# 六、如何使用 TensorFlow Eager 从 TFRecords 批量读取数据
大家好,本教程再次关注输入流水线。 这很简单,但我记得当我第一次开始批量读取数据时,我陷入了相当多的细节,所以我想我可能会在这里分享我的方法。 我真的希望它对你们中的一些人有用。
教程的流程图:
![](https://img.kancloud.cn/ea/ba/eaba0c630d246190ec166647c0bdcdf3_1056x288.png)
我们将研究两种情况:
+ 可变序列长度的输入数据 - 在这种情况下,我们将填充批次到最大序列长度。
+ 图像数据
两种情况的数据都存储为 TFRecords。 你可以查看教程的第四和第五章,了解如何将原始数转换为 TFRecords。
那么,让我们直接开始编程!
### 导入有用的库
```py
# 导入数据可视化库
import matplotlib.pyplot as plt
# 使绘图内嵌在笔记本中
%matplotlib inline
# 导入 TensorFlow 和 TensorFlow Eager
import tensorflow as tf
import tensorflow.contrib.eager as tfe
# 开启 Eager 模式。一旦开启不能撤销!只执行一次。
tfe.enable_eager_execution()
```
## 第一部分:读取可变序列长度的数据
本教程的第一部分向你介绍如何读取不同长度的输入数据。 在我们的例子中,我们使用了大型电影数据库中的虚拟 IMDB 评论。 你可以想象,每个评论都有不同的单词数。 因此,当我们读取一批数据时,我们将序列填充到批次中的最大序列长度。
为了了解我如何获得单词索引序列,以及标签和序列长度,请参阅第四章。
### 创建函数来解析每个 TFRecord
```py
def parse_imdb_sequence(record):
'''
用于解析 imdb tfrecords 的脚本
Returns:
token_indexes: sequence of token indexes present in the review.
target: the target of the movie review.
sequence_length: the length of the sequence.
'''
context_features = {
'sequence_length': tf.FixedLenFeature([], dtype=tf.int64),
'target': tf.FixedLenFeature([], dtype=tf.int64),
}
sequence_features = {
'token_indexes': tf.FixedLenSequenceFeature([], dtype=tf.int64),
}
context_parsed, sequence_parsed = tf.parse_single_sequence_example(record,
context_features=context_features, sequence_features=sequence_features)
return (sequence_parsed['token_indexes'], context_parsed['target'],
context_parsed['sequence_length'])
```
### 创建数据集迭代器
正如你在上面的函数中所看到的,在解析每个记录之后,我们返回一系列单词索引,评论标签和序列长度。 在`padded_batch`方法中,我们只填充记录的第一个元素:单词索引的序列。 在每个示例中,标签和序列长度不需要填充,因为它们只是单个数字。 因此,`padded_shapes`将是:
+ `[None]` -> 将序列填充到最大维度,还不知道,因此是`None`。
+ `[]` -> 标签没有填充。
+ `[]` -> 序列长度没有填充。
```py
# 选取批量大小
batch_size = 2
# 从 TFRecords 创建数据集
dataset = tf.data.TFRecordDataset('datasets/dummy_text/dummy.tfrecords')
dataset = dataset.map(parse_imdb_sequence).shuffle(buffer_size=10000)
dataset = dataset.padded_batch(batch_size, padded_shapes=([None],[],[]))
```
### 遍历数据一次
```py
for review, target, sequence_length in tfe.Iterator(dataset):
print(target)
'''
tf.Tensor([0 1], shape=(2,), dtype=int64)
tf.Tensor([1 0], shape=(2,), dtype=int64)
tf.Tensor([0 1], shape=(2,), dtype=int64)
'''
for review, target, sequence_length in tfe.Iterator(dataset):
print(review.shape)
'''
(2, 145)
(2, 139)
(2, 171)
'''
for review, target, sequence_length in tfe.Iterator(dataset):
print(sequence_length)
'''
tf.Tensor([137 151], shape=(2,), dtype=int64)
tf.Tensor([139 171], shape=(2,), dtype=int64)
tf.Tensor([145 124], shape=(2,), dtype=int64)
'''
```
## 第二部分:批量读取图像(以及它们的标签)
在本教程的第二部分中,我们将通过批量读取图像,将存储为 TFRecords 的图像可视化。 这些图像是 FER2013 数据集中的一个小型子样本。
### 创建函数来解析每个记录并解码图片
```py
def parser(record):
'''
解析 TFRecords 样本的函数
Returns:
img: decoded image.
label: the corresponding label of the image.
