# Item 38: 通过 composition(复合)模拟 "has-a"(有一个)或 "is-implemented-in-terms-of"(是根据……实现的)
作者:Scott Meyers
译者:fatalerror99 (iTePub's Nirvana)
发布:http://blog.csdn.net/fatalerror99/
composition(复合)是在 objects of one type(一个类型的对象)包含 objects of another type(另一个类型的对象)时,types(类型)之间的关系。例如:
```
class Address { ... }; // where someone lives
class PhoneNumber { ... };
class Person {
public:
...
private:
std::string name; // composed object
Address address; // ditto
PhoneNumber voiceNumber; // ditto
PhoneNumber faxNumber; // ditto
};
```
此例之中,Person objects(对象)由 string,Address,和 PhoneNumber objects(对象)组成。在程序员中,术语 composition(复合)有很多同义词。它也可以称为 layering,containment,aggregation,和 embedding。
Item 32 解释了 public inheritance(公有继承)意味着 "is-a"(是一个)。composition(复合)也有一个含意。实际上,他有两个含意。composition(复合)既意味着 "has-a"(有一个),又意味着 "is-implemented-in-terms-of"(是根据……实现的)。这是因为你要在你的软件中处理两个不同的 domains(领域)。你程序中的一些 objects(对象)对应你所模拟的世界里的东西,例如,people(人),vehicles(交通工具),video frames(视频画面)等等。这样的 objects(对象)是 application domain(应用领域)的部分。另外的 objects(对象)纯粹是 implementation artifacts(实现的产物),例如,buffers(缓冲区),mutexes(互斥体),search trees(搜索树)等等。这些各类 objects(对象)定义应你的软件的 implementation domain(实现领域)。当 composition(复合)发生在 application domain(应用领域)的 objects(对象)之间,它表达一个 has-a(有一个)的关系,当它发生在 implementation domain(实现领域),它表达一个 is-implemented-in-terms-of(是根据……实现的)的关系
上面的 Person class(类)示范了 has-a(有一个)的关系。一个 Person object(对象)has a(有一个)名字,一个地址,以及语音和传真电话号码。你不能说一个人 is a(是一个)名字或一个人 is an(是一个)地址。你可以说一个人 has a(有一个)名字和 has an(有一个)地址。大多数人对此区别不难理解,所以混淆 is-a(是一个)和 has-a(有一个)之间的角色的情况非常少见。
is-a(是一个)和 is-implemented-in-terms-of(是根据……实现的)之间的区别稍微有些棘手。例如,假设你需要一个类的模板来表现相当小的 objects(对象)的 sets,也就是说,排除重复的集合。因为 reuse(复用)是一件受人欢迎的事情,你的第一个直觉就是使用标准库中的 set template(模板)。当你能使用已经被写好的东西时,为什么还要写一个新的 template(模板)呢?
不幸的是,set 的典型实现导致每个元素三个指针的开销。这是因为 sets 通常被作为 balanced search trees(平衡搜索树)来实现,这允许它们保证 logarithmic-time(对数时间)的 lookups(查找),insertions(插入)和 erasures(删除)。当速度比空间更重要的时候,这是一个合理的设计,但是当空间比速度更重要时,对你的程序来说就有问题了。因而,对你来说,标准库的 set 为你提供了不合理的交易。看起来你终究还是要写你自己的 template(模板)。
reuse(复用)依然是一件受人欢迎的事情。作为 data structure(数据结构)的专家,你知道实现 sets 的诸多选择,其中一种是使用 linked lists(线性链表)。你也知道标准的 C++ 库中有一个 list template(模板),所以你决定(复)用它。
具体地说,你决定让你的新的 Set template(模板)从 list 继承。也就是说,Set<T> 将从 list<T> 继承。毕竟,在你的实现中,一个 Set object(对象)实际上就是一个 list object(对象)。于是,你就像这样声明你的 Set template(模板):
```
template<typename T> // the wrong way to use list for Set
class Set: public std::list<T> { ... };
```
在这里,看起来每件事情都很好。但实际上有一个很大的错误。就像 Item 32 中的解释,如果 D is-a(是一个)B,对于 B 成立的每一件事情对 D 也成立。然而,一个 list object(对象)可以包含重复,所以如果值 3051 被插入一个 list<int> 两次,那个 list 将包含 3051 的两个拷贝。与此对照,一个 Set 不可以包含重复,所以如果值 3051 被插入一个 Set<int> 两次,那个 set 只包含该值的一个拷贝。因此一个 Set is-a(是一个)list 是不正确的,因为对 list objects(对象)成立的某些事情对 Set objects(对象)不成立。
因为这两个 classes(类)之间的关系不是 is-a(是一个),public inheritance(公有继承)不是模拟这个关系的正确方法。正确的方法是认识到一个 Set object(对象)可以 be implemented in terms of a list object(是根据一个 list 对象实现的):
```
template<class T> // the right way to use list for Set
class Set {
public:
bool member(const T& item) const;
void insert(const T& item);
void remove(const T& item);
std::size_t size() const;
private:
std::list<T> rep; // representation for Set data
};
```
Set 的 member functions(成员函数)可以极大程度地依赖 list 和标准库的其它部分已经提供的机能,所以只要你熟悉了用 STL 编程的基本方法,实现就非常简单了:
```
template<typename T>
bool Set<T>::member(const T& item) const
{
return std::find(rep.begin(), rep.end(), item) != rep.end();
}
template<typename T>
void Set<T>::insert(const T& item)
{
