# Item 36: 绝不要重定义一个 inherited non-virtual function(通过继承得到的非虚拟函数)
作者:Scott Meyers
译者:fatalerror99 (iTePub's Nirvana)
发布:http://blog.csdn.net/fatalerror99/
假设我告诉你 class(类)D 从 class(类)B publicly derived(公有继承),而且在 class(类)B 中定义了一个 public member function(公有成员函数)mf。mf 的参数和返回值类型是无关紧要的,所以我们就假设它们都是 void。换句话说,我的意思是:
```
class B {
public:
void mf();
...
};
class D: public B { ... };
```
甚至不必知道关于 B,D,或 mf 的任何事情,给定一个类型为 D 的 object(对象)x,
```
D x; // x is an object of type D
```
对此你或许非常吃惊,
```
B *pB = &x; // get pointer to x
pB->mf(); // call mf through pointer
```
的行为不同于以下代码:
```
D *pD = &x; // get pointer to x
pD->mf(); // call mf through pointer
```
因为在两种情况中,你都调用了 object(对象)x 中的 member function(成员函数)mf。因为两种情况中都是同样的 function(函数)和同样的 object(对象),它们的行为应该有相同的方式,对吗?
是的,应该。但是也可能不,特别地,如果 mf 是 non-virtual(非虚拟)而 D 定义了它自己的版本的 mf:
```
class D: public B {
public:
void mf(); // hides B::mf; see Item33
...
};
pB->mf(); // calls B::mf
pD->mf(); // calls D::mf
```
这种行为两面性的原因是像 B::mf 和 D::mf 这样的 non-virtual functions(非虚拟函数)是 statically bound(静态绑定)的(参见 Item 37)。这就意味着因为 pB 被声明为 pointer-to-B 类型,所以,即使就像本例中的做法,让 pB 指向一个从 B 继承的类的对象,通过 pB 调用的 non-virtual functions(非虚拟函数)也总是定义在 class B 中的那一个。
在另一方面,virtual functions(虚拟函数)是 dynamically bound(动态绑定)的(再次参见 Item 37),所以它们不会发生这个问题。如果 mf 是一个 virtual function(虚拟函数),无论通过 pB 还是 pD 调用 mf 都将导致 D::mf 的调用,因为 pB 和 pD 都实际地指向一个 type(类型)D 的 object(对象)。
如果你在编写 class D 而且你重定义了一个你从 class B 继承到的 non-virtual function(非虚拟函数)mf,D 的 objects(对象)将很可能表现出不协调的行为。特别是,当 mf 被调用时,任何给定的 D object(对象)的行为既可能像 B 也可能像 D,而且决定因素与 object(对象)本身无关,但是和指向它的 pointer(指针)的声明类型有关。references(引用)也会像 pointers(指针)一样表现出莫名其妙的行为。
但这仅仅是一个从实用出发的论据。我知道,你真正需要的是不能重定义 inherited non-virtual functions(通过继承得到的非虚拟函数)的理论上的理由。我很愿意效劳。
Item 32 解释了 public inheritance(公有继承)意味着 is-a,Item 34 记述了为什么在一个 class(类)中声明一个 non-virtual function(非虚拟函数)是为这个 class(类)设定一个 invariant over specialization(超越特殊化的不变量),如果你将这些经验应用于 classes(类)B 和 D 以及 non-virtual member function(非虚拟函数)B::mf,那么:
每一件适用于 B objects(对象)的事情也适用于 D objects(对象),因为每一个 D objects 都 is-a(是一个)D objects(对象);
从 B 继承的 classes(类)必须同时继承 mf 的 interface(接口)和 implementation(实现),因为 mf 在 B 中是 non-virtual(非虚拟)的。
现在,如果 D 重定义 mf,你的设计中就有了一处矛盾。如果 D 真的需要实现不同于 B 的 mf,而且如果每一个 B objects(对象)——无论如何特殊——都必须使用 B 对 mf 的实现,那么每一个 D 都 is-a(是一个)B 就完全不成立。在那种情况下,D 就不应该从 B publicly inherit(公有继承)。另一方面,如果 D 真的必须从 B publicly inherit(公有继承),而且如果 D 真的需要实现不同于 B 的 mf,那么 mf 反映了一个 B 的 invariant over specialization(超越特殊化的不变量)就不会成立。在那种情况下,mf 应该是 virtual(虚拟)的。最后,如果每一个 D 真的都 is-a(是一个)B,而且如果 mf 真的相当于一个 B 的 invariant over specialization(超越特殊化的不变量),那么 D 就不会真的需要重定义 mf,而且想都不能想。
不管使用那一条规则,必须做出某些让步,而且无条件地禁止重定义一个 inherited non-virtual function(通过继承得到的非虚拟函数)。
