## 16.5. 快速参考
~~~
#include <linux/fs.h>
int register_blkdev(unsigned int major, const char *name);
int unregister_blkdev(unsigned int major, const char *name);
~~~
register_blkdev 注册一个块驱动到内核, 并且, 可选地, 获得一个主编号. 一个驱动可被注销, 使用 unregister_blkdev.
~~~
struct block_device_operations
~~~
持有大部分块驱动的方法的结构.
~~~
#include <linux/genhd.h>
struct gendisk;
~~~
描述内核中单个块设备的结构.
~~~
struct gendisk *alloc_disk(int minors);
void add_disk(struct gendisk *gd);
~~~
分配 gendisk 结构的函数, 并且返回它们到系统.
~~~
void set_capacity(struct gendisk *gd, sector_t sectors);
~~~
存储设备能力(以 512-字节)在 gendisk 结构中.
~~~
void add_disk(struct gendisk *gd);
~~~
添加一个磁盘到内核. 一旦调用这个函数, 你的磁盘的方法可被内核调用.
~~~
int check_disk_change(struct block_device *bdev);
~~~
一个内核函数, 检查在给定磁盘驱动器中的介质改变, 并且采取要求的清理动作当检测到这样一个改变.
~~~
#include <linux/blkdev.h>
request_queue_t blk_init_queue(request_fn_proc *request, spinlock_t *lock);
void blk_cleanup_queue(request_queue_t *);
~~~
处理块请求队列的创建和删除的函数.
~~~
struct request *elv_next_request(request_queue_t *queue);
void end_request(struct request *req, int success);
~~~
elv_next_request 从一个请求队列中获得下一个请求; end_request 可用在每个简单驱动器中来标识一个(或部分)请求完成.
~~~
void blkdev_dequeue_request(struct request *req);
void elv_requeue_request(request_queue_t *queue, struct request *req);
~~~
从队列中除去一个请求, 并且放回它的函数如果需要.
~~~
void blk_stop_queue(request_queue_t *queue);
void blk_start_queue(request_queue_t *queue);
~~~
如果你需要阻止对你的请求函数的进一步调用, 调用 blk_stop_queue 来完成. 调用 blk_start_queue 来使你的请求方法被再次调用.
~~~
void blk_queue_bounce_limit(request_queue_t *queue, u64 dma_addr);
void blk_queue_max_sectors(request_queue_t *queue, unsigned short max);
void blk_queue_max_phys_segments(request_queue_t *queue, unsigned short max);
void blk_queue_max_hw_segments(request_queue_t *queue, unsigned short max);
void blk_queue_max_segment_size(request_queue_t *queue, unsigned int max);
blk_queue_segment_boundary(request_queue_t *queue, unsigned long mask);
void blk_queue_dma_alignment(request_queue_t *queue, int mask);
void blk_queue_hardsect_size(request_queue_t *queue, unsigned short max);
~~~
设置各种队列参数的函数, 来控制请求如何被创建给一个特殊设备; 这些参数在"队列控制函数"一节中描述.
~~~
#include <linux/bio.h>
struct bio;
~~~
低级函数, 表示一个块 I/O 请求的一部分.
~~~
bio_sectors(struct bio *bio);
bio_data_dir(struct bio *bio);
~~~
2 个宏定义, 表示一个由 bio 结构描述的传送的大小和方向.
~~~
bio_for_each_segment(bvec, bio, segno);
~~~
一个伪控制结构, 用来循环组成一个 bio 结构的各个段.
~~~
char *__bio_kmap_atomic(struct bio *bio, int i, enum km_type type);
void __bio_kunmap_atomic(char *buffer, enum km_type type);
~~~
__bio_kmap_atomic 可用来创建一个内核虚拟地址给一个在 bio 结构中的给定的段. 映射必须使用 __bio_kunmap_atomic 来恢复.
~~~
struct page *bio_page(struct bio *bio);
int bio_offset(struct bio *bio);int bio_cur_sectors(struct bio *bio);
char *bio_data(struct bio *bio);
char *bio_kmap_irq(struct bio *bio, unsigned long *flags);
void bio_kunmap_irq(char *buffer, unsigned long *flags);
~~~
一组存取者宏定义, 提供对一个 bio 结构中的"当前"段的存取.