if (!member(item)) rep.push_back(item);
}
template<typename T>
void Set<T>::remove(const T& item)
{
typename std::list<T>::iterator it = // see Item 42 for info on
std::find(rep.begin(), rep.end(), item); // "typename" here
if (it != rep.end()) rep.erase(it);
}
template<typename T>
std::size_t Set<T>::size() const
{
return rep.size();
}
```
这些函数足够简单,使它们成为 inlining(内联化)的合理候选者,可是我知道在坚定 inlining(内联化)的决心之前,你可能需要回顾一下 Item 30 中的讨论。
一个有说服力的观点是,根据 Item 18 的关于将 interfaces(接口)设计得易于正确使用,而难以错误使用的论述,如果要遵循 STL container(容器)的惯例,Set 的 interface(接口)应该更多,但是在这里遵循那些惯例就需要在 Set 中填充大量 stuff(材料),这将使得它和 list 之间的关系变得暧昧不清。因为这个关系是本 Item 的重点,我们用教学的清晰性替换了 STL 的兼容性。除此之外,Set 的 interface(接口)的幼稚不应该遮掩关于 Set 的无可争辩的正确:它和 list 之间的关系。这个关系不是 is-a(是一个)(虽然最初看上去可能很像),而是 is-implemented-in-terms-of(是根据……实现的)。
Things to Remember
* composition(复合)与 public inheritance(公有继承)的意义完全不同。
* 在 application domain(应用领域)中,composition(复合)意味着 has-a(有一个)。在 implementation domain(实现领域)中意味着 is-implemented-in-terms-of(是根据……实现的)。
- Preface(前言)
- Introduction(导言)
- Terminology(术语)
- Item 1: 将 C++ 视为 federation of languages(语言联合体)
- Item 2: 用 consts, enums 和 inlines 取代 #defines
- Item 3: 只要可能就用 const
- Item 4: 确保 objects(对象)在使用前被初始化
- Item 5: 了解 C++ 为你偷偷地加上和调用了什么函数
- Item 6: 如果你不想使用 compiler-generated functions(编译器生成函数),就明确拒绝
- Item 7: 在 polymorphic base classes(多态基类)中将 destructors(析构函数)声明为 virtual(虚拟)
- Item 8: 防止因为 exceptions(异常)而离开 destructors(析构函数)
- Item 9: 绝不要在 construction(构造)或 destruction(析构)期间调用 virtual functions(虚拟函数)
- Item 10: 让 assignment operators(赋值运算符)返回一个 reference to *this(引向 *this 的引用)
- Item 11: 在 operator= 中处理 assignment to self(自赋值)
- Item 12: 拷贝一个对象的所有组成部分
- Item 13: 使用对象管理资源
- Item 14: 谨慎考虑资源管理类的拷贝行为
- Item 15: 在资源管理类中准备访问裸资源(raw resources)
- Item 16: 使用相同形式的 new 和 delete
- Item 17: 在一个独立的语句中将 new 出来的对象存入智能指针
- Item 18: 使接口易于正确使用,而难以错误使用
- Item 19: 视类设计为类型设计
- Item 20: 用 pass-by-reference-to-const(传引用给 const)取代 pass-by-value(传值)
- Item 21: 当你必须返回一个对象时不要试图返回一个引用
- Item 22: 将数据成员声明为 private
- Item 23: 用非成员非友元函数取代成员函数
- Item 24: 当类型转换应该用于所有参数时,声明为非成员函数
- Item 25: 考虑支持不抛异常的 swap
- Item 26: 只要有可能就推迟变量定义
- Item 27: 将强制转型减到最少
- Item 28: 避免返回对象内部构件的“句柄”
- Item 29: 争取异常安全(exception-safe)的代码
- Item 30: 理解 inline 化的介入和排除
- Item 31: 最小化文件之间的编译依赖
- Item 32: 确保 public inheritance 模拟 "is-a"
- Item 33: 避免覆盖(hiding)“通过继承得到的名字”
- Item 34: 区分 inheritance of interface(接口继承)和 inheritance of implementation(实现继承)
- Item 35: 考虑可选的 virtual functions(虚拟函数)的替代方法
- Item 36: 绝不要重定义一个 inherited non-virtual function(通过继承得到的非虚拟函数)
- Item 37: 绝不要重定义一个函数的 inherited default parameter value(通过继承得到的缺省参数值)
- Item 38: 通过 composition(复合)模拟 "has-a"(有一个)或 "is-implemented-in-terms-of"(是根据……实现的)
- Item 39: 谨慎使用 private inheritance(私有继承)
- Item 40: 谨慎使用 multiple inheritance(多继承)
- Item 41: 理解 implicit interfaces(隐式接口)和 compile-time polymorphism(编译期多态)
- Item 42: 理解 typename 的两个含义
- Item 43: 了解如何访问 templatized base classes(模板化基类)中的名字
- Item 44: 从 templates(模板)中分离出 parameter-independent(参数无关)的代码
- Item 45: 用 member function templates(成员函数模板) 接受 "all compatible types"(“所有兼容类型”)
- Item 46: 需要 type conversions(类型转换)时在 templates(模板)内定义 non-member functions(非成员函数)
- Item 47: 为类型信息使用 traits classes(特征类)
- Item 48: 感受 template metaprogramming(模板元编程)
- Item 49: 了解 new-handler 的行为
- Item 50: 领会何时替换 new 和 delete 才有意义
- Item 51: 编写 new 和 delete 时要遵守惯例
- Item 52: 如果编写了 placement new,就要编写 placement delete
- 附录 A. 超越 Effective C++
- 附录 B. 第二和第三版之间的 Item 映射