#线程中断
---
##使用interrupt()中断线程
当一个线程运行时,另一个线程可以调用对应的Thread对象的interrupt()方法来中断它,该方法只是在目标线程中设置一个标志,表示它已经被中断,并立即返回。这里需要注意的是,如果只是单纯的调用interrupt()方法,线程并没有实际被中断,会继续往下执行。
演示休眠线程的中断
```
public class SleepInterrupt extends Object implements Runnable{
@Override
public void run() {
try {
System.out.println("in run() - about to sleep for 20 seconds");
Thread.sleep(20000);
System.out.println("in run() - woke up");
} catch (InterruptedException e) {
System.out.println("in run() - interrupted while sleeping");
//处理完中断异常后,返回到run()方法入口
//如果没有return,线程不会实际被中断,它会继续打印下面的信息
return;
}
System.out.println("in run() - leaving normally");
}
public static void main(String[] args) {
SleepInterrupt si = new SleepInterrupt();
Thread t = new Thread(si);
t.start();
//住线程休眠2秒,从而确保刚才启动的线程有机会执行一段时间
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("in main() - interrupting other thread");
//中断线程t
t.interrupt();
System.out.println("in main() - leaving");
}
}
```
运行结果如下:
```
in run() - about to sleep for 20 seconds
in main() - interrupting other thread
in main() - leaving
in run() - interrupted while sleeping
```
主线程启动新线程后,自身休眠2秒钟,允许新线程获得运行时间。新线程打印信息“about to sleep for 20 seconds”后,继而休眠20秒钟,大约2秒钟后,main线程通知新线程中断,那么新线程的20秒的休眠将被打断,从而抛出InterruptException异常,执行跳转到catch块,打印出“interrupted while sleeping”信息,并立即从run()方法返回,然后消亡,而不会打印出catch块后面的“leaving normally”信息。
请注意:由于不确定的线程规划,上图运行结果的后两行可能顺序相反,这取决于主线程和新线程哪个先消亡。但前两行信息的顺序必定如上图所示。
另外,如果将catch块中的return语句注释掉,则线程在抛出异常后,会继续往下执行,而不会被中断,从而会打印出”leaving normally“信息。
##待决中断
---
在上面的例子中,sleep()方法的实现检查到休眠线程被中断,它会相当友好地终止线程,并抛出InterruptedException异常。另外一种情况,如果线程在调用sleep()方法前被中断,那么该中断称为待决中断,它会在刚调用sleep()方法时,立即抛出InterruptedException异常。
```
public class PendingInterrupt extends Object{
public static void main(String[] args) {
//如果输入了参数,则在main线程中中断当前线程(即main线程)
if(args.length > 0){
Thread.currentThread().interrupt();
}
//获取当前时间
long startTime = System.currentTimeMillis();
try {
Thread.sleep(2000);
System.out.println("was NOT interrupted");
} catch (InterruptedException e) {
System.out.println("was interrupted");
}
//计算中间代码执行的时间
System.out.println("elapsedTime=" + (System.currentTimeMillis() - startTime));
}
}
```
如果PendingInterrupt不带任何命令行参数,那么线程不会被中断,最终输出的时间差距应该在2000附近(具体时间由系统决定,不精确),如果PendingInterrupt带有命令行参数,则调用中断当前线程的代码,但main线程仍然运行,最终输出的时间差距应该远小于2000,因为线程尚未休眠,便被中断,因此,一旦调用sleep()方法,会立即打印出catch块中的信息。执行结果如下:
```
was NOT interrupted
elapsedTime=2001
```
这种模式下,main线程中断它自身。除了将中断标志(它是Thread的内部标志)设置为true外,没有其他任何影响。线程被中断了,但main线程仍然运行,main线程继续监视实时时钟,并进入try块,一旦调用sleep()方法,它就会注意到待决中断的存在,并抛出InterruptException。于是执行跳转到catch块,并打印出线程被中断的信息。最后,计算并打印出时间差。
##使用isInterrupted()方法判断中断状态
---
可以在Thread对象上调用isInterrupted()方法来检查任何线程的中断状态。这里需要注意:线程一旦被中断,isInterrupted()方法便会返回true,而一旦sleep()方法抛出异常,它将清空中断标志,此时isInterrupted()方法将返回false。
下面的代码演示了isInterrupted()方法的使用:
```
public class InterruptCheck extends Object{