'''
# 定义你想要解析的特征
features = {'image': tf.FixedLenFeature((), tf.string),
'label': tf.FixedLenFeature((), tf.int64)}
# 解析样本
parsed = tf.parse_single_example(record, features)
# 解码图像
img = tf.image.decode_image(parsed['image'])
return img, parsed['label']
```
### 创建数据集迭代器
```py
# 选取批量大小
batch_size = 5
# 从 TFRecords 创建数据集
dataset = tf.data.TFRecordDataset('datasets/dummy_images/dummy.tfrecords')
dataset = dataset.map(parser).shuffle(buffer_size=10000)
dataset = dataset.batch(batch_size)
```
### 遍历数据集一次。展示图像。
```py
# Dictionary that stores the correspondence between integer labels and the emotions
emotion_cat = {0:'Angry', 1:'Disgust', 2:'Fear', 3:'Happy', 4:'Sad', 5:'Surprise', 6:'Neutral'}
# 遍历数据集一次
for image, label in tfe.Iterator(dataset):
# 为每个图像批量创建子图
f, axarr = plt.subplots(1, int(image.shape[0]), figsize=(14, 6))
# 绘制图像
for i in range(image.shape[0]):
axarr[i].imshow(image[i,:,:,0], cmap='gray')
axarr[i].set_title('Emotion: %s' %emotion_cat[label[i].numpy()])
```
![](https://img.kancloud.cn/31/ab/31abcbf839e73f032ebf9a05bf75172d_818x182.png)
如果你希望我在本教程中添加任何内容,请与我们联系。 我会尽力添加它!
- TensorFlow 1.x 深度学习秘籍
- 零、前言
- 一、TensorFlow 简介
- 二、回归
- 三、神经网络:感知器
- 四、卷积神经网络
- 五、高级卷积神经网络
- 六、循环神经网络
- 七、无监督学习
- 八、自编码器
- 九、强化学习
- 十、移动计算
- 十一、生成模型和 CapsNet
- 十二、分布式 TensorFlow 和云深度学习
- 十三、AutoML 和学习如何学习(元学习)
- 十四、TensorFlow 处理单元
- 使用 TensorFlow 构建机器学习项目中文版
- 一、探索和转换数据
- 二、聚类
- 三、线性回归
- 四、逻辑回归
- 五、简单的前馈神经网络
- 六、卷积神经网络
- 七、循环神经网络和 LSTM
- 八、深度神经网络
- 九、大规模运行模型 -- GPU 和服务
- 十、库安装和其他提示
- TensorFlow 深度学习中文第二版
- 一、人工神经网络
- 二、TensorFlow v1.6 的新功能是什么?
- 三、实现前馈神经网络
- 四、CNN 实战
- 五、使用 TensorFlow 实现自编码器
- 六、RNN 和梯度消失或爆炸问题
- 七、TensorFlow GPU 配置
- 八、TFLearn
- 九、使用协同过滤的电影推荐
- 十、OpenAI Gym
- TensorFlow 深度学习实战指南中文版
- 一、入门
- 二、深度神经网络
- 三、卷积神经网络
- 四、循环神经网络介绍
- 五、总结
- 精通 TensorFlow 1.x
- 一、TensorFlow 101
- 二、TensorFlow 的高级库
- 三、Keras 101
- 四、TensorFlow 中的经典机器学习
- 五、TensorFlow 和 Keras 中的神经网络和 MLP
- 六、TensorFlow 和 Keras 中的 RNN
- 七、TensorFlow 和 Keras 中的用于时间序列数据的 RNN
- 八、TensorFlow 和 Keras 中的用于文本数据的 RNN
- 九、TensorFlow 和 Keras 中的 CNN
- 十、TensorFlow 和 Keras 中的自编码器
- 十一、TF 服务:生产中的 TensorFlow 模型
- 十二、迁移学习和预训练模型
- 十三、深度强化学习
- 十四、生成对抗网络
- 十五、TensorFlow 集群的分布式模型
- 十六、移动和嵌入式平台上的 TensorFlow 模型
- 十七、R 中的 TensorFlow 和 Keras
- 十八、调试 TensorFlow 模型
- 十九、张量处理单元
