## 15.5. 快速参考
本章介绍了下列关于内存处理的符号:
### 15.5.1. 介绍性材料
~~~
#include <linux/mm.h>
#include <asm/page.h>
~~~
和内存管理相关的大部分函数和结构, 原型和定义在这些头文件.
~~~
void *__va(unsigned long physaddr);
unsigned long __pa(void *kaddr);
~~~
在内核逻辑地址和物理地址之间转换的宏定义.
~~~
PAGE_SIZE
PAGE_SHIFT
~~~
常量, 给出底层硬件的页的大小(字节)和一个页面号必须被移位来转变为一个物理地址的位数.
struct page
在系统内存映射中表示一个硬件页的结构.
~~~
struct page *virt_to_page(void *kaddr);
void *page_address(struct page *page);
struct page *pfn_to_page(int pfn);
~~~
宏定义, 在内核逻辑地址和它们相关的内存映射入口之间转换的. page_address 只用在低地址页或者已被明确映射的高地址页. pfn_to_page 转换一个页面号到它的相关的 struct page 指针.
~~~
unsigned long kmap(struct page *page);
void kunmap(struct page *page);
~~~
kmap 返回一个内核虚拟地址, 被映射到给定页, 如果需要并创建映射. kunmap 为给定页删除映射.
~~~
#include <linux/highmem.h>
#include <asm/kmap_types.h>
void *kmap_atomic(struct page *page, enum km_type type);
void kunmap_atomic(void *addr, enum km_type type);
~~~
kmap 的高性能版本; 结果的映射只能被原子代码持有. 对于驱动, type 应当是 KM_USER1, KM_USER1, KM_IRQ0, 或者 KM_IRQ1.
struct vm_area_struct;
描述一个 VMA 的结构.
### 15.5.2. 实现 mmap
~~~
int remap_pfn_range(struct vm_area_struct *vma, unsigned long virt_add, unsigned long pfn, unsigned long size, pgprot_t prot);
int io_remap_page_range(struct vm_area_struct *vma, unsigned long virt_add, unsigned long phys_add, unsigned long size, pgprot_t prot);
~~~
位于 mmap 核心的函数. 它们映射 size 字节的物理地址, 从 pfn 指出的页号开始到虚拟地址 virt_add. 和虚拟空间相关联的保护位在 prot 里指定. io_remap_page_range 应当在目标地址在 I/O 内存空间里时被使用.
~~~
struct page *vmalloc_to_page(void *vmaddr);
~~~
转换一个由 vmalloc 获得的内核虚拟地址到它的对应的 struct page 指针.
### 15.5.3. 实现直接 I/O
~~~
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
~~~
函数, 加锁一个用户空间缓冲到内存并且返回对应的 struct page 指针. 调用者必须持有 mm->mmap_sem.
~~~
SetPageDirty(struct page *page);
~~~
宏定义, 标识给定的页为"脏"(被修改)并且需要写到它的后备存储, 在它被释放前.
~~~
void page_cache_release(struct page *page);
~~~
释放给定的页从页缓存中.
~~~
int is_sync_kiocb(struct kiocb *iocb);
~~~
宏定义, 返回非零如果给定的 IOCB 需要同步执行.
~~~
int aio_complete(struct kiocb *iocb, long res, long res2);
~~~
函数, 指示一个异步 I/O 操作完成.
### 15.5.4. 直接内存存取
~~~
#include <asm/io.h>
unsigned long virt_to_bus(volatile void * address);
void * bus_to_virt(unsigned long address);
~~~
过时的不好的函数, 在内核, 虚拟, 和总线地址之间转换. 总线地址必须用来和外设通讯.
~~~
#include <linux/dma-mapping.h>
~~~
需要来定义通用 DMA 函数的头文件.
~~~
int dma_set_mask(struct device *dev, u64 mask);
~~~
对于无法寻址整个 32-位范围的外设, 这个函数通知内核可寻址的地址范围并且如果可进行 DMA 返回非零.
~~~
void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *bus_addr, int flag);
void dma_free_coherent(struct device *dev, size_t size, void *cpuaddr, dma_handle_t bus_addr);
~~~
分配和释放一致 DMA 映射, 对一个将持续在驱动的生命周期中的缓冲.
~~~
#include <linux/dmapool.h>
struct dma_pool *dma_pool_create(const char *name, struct device *dev, size_t size, size_t align, size_t allocation);
void dma_pool_destroy(struct dma_pool *pool);void *dma_pool_alloc(struct dma_pool *pool, int mem_flags, dma_addr_t *handle);
void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t handle);
~~~
创建, 销毁, 和使用 DMA 池来管理小 DMA 区的函数.