public static void main(String[] args) {
Thread t = Thread.currentThread();
System.out.println("Point A: t.isInterrupted()=" + t.isInterrupted());
//待决中断,中断自身
t.interrupt();
System.out.println("Point B: t.isInterrupted()=" + t.isInterrupted());
System.out.println("Point C: t.isInterrupted()=" + t.isInterrupted());
try {
Thread.sleep(2000);
System.out.println("was NOT interrupted");
} catch (InterruptedException e) {
System.out.println("was interrupted");
}
//跑出异常后,会清除中断标志,这里会返回false
System.out.println("Point D: t.isInterrupted()=" + t.isInterrupted());
}
}
```
运行结果如下:
```
Point A: t.isInterrupted()=false
Point B: t.isInterrupted()=true
Point C: t.isInterrupted()=true
was interrupted
Point D: t.isInterrupted()=false
```
##使用Thread.interrupted()方法判断中断状态
---
可以使用Thread.interrupted()方法来检查当前线程的中断状态(并隐式重置为false)。又由于它是静态方法,因此不能在特定的线程上使用,而只能报告调用它的线程的中断状态,如果线程被中断,而且中断状态尚不清楚,那么,这个方法返回true。与isInterrupted()不同,它将自动重置中断状态为false,第二次调用Thread.interrupted()方法,总是返回false,除非中断了线程。
如下代码演示了Thread.interrupted()方法的使用:
```
public class InterruptReset extends Object{
public static void main(String[] args) {
System.out.println(
"Point X: Thread.interrupted()=" + Thread.interrupted());
Thread.currentThread().interrupt();
System.out.println(
"Point Y: Thread.interrupted()=" + Thread.interrupted());
System.out.println(
"Point Z: Thread.interrupted()=" + Thread.interrupted());
}
}
```
运行结果
```
Point X: Thread.interrupted()=false
Point Y: Thread.interrupted()=true
Point Z: Thread.interrupted()=false
```
从结果中可以看出,当前线程中断自身后,在Y点,中断状态为true,并由Thread.interrupted()自动重置为false,那么下次调用该方法得到的结果便是false。
##补充
---
yield和join方法的使用
* join方法用线程对象调用,如果在一个线程A中调用另一个线程B的join方法,线程A将会等待线程B执行完毕后再执行。
* yield可以直接用Thread类调用,yield让出CPU执行权给同等级的线程,如果没有相同级别的线程在等待CPU的执行权,则该线程继续执行。
- JavaSE(Java基础)
- Java基础知识
- Java中的内存泄漏
- String源码分析
- Java集合结构
- ArrayList源码剖析
- HashMap源码剖析
- Hashtable简介
- Vector源码剖析
- LinkedHashMap简介
- LinkedList简介
- JVM(Java虚拟机)
- JVM基础知识
- JVM类加载机制
- Java内存区域与内存溢出
- 垃圾回收算法
- Java并发(JavaConcurrent)
- Java并发基础知识
- 生产者和消费者问题
- Thread和Runnable实现多线程的区别
- 线程中断
- 守护线程与阻塞线程的情况
- Synchronized
- 多线程环境中安全使用集合API
- 实现内存可见的两种方法比较:加锁和volatile变量
- 死锁
- 可重入内置锁
- 使用wait/notify/notifyAll实现线程间通信
- NIO
- 数据结构(DataStructure)
- 数组
- 栈和队列
- Algorithm(算法)
- 排序
- 选择排序
- 冒泡排序
- 快速排序
- 归并排序
- 查找
- 顺序查找
- 折半查找
- Network(网络)
- TCP/UDP
- HTTP
- Socket
- OperatingSystem(操作系统)
- Linux系统的IPC
- android中常用设计模式
- 面向对象六大原则
- 单例模式
- Builder模式
- 原型模式
- 简单工厂
- 策略模式
- 责任链模式
- 观察者模式
- 代理模式
- 适配器模式
- 外观模式
- Android(安卓面试点)
- Android基础知识
- Android内存泄漏总结
- Handler内存泄漏分析及解决
- Android性能优化
- ListView详解
- RecyclerView和ListView的异同
- AsyncTask源码分析
- 插件化技术
- 自定义控件
- ANR问题
- Art和Dalvik的区别
- Android关于OOM的解决方案
- Fragment
- SurfaceView
- Android几种进程
- APP启动过程
- 图片三级缓存
- Bitmap的分析与使用
- 热修复的原理
- AIDL
- Binder机制
- Zygote和System进程的启动过程
- Android中的MVC,MVP和MVVM
- MVP
- Android开机过程
- EventBus用法详解
- 查漏补缺
- Git操作