- TensorFlow 机器学习秘籍中文第二版
- 一、TensorFlow 入门
- 二、TensorFlow 的方式
- 三、线性回归
- 四、支持向量机
- 五、最近邻方法
- 六、神经网络
- 七、自然语言处理
- 八、卷积神经网络
- 九、循环神经网络
- 十、将 TensorFlow 投入生产
- 十一、更多 TensorFlow
- 与 TensorFlow 的初次接触
- 前言
- 1. TensorFlow 基础知识
- 2. TensorFlow 中的线性回归
- 3. TensorFlow 中的聚类
- 4. TensorFlow 中的单层神经网络
- 5. TensorFlow 中的多层神经网络
- 6. 并行
- 后记
- TensorFlow 学习指南
- 一、基础
- 二、线性模型
- 三、学习
- 四、分布式
- TensorFlow Rager 教程
- 一、如何使用 TensorFlow Eager 构建简单的神经网络
- 二、在 Eager 模式中使用指标
- 三、如何保存和恢复训练模型
- 四、文本序列到 TFRecords
- 五、如何将原始图片数据转换为 TFRecords
- 六、如何使用 TensorFlow Eager 从 TFRecords 批量读取数据
- 七、使用 TensorFlow Eager 构建用于情感识别的卷积神经网络(CNN)
- 八、用于 TensorFlow Eager 序列分类的动态循坏神经网络
- 九、用于 TensorFlow Eager 时间序列回归的递归神经网络
- TensorFlow 高效编程
- 图嵌入综述:问题,技术与应用
- 一、引言
- 三、图嵌入的问题设定
- 四、图嵌入技术
- 基于边重构的优化问题
- 应用
- 基于深度学习的推荐系统:综述和新视角
- 引言
- 基于深度学习的推荐:最先进的技术
- 基于卷积神经网络的推荐
- 关于卷积神经网络我们理解了什么
- 第1章概论
- 第2章多层网络
- 2.1.4生成对抗网络
- 2.2.1最近ConvNets演变中的关键架构
- 2.2.2走向ConvNet不变性
- 2.3时空卷积网络
- 第3章了解ConvNets构建块
- 3.2整改
- 3.3规范化
- 3.4汇集
- 第四章现状
- 4.2打开问题
- 参考
- 机器学习超级复习笔记
- Python 迁移学习实用指南
- 零、前言
- 一、机器学习基础
- 二、深度学习基础
- 三、了解深度学习架构
- 四、迁移学习基础
- 五、释放迁移学习的力量
- 六、图像识别与分类
- 七、文本文件分类
- 八、音频事件识别与分类
- 九、DeepDream
- 十、自动图像字幕生成器
- 十一、图像着色
- 面向计算机视觉的深度学习
- 零、前言
- 一、入门
- 二、图像分类
- 三、图像检索
- 四、对象检测
- 五、语义分割
- 六、相似性学习
- 七、图像字幕
- 八、生成模型
- 九、视频分类
- 十、部署
- 深度学习快速参考
- 零、前言
- 一、深度学习的基础
- 二、使用深度学习解决回归问题
- 三、使用 TensorBoard 监控网络训练
- 四、使用深度学习解决二分类问题
- 五、使用 Keras 解决多分类问题
- 六、超参数优化
- 七、从头开始训练 CNN
- 八、将预训练的 CNN 用于迁移学习
- 九、从头开始训练 RNN
- 十、使用词嵌入从头开始训练 LSTM
- 十一、训练 Seq2Seq 模型
- 十二、深度强化学习
- 十三、生成对抗网络
- TensorFlow 2.0 快速入门指南
- 零、前言
- 第 1 部分:TensorFlow 2.00 Alpha 简介
- 一、TensorFlow 2 简介
- 二、Keras:TensorFlow 2 的高级 API
- 三、TensorFlow 2 和 ANN 技术
- 第 2 部分:TensorFlow 2.00 Alpha 中的监督和无监督学习
- 四、TensorFlow 2 和监督机器学习
- 五、TensorFlow 2 和无监督学习
- 第 3 部分:TensorFlow 2.00 Alpha 的神经网络应用
- 六、使用 TensorFlow 2 识别图像
- 七、TensorFlow 2 和神经风格迁移
- 八、TensorFlow 2 和循环神经网络
- 九、TensorFlow 估计器和 TensorFlow HUB
- 十、从 tf1.12 转换为 tf2
- TensorFlow 入门
- 零、前言
- 一、TensorFlow 基本概念
- 二、TensorFlow 数学运算
- 三、机器学习入门
- 四、神经网络简介
- 五、深度学习
- 六、TensorFlow GPU 编程和服务
- TensorFlow 卷积神经网络实用指南
- 零、前言
- 一、TensorFlow 的设置和介绍
- 二、深度学习和卷积神经网络
- 三、TensorFlow 中的图像分类
- 四、目标检测与分割
- 五、VGG,Inception,ResNet 和 MobileNets
- 六、自编码器,变分自编码器和生成对抗网络
- 七、迁移学习
- 八、机器学习最佳实践和故障排除
- 九、大规模训练
- 十、参考文献