~~~
enum dma_data_direction;
DMA_TO_DEVICE
DMA_FROM_DEVICE
DMA_BIDIRECTIONAL
DMA_NONE
~~~
符号, 用来告知流映射函数在什么方向数据移入或出缓冲.
~~~
dma_addr_t dma_map_single(struct device *dev, void *buffer, size_t size, enum dma_data_direction direction);
void dma_unmap_single(struct device *dev, dma_addr_t bus_addr, size_t size, enum dma_data_direction direction);
~~~
创建和销毁一个单使用, 流 DMA 映射.
~~~
void dma_sync_single_for_cpu(struct device *dev, dma_handle_t bus_addr, size_t size, enum dma_data_direction direction);
void dma_sync_single_for_device(struct device *dev, dma_handle_t bus_addr, size_t size, enum dma_data_direction direction);
~~~
同步一个由一个流映射的缓冲. 必须使用这些函数, 如果处理器必须存取一个缓冲当使用流映射时.(即, 当设备拥有缓冲时).
~~~
#include <asm/scatterlist.h>
struct scatterlist { /* ... */ };
dma_addr_t sg_dma_address(struct scatterlist *sg);
unsigned int sg_dma_len(struct scatterlist *sg);
~~~
这个散布表结构描述一个涉及不止一个缓冲的 I/O 操作. 宏 sg_dma_address he sg_dma_len 可用来抽取总线地址和缓冲长度来传递给设备, 当实现发散/汇聚操作时.
~~~
dma_map_sg(struct device *dev, struct scatterlist *list, int nents, enum dma_data_direction direction);
dma_unmap_sg(struct device *dev, struct scatterlist *list, int nents, enum dma_data_direction direction);
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction);
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction);
~~~
dma_map_sg 映射一个 发散/汇聚 操作, 并且 dma_unmap_sg 恢复这些映射. 如果在这个映射被激活时缓冲必须被存取, dma_sync_sg_* 可用来同步.
/proc/dma
包含在 DMA 控制器中的被分配的通道的文本快照的文件. 基于 PCI 的 DMA 不显示, 因为每个板独立工作, 不需要分配一个通道在 DMA 控制器中.
~~~
#include <asm/dma.h>
~~~
定义或者原型化所有和 DMA 相关的函数和宏定义. 它必须被包含来使用任何下面符号.
~~~
int request_dma(unsigned int channel, const char *name);
void free_dma(unsigned int channel);
~~~
存取 DMA 注册. 注册必须在使用 ISA DMA 通道之前进行.
~~~
unsigned long claim_dma_lock( );
void release_dma_lock(unsigned long flags);
~~~
获取和释放 DMA 自旋锁, 它必须被持有, 在调用其他的在这个列表中描述的 ISA DMA 函数之前. 它们在本地处理器上也关闭和重新使能中断
~~~
void set_dma_mode(unsigned int channel, char mode);
void set_dma_addr(unsigned int channel, unsigned int addr);
void set_dma_count(unsigned int channel, unsigned int count);
~~~
编程 DMA 信息在 DMA 控制器中. addr 是一个总线地址.
~~~
void disable_dma(unsigned int channel);
void enable_dma(unsigned int channel);
~~~
一个 DMA 通道必须被关闭在配置期间. 这些函数改变 DMA 通道的状态.
~~~
int get_dma_residue(unsigned int channel);
~~~
如果这驱动需要知道一个 DMA 传送在进行, 它可调用这个函数, 返回尚未完成的数据传输的数目. 在成功的 DMA 完成后, 这个函数返回 0; 值是不可预测的当数据仍然在传送时.
~~~
void clear_dma_ff(unsigned int channel);
~~~
DMA flip-flop 被控制器用来传送 16-位值, 通过 2 个 8 位操作. 它必须被清除, 在发送任何数据给处理器之前.
