# Item 17: 在一个独立的语句中将 new 出来的对象存入智能指针
作者:Scott Meyers
译者:fatalerror99 (iTePub's Nirvana)
发布:http://blog.csdn.net/fatalerror99/
假设我们有一个函数取得我们的处理优先级,而第二个函数根据优先级针对动态分配的 Widget 做一些处理:
```
int priority();
void processWidget(std::tr1::shared_ptr<Widget> pw, int priority);
```
不要忘记使用对象管理资源的至理名言(参见 Item 13),processWidget 为处理动态分配的 Widget 使用了一个智能指针(在此,是一个 tr1::shared_ptr)。
现在考虑一个对 processWidget 的调用:
```
processWidget(new Widget, priority());
```
且慢,别想这样调用。它不能编译。tr1::shared_ptr 的构造函数取得一个裸指针(raw pointer)应该是显式的,所以不能从一个由 "new Widget" 返回的裸指针隐式转型到 processWidget 所需要的 tr1::shared_ptr。下面的代码,无论如何,是可以编译的:
```
processWidget(std::tr1::shared_ptr<Widget>(new Widget), priority());
```
令人惊讶的是,尽管我们在这里各处都使用了对象管理资源,这个调用还是可能泄漏资源。下面就来说明这是如何发生的。
在编译器能生成一个对 processWidget 的调用之前,它们必须传递实际参数来计算形式参数的值。第二个实际参数不过是对函数 priority 的调用,但是第一个实际参数("std::tr1::shared_ptr<Widget>(new Widget)"),由两部分组成
* 表达式 "new Widget" 的执行。
* 一个对 tr1::shared_ptr 的构造函数的调用。
在 processWidget 能被调用之前,编译器必须为这三件事情生成代码:
* 调用 priority。
* 执行 "new Widget"。
* 调用 tr1::shared_ptr 的构造函数。
C++ 编译器允许在一个相当大的范围内决定这三件事被完成的顺序。(这里与 Java 和 C# 等语言的处理方式不同,那些语言里函数参数总是按照一个精确的顺序被计算。)"new Widget" 表达式一定在 tr1::shared_ptr 的构造函数能被调用之前执行,因为这个表达式的结果要作为一个参数传递给 tr1::shared_ptr 的构造函数,但是 priority 的调用可以被第一个,第二个或第三个执行。如果编译器选择第二个执行它(大概这样能使它们生成更有效率的代码),我们最终得到这样一个操作顺序:
1\. 执行 "new Widget"。
2\. 调用 priority。
3\. 调用 tr1::shared_ptr 的构造函数。
但是请考虑,如果对 priority 的调用引发一个异常将发生什么。在这种情况下,从 "new Widget" 返回的指针被丢失,因为它没有被存入我们期望能阻止资源泄漏的 tr1::shared_ptr。由于一个异常可能插入资源创建的时间和将资源交给一个资源管理对象的时间之间,所以调用 processWidget 可能会发生一次泄漏。
避免类似问题的方法很简单:用一个单独的语句创建 Widget 并将它存入一个智能指针,然后将这个智能指针传递给 processWidget:
```
std::tr1::shared_ptr<Widget> pw(new Widget); // store newed object
// in a smart pointer in a
// standalone statement
processWidget(pw, priority()); // this call won't leak
```
这样做是因为编译器在不同的语句之间重新安排操作顺序的活动余地比在一个语句之内要小得多。"new Widget" 表达式和 tr1::shared_ptr 的构造函数的调用与 priority 的调用在不同的语句中,所以编译器不会允许 priority 的调用插入它们中间。
Things to Remember
* 在一个独立的语句中将 new 出来的对象存入智能指针。如果疏忽了这一点,当异常发生时,可能引起微妙的资源泄漏。
- Preface(前言)
- Introduction(导言)
- Terminology(术语)
- Item 1: 将 C++ 视为 federation of languages(语言联合体)
- Item 2: 用 consts, enums 和 inlines 取代 #defines
- Item 3: 只要可能就用 const
- Item 4: 确保 objects(对象)在使用前被初始化
- Item 5: 了解 C++ 为你偷偷地加上和调用了什么函数
