# **优雅地结束goroutines**
本节内容将介绍如何使用Go标准库中的`sync`包来解决上一节提到的`goroutine`中的任务还未执行完成,`main()`函数就提前结束的问题。
本节的代码文件为syncGo.go,我们基于上一节的`create.go`来扩展`syncGo.go`。
`syncGo.go`的第一部分代码如下:
```go
package main
import (
"flag"
"fmt"
"sync"
)
```
如上所示,我们不再需要time包,我们将使用sync包中的功能来等待所有的goroutine执行完成。
在第10章“并发 - 高级主题”中,我们将会学习两种方式来对goroutine进行超时处理。
第二部分代码如下:
```go
func main() {
n := flag.Int("n", 20, "Number of goroutines")
flag.Parse()
count := *n
fmt.Printf("Going to create %d goroutines.\n", count)
var waitGroup sync.WaitGroup
```
在上面的代码中,我们定义了sync.WaitGroup类型的变量,查看sync包的源码我们可以发现,waitgroup.go文件位于sync目录中,sync.WaitGroup的定义只不过是一个包含三个字段的结构体:
```go
type WaitGroup struct {
noCopy noCopy
state1 [12]byte
sema uint32
}
```
`syncGo.go`的输出将显示有关`sync.WaitGroup`变量工作方式的更多信息。
第三部分代码如下:
```go
fmt.Printf("%#v\n", waitGroup)
for i := 0; i < count; i++ {
waitGroup.Add(1)
go func(x int) {
defer waitGroup.Done()
fmt.Printf("%d ", x)
}(i)
}
```
在这里,你可以使用for循环创建所需数量的`goroutine`。(当然,也可以写多个顺序的Go语句。)
每次调用`sync.Add()`都会增加`sync.WaitGroup`变量中的计数器。需要注意的是,在go语句之前调用`sync.Add(1)`非常重要,以防止出现任何形式的竞争。当每个`goroutine`完成其工作时,将执行`sync.Done()`函数,以减少相同的计数器。
最后一部分代码如下:
```go
fmt.Printf("%#v\n", waitGroup)
waitGroup.Wait()
fmt.Println("\nExiting...")
}
```
`sync.Wait()`调用将阻塞主程序,直到`sync.WaitGroup`变量中的计数器为零,从而保证所有`goroutine`能执行完成。
`syncGo.go`的输出如下:
```bash
$ go run syncGo.go
Going to create 20 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x14, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
19 7 8 9 10 11 12 13 14 15 16 17 0 1 2 5 18 4 6 3
Exiting...
$ go run syncGo.go -n 30
Going to create 30 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
1 0 4 5 17 7 8 9 10 11 12 13 2 sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x17, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
29 15 6 27 24 25 16 22 14 23 18 26 3 19 20 28 21
Exiting...
$ go run syncGo.go -n 30
Going to create 30 goroutines.
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
sync.WaitGroup{noCopy:sync.noCopy{}, state1:[12]uint8{0x0, 0x0, 0x0, 0x0, 0x1e, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, sema:0x0}
29 1 7 8 2 9 10 11 12 4 13 15 0 6 5 22 25 23 16 28 26 20 19 24 21 14 3 17 18 27
Exiting...
```
`syncGo.go`的输出因执行情况而异。另外,当`goroutines`的数量为30时,一些`goroutine`可能会在第二个`fmt.Printf(“%#v \ n”,waitGroup)`语句之前完成它们的工作。最后需要注意`sync.WaitGroup`中的`state1`字段是一个保存计数器的元素,该计数器根据`sync.Add()`和`sync.Done()`调用而增加和减少。
- 介绍
- 1 Go与操作系统
- 01.1 Go的历史
- 01.2 Go的未来
- 01.3 Go的优点
- 01.3.1 Go是完美的么
- 01.3.2 什么是预处理器
- 01.3.3 godoc
- 01.4 编译Go代码
- 2 理解 Go 的内部构造
- Go 编译器
- Go 的垃圾回收
- 三色算法
- 有关 Go 垃圾收集器操作的更多信息
- Maps, silces 与 Go 垃圾回收器
- Unsafe code
- 有关 unsafe 包
- 另一个 usafe 包的例子
- 从 Go 调用 C 代码
- 在同一文件用 Go 调用 C 代码
- 在单独的文件用 Go 调用 C 代码
- 从 C 调用 Go 代码
- Go 包
- C 代码
- defer 关键字
- 用 defer 打印日志
- Panic 和 Recover
- 单独使用 Panic 函数
- 两个好用的 UNIX 工具
- strace
- dtrace
- 配置 Go 开发环境
- go env 命令
- Go 汇编器
- 节点树
- 进一步了解 Go 构建
- 创建 WebAssembly 代码
- 对 Webassembly 的简单介绍
- 为什么 WebAssembly 很重要
- Go 与 WebAssembly
- 示例
- 使用创建好的 WebAssembly 代码
- Go 编码风格建议
- 练习和相关链接
- 本章小结
- 3 Go基本数据类型
- 03.1 Go循环
- 03.1.1 for循环
- 03.1.2 while循环
- 03.1.3 range关键字
- 03.1.4 for循环代码示例
- 03.3 Go切片
- 03.3.1 切片基本操作
- 03.3.2 切片的扩容
- 03.3.3 字节切片
- 03.3.4 copy()函数
- 03.3.5 多维切片
- 03.3.6 使用切片的代码示例
- 03.3.7 使用sort.Slice()排序
- 03.4 Go 映射(map)
- 03.4.1 Map值为nil的坑
- 03.4.2 何时该使用Map?
- 03.5 Go 常量
- 03.5.1 常量生成器:iota
- 03.6 Go 指针
- 03.7 时间与日期的处理技巧
- 03.7.1 解析时间
- 03.7.2 解析时间的代码示例
- 03.7.3 解析日期
- 03.7.4 解析日期的代码示例
- 03.7.5 格式化时间与日期
- 03.8 延伸阅读
- 03.9 练习
- 03.10 本章小结
- 9 并发-Goroutines,Channel和Pipeline
- 09.1 关于进程,线程和Go协程
- 09.1.1 Go调度器
- 09.1.2 并发与并行
- 09.2 Goroutines
- 09.2.1 创建一个Goroutine
- 09.2.2 创建多个Goroutine
- 09.3 优雅地结束goroutines
- 09.3.1 当Add()和Done()的数量不匹配时会发生什么?
- 09.4 Channel(通道)
- 09.4.1 通道的写入
- 09.4.2 从通道接收数据
- 09.4.3 通道作为函数参数传递
- 09.5 管道
- 09.6 延展阅读
- 09.7 练习
- 09.8 本章小结