- Linux设备驱动第三版
- 第 1 章 设备驱动简介
- 1.1. 驱动程序的角色
- 1.2. 划分内核
- 1.3. 设备和模块的分类
- 1.4. 安全问题
- 1.5. 版本编号
- 1.6. 版权条款
- 1.7. 加入内核开发社团
- 1.8. 本书的内容
- 第 2 章 建立和运行模块
- 2.1. 设置你的测试系统
- 2.2. Hello World 模块
- 2.3. 内核模块相比于应用程序
- 2.4. 编译和加载
- 2.5. 内核符号表
- 2.6. 预备知识
- 2.7. 初始化和关停
- 2.8. 模块参数
- 2.9. 在用户空间做
- 2.10. 快速参考
- 第 3 章 字符驱动
- 3.1. scull 的设计
- 3.2. 主次编号
- 3.3. 一些重要数据结构
- 3.4. 字符设备注册
- 3.5. open 和 release
- 3.6. scull 的内存使用
- 3.7. 读和写
- 3.8. 使用新设备
- 3.9. 快速参考
- 第 4 章 调试技术
- 4.1. 内核中的调试支持
- 4.2. 用打印调试
- 4.3. 用查询来调试
- 4.4. 使用观察来调试
- 4.5. 调试系统故障
- 4.6. 调试器和相关工具
- 第 5 章 并发和竞争情况
- 5.1. scull 中的缺陷
- 5.2. 并发和它的管理
- 5.3. 旗标和互斥体
- 5.4. Completions 机制
- 5.5. 自旋锁
- 5.6. 锁陷阱
- 5.7. 加锁的各种选择
- 5.8. 快速参考
- 第 6 章 高级字符驱动操作
- 6.1. ioctl 接口
- 6.2. 阻塞 I/O
- 6.3. poll 和 select
- 6.4. 异步通知
- 6.5. 移位一个设备
- 6.6. 在一个设备文件上的存取控制
- 6.7. 快速参考
- 第 7 章 时间, 延时, 和延后工作
- 7.1. 测量时间流失
- 7.2. 获知当前时间
- 7.3. 延后执行
- 7.4. 内核定时器
- 7.5. Tasklets 机制
- 7.6. 工作队列
- 7.7. 快速参考
- 第 8 章 分配内存
- 8.1. kmalloc 的真实故事
- 8.2. 后备缓存
- 8.3. get_free_page 和其友
- 8.4. 每-CPU 的变量
- 8.5. 获得大量缓冲
- 8.6. 快速参考
- 第 9 章 与硬件通讯
- 9.1. I/O 端口和 I/O 内存
- 9.2. 使用 I/O 端口
- 9.3. 一个 I/O 端口例子
- 9.4. 使用 I/O 内存
- 9.5. 快速参考
- 第 10 章 中断处理
- 10.1. 准备并口
- 10.2. 安装一个中断处理
- 10.3. 前和后半部
- 10.4. 中断共享
- 10.5. 中断驱动 I/O
- 10.6. 快速参考
- 第 11 章 内核中的数据类型
- 11.1. 标准 C 类型的使用
- 11.2. 安排一个明确大小给数据项
- 11.3. 接口特定的类型
- 11.4. 其他移植性问题
- 11.5. 链表
- 11.6. 快速参考
- 第 12 章 PCI 驱动
- 12.1. PCI 接口
- 12.2. 回顾: ISA
- 12.3. PC/104 和 PC/104+
- 12.4. 其他的 PC 总线
- 12.5. SBus
- 12.6. NuBus 总线
- 12.7. 外部总线
- 12.8. 快速参考
- 第 13 章 USB 驱动
- 13.1. USB 设备基础知识
- 13.2. USB 和 sysfs
- 13.3. USB 的 Urbs
- 13.4. 编写一个 USB 驱动
- 13.5. 无 urb 的 USB 传送
- 13.6. 快速参考
- 第 14 章 Linux 设备模型
- 14.1. Kobjects, Ksets 和 Subsystems
- 14.2. 低级 sysfs 操作
- 14.3. 热插拔事件产生
- 14.4. 总线, 设备, 和驱动
- 14.5. 类
- 14.6. 集成起来
- 14.7. 热插拔
- 14.8. 处理固件
- 14.9. 快速参考
- 第 15 章 内存映射和 DMA
- 15.1. Linux 中的内存管理
- 15.2. mmap 设备操作
- 15.3. 进行直接 I/O
- 15.4. 直接内存存取
- 15.5. 快速参考
- 第 16 章 块驱动
- 16.1. 注册
- 16.2. 块设备操作
- 16.3. 请求处理
- 16.4. 一些其他的细节
- 16.5. 快速参考
- 第 17 章 网络驱动
- 17.1. snull 是如何设计的
- 17.2. 连接到内核
- 17.3. net_device 结构的详情
- 17.4. 打开与关闭
- 17.5. 报文传送
- 17.6. 报文接收
- 17.7. 中断处理
- 17.8. 接收中断缓解
- 17.9. 连接状态的改变
- 17.10. Socket 缓存
- 17.11. MAC 地址解析
- 17.12. 定制 ioctl 命令
- 17.13. 统计信息
- 17.14. 多播
- 17.15. 几个其他细节
- 17.16. 快速参考
- 第 18 章 TTY 驱动
- 18.1. 一个小 TTY 驱动
- 18.2. tty_driver 函数指针
- 18.3. TTY 线路设置
- 18.4. ioctls 函数
- 18.5. TTY 设备的 proc 和 sysfs 处理
- 18.6. tty_driver 结构的细节
- 18.7. tty_operaions 结构的细节
- 18.8. tty_struct 结构的细节
- 18.9. 快速参考