~~~
void blk_queue_ordered(request_queue_t *queue, int flag);
int blk_barrier_rq(struct request *req);
~~~
如果你的驱动实现屏障请求, 调用 blk_queue_ordered -- 如同它应当做的. 宏 blk_barrier_rq 返回一个非零值如果当前请求是一个屏障请求.
~~~
int blk_noretry_request(struct request *req);
~~~
这个宏返回一个非零值, 如果给定的请求不应当在出错时重新尝试.
~~~
int end_that_request_first(struct request *req, int success, int count);
void end_that_request_last(struct request *req);
~~~
使用 end_that_request_firest 来指示一个块 I/O 请求的一部分完成. 当那个函数返回 0, 请求完成并且应当被传递给 end_that_request_last.
~~~
rq_for_each_bio(bio, request)
~~~
另一个用宏定义来实现的控制结构; 它步入构成一个请求的每个 bio.
~~~
int blk_rq_map_sg(request_queue_t *queue, struct request *req, struct scatterlist *list);
~~~
为一次 DMA 传送填充给定的散布表, 用需要来映射给定请求中的缓冲的信息
~~~
typedef int (make_request_fn) (request_queue_t *q, struct bio *bio);
~~~
make_request 函数的原型.
~~~
void bio_endio(struct bio *bio, unsigned int bytes, int error);
~~~
指示一个给定 bio 的完成. 这个函数应当只用在你的驱动直接获取 bio , 通过 make_request 函数从块层.
~~~
request_queue_t *blk_alloc_queue(int flags);
void blk_queue_make_request(request_queue_t *queue, make_request_fn *func);
~~~
使用 blk_alloc_queue 来分配由定制的 make_request 函数使用的请求队列, . 那个函数应当使用 blk_queue_make_request 来设置.
~~~
typedef int (prep_rq_fn) (request_queue_t *queue, struct request *req);
void blk_queue_prep_rq(request_queue_t *queue, prep_rq_fn *func);
~~~
一个命令准备函数的原型和设置函数, 它可用来准备必要的硬件命令, 在请求被传递给你的请求函数之前.
~~~
int blk_queue_init_tags(request_queue_t *queue, int depth, struct blk_queue_tag *tags);
int blk_queue_resize_tags(request_queue_t *queue, int new_depth);
int blk_queue_start_tag(request_queue_t *queue, struct request *req);
void blk_queue_end_tag(request_queue_t *queue, struct request *req);
struct request *blk_queue_find_tag(request_queue_t *qeue, int tag);void blk_queue_invalidate_tags(request_queue_t *queue);
~~~
驱动使用被标记的命令队列的支持函数.
- Linux设备驱动第三版
- 第 1 章 设备驱动简介
- 1.1. 驱动程序的角色
- 1.2. 划分内核
- 1.3. 设备和模块的分类
- 1.4. 安全问题
- 1.5. 版本编号
- 1.6. 版权条款
- 1.7. 加入内核开发社团
- 1.8. 本书的内容
- 第 2 章 建立和运行模块
- 2.1. 设置你的测试系统
- 2.2. Hello World 模块
- 2.3. 内核模块相比于应用程序
- 2.4. 编译和加载
- 2.5. 内核符号表
- 2.6. 预备知识
- 2.7. 初始化和关停
- 2.8. 模块参数
- 2.9. 在用户空间做
- 2.10. 快速参考
- 第 3 章 字符驱动
- 3.1. scull 的设计
- 3.2. 主次编号