- Item 6: 如果你不想使用 compiler-generated functions(编译器生成函数),就明确拒绝
- Item 7: 在 polymorphic base classes(多态基类)中将 destructors(析构函数)声明为 virtual(虚拟)
- Item 8: 防止因为 exceptions(异常)而离开 destructors(析构函数)
- Item 9: 绝不要在 construction(构造)或 destruction(析构)期间调用 virtual functions(虚拟函数)
- Item 10: 让 assignment operators(赋值运算符)返回一个 reference to *this(引向 *this 的引用)
- Item 11: 在 operator= 中处理 assignment to self(自赋值)
- Item 12: 拷贝一个对象的所有组成部分
- Item 13: 使用对象管理资源
- Item 14: 谨慎考虑资源管理类的拷贝行为
- Item 15: 在资源管理类中准备访问裸资源(raw resources)
- Item 16: 使用相同形式的 new 和 delete
- Item 17: 在一个独立的语句中将 new 出来的对象存入智能指针
- Item 18: 使接口易于正确使用,而难以错误使用
- Item 19: 视类设计为类型设计
- Item 20: 用 pass-by-reference-to-const(传引用给 const)取代 pass-by-value(传值)
- Item 21: 当你必须返回一个对象时不要试图返回一个引用
- Item 22: 将数据成员声明为 private
- Item 23: 用非成员非友元函数取代成员函数
- Item 24: 当类型转换应该用于所有参数时,声明为非成员函数
- Item 25: 考虑支持不抛异常的 swap
- Item 26: 只要有可能就推迟变量定义
- Item 27: 将强制转型减到最少
- Item 28: 避免返回对象内部构件的“句柄”
- Item 29: 争取异常安全(exception-safe)的代码
- Item 30: 理解 inline 化的介入和排除
- Item 31: 最小化文件之间的编译依赖
- Item 32: 确保 public inheritance 模拟 "is-a"
- Item 33: 避免覆盖(hiding)“通过继承得到的名字”
- Item 34: 区分 inheritance of interface(接口继承)和 inheritance of implementation(实现继承)
- Item 35: 考虑可选的 virtual functions(虚拟函数)的替代方法
- Item 36: 绝不要重定义一个 inherited non-virtual function(通过继承得到的非虚拟函数)
- Item 37: 绝不要重定义一个函数的 inherited default parameter value(通过继承得到的缺省参数值)
- Item 38: 通过 composition(复合)模拟 "has-a"(有一个)或 "is-implemented-in-terms-of"(是根据……实现的)
- Item 39: 谨慎使用 private inheritance(私有继承)
- Item 40: 谨慎使用 multiple inheritance(多继承)
- Item 41: 理解 implicit interfaces(隐式接口)和 compile-time polymorphism(编译期多态)
- Item 42: 理解 typename 的两个含义
- Item 43: 了解如何访问 templatized base classes(模板化基类)中的名字
- Item 44: 从 templates(模板)中分离出 parameter-independent(参数无关)的代码
- Item 45: 用 member function templates(成员函数模板) 接受 "all compatible types"(“所有兼容类型”)
- Item 46: 需要 type conversions(类型转换)时在 templates(模板)内定义 non-member functions(非成员函数)
- Item 47: 为类型信息使用 traits classes(特征类)
- Item 48: 感受 template metaprogramming(模板元编程)
- Item 49: 了解 new-handler 的行为
- Item 50: 领会何时替换 new 和 delete 才有意义
- Item 51: 编写 new 和 delete 时要遵守惯例
- Item 52: 如果编写了 placement new,就要编写 placement delete
- 附录 A. 超越 Effective C++
- 附录 B. 第二和第三版之间的 Item 映射