#死锁
---
当线程需要同时持有多个锁时,有可能产生死锁。考虑如下情形:
线程A当前持有互斥所锁lock1,线程B当前持有互斥锁lock2。接下来,当线程A仍然持有lock1时,它试图获取lock2,因为线程B正持有lock2,因此线程A会阻塞等待线程B对lock2的释放。如果此时线程B在持有lock2的时候,也在试图获取lock1,因为线程A正持有lock1,因此线程B会阻塞等待A对lock1的释放。二者都在等待对方所持有锁的释放,而二者却又都没释放自己所持有的锁,这时二者便会一直阻塞下去。这种情形称为死锁。
下面给出一个两个线程间产生死锁的示例,如下:
```
public class Deadlock {
private String objID;
public Deadlock(String id) {
objID = id;
}
public synchronized void checkOther(Deadlock other) {
print("entering checkOther()");
try { Thread.sleep(2000); }
catch ( InterruptedException x ) { }
print("in checkOther() - about to " + "invoke 'other.action()'");
//调用other对象的action方法,由于该方法是同步方法,因此会试图获取other对象的对象锁
other.action();
print("leaving checkOther()");
}
public synchronized void action() {
print("entering action()");
try { Thread.sleep(500); }
catch ( InterruptedException x ) { }
print("leaving action()");
}
public void print(String msg) {
threadPrint("objID=" + objID + " - " + msg);
}
public static void threadPrint(String msg) {
String threadName = Thread.currentThread().getName();
System.out.println(threadName + ": " + msg);
}
public static void main(String[] args) {
final Deadlock obj1 = new Deadlock("obj1");
final Deadlock obj2 = new Deadlock("obj2");
Runnable runA = new Runnable() {
public void run() {
obj1.checkOther(obj2);
}
};
Thread threadA = new Thread(runA, "threadA");
threadA.start();
try { Thread.sleep(200); }
catch ( InterruptedException x ) { }
Runnable runB = new Runnable() {
public void run() {
obj2.checkOther(obj1);
}
};
Thread threadB = new Thread(runB, "threadB");
threadB.start();
try { Thread.sleep(5000); }
catch ( InterruptedException x ) { }
threadPrint("finished sleeping");
threadPrint("about to interrupt() threadA");
threadA.interrupt();
try { Thread.sleep(1000); }
catch ( InterruptedException x ) { }
threadPrint("about to interrupt() threadB");
threadB.interrupt();
try { Thread.sleep(1000); }
catch ( InterruptedException x ) { }
threadPrint("did that break the deadlock?");
}
}
```
运行结果:
```
threadA: objID=obj1 - entering checkOther()
threadB: objID=obj2 - entering checkOther()
threadA: objID=obj1 - in checkOther() - about to invoke 'other.action()'
threadB: objID=obj2 - in checkOther() - about to invoke 'other.action()'
main: finished sleeping
main: about to interrupt() threadA
main: about to interrupt() threadB
main: did that break the deadlock?
```
从结果中可以看出,在执行到other.action()时,由于两个线程都在试图获取对方的锁,但对方都没有释放自己的锁,因而便产生了死锁,在主线程中试图中断两个线程,但都无果。
大部分代码并不容易产生死锁,死锁可能在代码中隐藏相当长的时间,等待不常见的条件地发生,但即使是很小的概率,一旦发生,便可能造成毁灭性的破坏。避免死锁是一件困难的事,遵循以下原则有助于规避死锁:
1. 只在必要的最短时间内持有锁,考虑使用同步语句块代替整个同步方法;
2. 尽量编写不在同一时刻需要持有多个锁的代码,如果不可避免,则确保线程持有第二个锁的时间尽量短暂;
3. 创建和使用一个大锁来代替若干小锁,并把这个锁用于互斥,而不是用作单个对象的对象级别锁;
- JavaSE(Java基础)
- Java基础知识
- Java中的内存泄漏
- String源码分析
- Java集合结构
- ArrayList源码剖析
- HashMap源码剖析
- Hashtable简介
- Vector源码剖析
- LinkedHashMap简介
- LinkedList简介
- JVM(Java虚拟机)
- JVM基础知识
- JVM类加载机制
- Java内存区域与内存溢出
- 垃圾回收算法
- Java并发(JavaConcurrent)
- Java并发基础知识
- 生产者和消费者问题
- Thread和Runnable实现多线程的区别
- 线程中断
- 守护线程与阻塞线程的情况
- Synchronized
- 多线程环境中安全使用集合API
- 实现内存可见的两种方法比较:加锁和volatile变量
- 死锁
- 可重入内置锁
- 使用wait/notify/notifyAll实现线程间通信
- NIO
- 数据结构(DataStructure)
- 数组
- 栈和队列
- Algorithm(算法)
- 排序
- 选择排序
- 冒泡排序
- 快速排序
- 归并排序
- 查找
- 顺序查找
- 折半查找
- Network(网络)
- TCP/UDP
- HTTP
- Socket
- OperatingSystem(操作系统)
- Linux系统的IPC
- android中常用设计模式
- 面向对象六大原则
- 单例模式
- Builder模式
- 原型模式
- 简单工厂
- 策略模式
- 责任链模式
- 观察者模式
- 代理模式
- 适配器模式
- 外观模式
- Android(安卓面试点)
- Android基础知识
- Android内存泄漏总结
- Handler内存泄漏分析及解决
- Android性能优化
- ListView详解
- RecyclerView和ListView的异同
- AsyncTask源码分析
- 插件化技术
- 自定义控件
- ANR问题
- Art和Dalvik的区别
- Android关于OOM的解决方案
- Fragment
- SurfaceView
- Android几种进程
- APP启动过程
- 图片三级缓存
- Bitmap的分析与使用
- 热修复的原理
- AIDL
- Binder机制
- Zygote和System进程的启动过程
- Android中的MVC,MVP和MVVM
- MVP
- Android开机过程
- EventBus用法详解
- 查漏补缺
- Git操作