如果阅读这个 Item 给你 déjà vu(似曾相识)的感觉,那可能是因为你已经阅读了 Item 7,那个 Item 解释了为什么 polymorphic base classes(多态基类)中的 destructors(析构函数)应该是 virtual(虚拟)的。如果你违反了那个 guideline(指导方针)(例如,如果你在一个 polymorphic base class(多态基类)中声明一个 non-virtual destructor(非虚拟析构函数)),你也同时违反了这里这个 guideline(指导方针),因为 derived classes(派生类)总是要重定义一个 inherited non-virtual function(通过继承得到的非虚拟函数):base class(基类)的 destructor(析构函数)。甚至对于没有声明 destructor(析构函数)的 derived classes(派生类)这也是成立的,因为,就像 Item 5 的解释,destructor(析构函数)是一个“如果你没有定义你自己的,编译器就会为你生成一个”的 member functions(成员函数)。其实,Item 7 只相当于本 Item 的一个特殊情况,尽管它重要到足以把它提出来独立成篇。
Things to Remember
绝不要重定义一个 inherited non-virtual function(通过继承得到的非虚拟函数)。
- Preface(前言)
- Introduction(导言)
- Terminology(术语)
- Item 1: 将 C++ 视为 federation of languages(语言联合体)
- Item 2: 用 consts, enums 和 inlines 取代 #defines
- Item 3: 只要可能就用 const
- Item 4: 确保 objects(对象)在使用前被初始化
- Item 5: 了解 C++ 为你偷偷地加上和调用了什么函数
- Item 6: 如果你不想使用 compiler-generated functions(编译器生成函数),就明确拒绝
- Item 7: 在 polymorphic base classes(多态基类)中将 destructors(析构函数)声明为 virtual(虚拟)
- Item 8: 防止因为 exceptions(异常)而离开 destructors(析构函数)
- Item 9: 绝不要在 construction(构造)或 destruction(析构)期间调用 virtual functions(虚拟函数)
- Item 10: 让 assignment operators(赋值运算符)返回一个 reference to *this(引向 *this 的引用)
- Item 11: 在 operator= 中处理 assignment to self(自赋值)
- Item 12: 拷贝一个对象的所有组成部分
- Item 13: 使用对象管理资源
- Item 14: 谨慎考虑资源管理类的拷贝行为
- Item 15: 在资源管理类中准备访问裸资源(raw resources)
- Item 16: 使用相同形式的 new 和 delete
- Item 17: 在一个独立的语句中将 new 出来的对象存入智能指针
- Item 18: 使接口易于正确使用,而难以错误使用
- Item 19: 视类设计为类型设计
- Item 20: 用 pass-by-reference-to-const(传引用给 const)取代 pass-by-value(传值)
- Item 21: 当你必须返回一个对象时不要试图返回一个引用
- Item 22: 将数据成员声明为 private
- Item 23: 用非成员非友元函数取代成员函数
- Item 24: 当类型转换应该用于所有参数时,声明为非成员函数
- Item 25: 考虑支持不抛异常的 swap
- Item 26: 只要有可能就推迟变量定义
- Item 27: 将强制转型减到最少
- Item 28: 避免返回对象内部构件的“句柄”
- Item 29: 争取异常安全(exception-safe)的代码
- Item 30: 理解 inline 化的介入和排除
- Item 31: 最小化文件之间的编译依赖
- Item 32: 确保 public inheritance 模拟 "is-a"
- Item 33: 避免覆盖(hiding)“通过继承得到的名字”
- Item 34: 区分 inheritance of interface(接口继承)和 inheritance of implementation(实现继承)
- Item 35: 考虑可选的 virtual functions(虚拟函数)的替代方法
- Item 36: 绝不要重定义一个 inherited non-virtual function(通过继承得到的非虚拟函数)
- Item 37: 绝不要重定义一个函数的 inherited default parameter value(通过继承得到的缺省参数值)
- Item 38: 通过 composition(复合)模拟 "has-a"(有一个)或 "is-implemented-in-terms-of"(是根据……实现的)
- Item 39: 谨慎使用 private inheritance(私有继承)
- Item 40: 谨慎使用 multiple inheritance(多继承)
- Item 41: 理解 implicit interfaces(隐式接口)和 compile-time polymorphism(编译期多态)
- Item 42: 理解 typename 的两个含义
- Item 43: 了解如何访问 templatized base classes(模板化基类)中的名字
- Item 44: 从 templates(模板)中分离出 parameter-independent(参数无关)的代码
- Item 45: 用 member function templates(成员函数模板) 接受 "all compatible types"(“所有兼容类型”)
- Item 46: 需要 type conversions(类型转换)时在 templates(模板)内定义 non-member functions(非成员函数)
- Item 47: 为类型信息使用 traits classes(特征类)
- Item 48: 感受 template metaprogramming(模板元编程)
- Item 49: 了解 new-handler 的行为
- Item 50: 领会何时替换 new 和 delete 才有意义
- Item 51: 编写 new 和 delete 时要遵守惯例
- Item 52: 如果编写了 placement new,就要编写 placement delete
- 附录 A. 超越 Effective C++
- 附录 B. 第二和第三版之间的 Item 映射