事件产生
- 14.4. 总线, 设备, 和驱动
- 14.5. 类
- 14.6. 集成起来
- 14.7. 热插拔
- 14.8. 处理固件
- 14.9. 快速参考
- 第 15 章 内存映射和 DMA
- 15.1. Linux 中的内存管理
- 15.2. mmap 设备操作
- 15.3. 进行直接 I/O
- 15.4. 直接内存存取
- 15.5. 快速参考
- 第 16 章 块驱动
- 16.1. 注册
- 16.2. 块设备操作
- 16.3. 请求处理
- 16.4. 一些其他的细节
- 16.5. 快速参考
- 第 17 章 网络驱动
- 17.1. snull 是如何设计的
- 17.2. 连接到内核
- 17.3. net_device 结构的详情
- 17.4. 打开与关闭
- 17.5. 报文传送
- 17.6. 报文接收
- 17.7. 中断处理
- 17.8. 接收中断缓解
- 17.9. 连接状态的改变
- 17.10. Socket 缓存
- 17.11. MAC 地址解析
- 17.12. 定制 ioctl 命令
- 17.13. 统计信息
- 17.14. 多播
- 17.15. 几个其他细节
- 17.16. 快速参考
- 第 18 章 TTY 驱动
- 18.1. 一个小 TTY 驱动
- 18.2. tty_driver 函数指针
- 18.3. TTY 线路设置
- 18.4. ioctls 函数
- 18.5. TTY 设备的 proc 和 sysfs 处理
- 18.6. tty_driver 结构的细节
- 18.7. tty_operaions 结构的细节
- 18.8. tty_struct 结构的细节
- 18.9. 快速参考