- 3.3. 一些重要数据结构
- 3.4. 字符设备注册
- 3.5. open 和 release
- 3.6. scull 的内存使用
- 3.7. 读和写
- 3.8. 使用新设备
- 3.9. 快速参考
- 第 4 章 调试技术
- 4.1. 内核中的调试支持
- 4.2. 用打印调试
- 4.3. 用查询来调试
- 4.4. 使用观察来调试
- 4.5. 调试系统故障
- 4.6. 调试器和相关工具
- 第 5 章 并发和竞争情况
- 5.1. scull 中的缺陷
- 5.2. 并发和它的管理
- 5.3. 旗标和互斥体
- 5.4. Completions 机制
- 5.5. 自旋锁
- 5.6. 锁陷阱
- 5.7. 加锁的各种选择
- 5.8. 快速参考
- 第 6 章 高级字符驱动操作
- 6.1. ioctl 接口
- 6.2. 阻塞 I/O
- 6.3. poll 和 select
- 6.4. 异步通知
- 6.5. 移位一个设备
- 6.6. 在一个设备文件上的存取控制
- 6.7. 快速参考
- 第 7 章 时间, 延时, 和延后工作
- 7.1. 测量时间流失
- 7.2. 获知当前时间
- 7.3. 延后执行
- 7.4. 内核定时器
- 7.5. Tasklets 机制
- 7.6. 工作队列
- 7.7. 快速参考
- 第 8 章 分配内存
- 8.1. kmalloc 的真实故事
- 8.2. 后备缓存
- 8.3. get_free_page 和其友
- 8.4. 每-CPU 的变量
- 8.5. 获得大量缓冲
- 8.6. 快速参考
- 第 9 章 与硬件通讯
- 9.1. I/O 端口和 I/O 内存
- 9.2. 使用 I/O 端口
- 9.3. 一个 I/O 端口例子
- 9.4. 使用 I/O 内存
- 9.5. 快速参考
- 第 10 章 中断处理
- 10.1. 准备并口
- 10.2. 安装一个中断处理
- 10.3. 前和后半部
- 10.4. 中断共享
- 10.5. 中断驱动 I/O
- 10.6. 快速参考
- 第 11 章 内核中的数据类型
- 11.1. 标准 C 类型的使用
- 11.2. 安排一个明确大小给数据项
- 11.3. 接口特定的类型
- 11.4. 其他移植性问题
- 11.5. 链表
- 11.6. 快速参考
- 第 12 章 PCI 驱动
- 12.1. PCI 接口
- 12.2. 回顾: ISA
- 12.3. PC/104 和 PC/104+
- 12.4. 其他的 PC 总线
- 12.5. SBus
- 12.6. NuBus 总线
- 12.7. 外部总线
- 12.8. 快速参考
- 第 13 章 USB 驱动
- 13.1. USB 设备基础知识
- 13.2. USB 和 sysfs
- 13.3. USB 的 Urbs
- 13.4. 编写一个 USB 驱动
- 13.5. 无 urb 的 USB 传送
- 13.6. 快速参考
- 第 14 章 Linux 设备模型
- 14.1. Kobjects, Ksets 和 Subsystems
- 14.2. 低级 sysfs 操作
- 14.3. 热插拔事件产生
- 14.4. 总线, 设备, 和驱动
- 14.5. 类
- 14.6. 集成起来
- 14.7. 热插拔
- 14.8. 处理固件
- 14.9. 快速参考
- 第 15 章 内存映射和 DMA
- 15.1. Linux 中的内存管理
- 15.2. mmap 设备操作
- 15.3. 进行直接 I/O
- 15.4. 直接内存存取
- 15.5. 快速参考
- 第 16 章 块驱动
- 16.1. 注册
- 16.2. 块设备操作
- 16.3. 请求处理
- 16.4. 一些其他的细节
- 16.5. 快速参考
- 第 17 章 网络驱动
- 17.1. snull 是如何设计的
- 17.2. 连接到内核
- 17.3. net_device 结构的详情
- 17.4. 打开与关闭
- 17.5. 报文传送
- 17.6. 报文接收
- 17.7. 中断处理
- 17.8. 接收中断缓解
- 17.9. 连接状态的改变
- 17.10. Socket 缓存
- 17.11. MAC 地址解析
- 17.12. 定制 ioctl 命令
- 17.13. 统计信息
- 17.14. 多播
- 17.15. 几个其他细节
- 17.16. 快速参考
- 第 18 章 TTY 驱动
- 18.1. 一个小 TTY 驱动
- 18.2. tty_driver 函数指针
- 18.3. TTY 线路设置
- 18.4. ioctls 函数
- 18.5. TTY 设备的 proc 和 sysfs 处理
- 18.6. tty_driver 结构的细节
- 18.7. tty_operaions 结构的细节
- 18.8. tty_struct 结构的细节
- 18.9. 快速参考