# 零、前言
《面向计算机视觉的深度学习》是一本书,适合希望学习基于深度学习的计算机视觉技术用于各种应用的读者。 本书将为读者提供开发基于计算机视觉的产品的工具和技术。 书中涵盖了许多遵循该理论的实际例子。
# 这本书是给谁的
读者想知道如何将深度学习应用于计算机视觉问题,例如分类,检测,检索,分割,生成,字幕和视频分类。 读者还希望了解如何在各种约束下(例如更少的数据,不平衡的类别和噪声)获得良好的准确率。 然后,读者还想知道如何在各种平台(AWS,Google Cloud,Raspberry Pi 和移动电话)上部署经过训练的模型。 读完本书后,读者应该能够开发出有关人员检测,人脸识别,产品搜索,医学图像分割,图像生成,图像字幕生成,视频分类等问题的代码。
# 本书涵盖的内容
第 1 章,“入门”介绍了深度学习的基础知识,并使读者熟悉该词汇表。 读者将安装遵循其余各章所必需的包。
第 2 章,“图像分类”讨论图像分类问题,该问题将整个图像标记为图像。 读者将学习图像分类技术,并训练用于宠物分类的深度学习模型。 他们还将学习提高准确率的方法,并深入研究各种先进的架构。
第 3 章,“图像检索”涵盖了深层特征和图像检索。 读者将学习获得模型可视化,视觉特征,使用 TensorFlow 进行推理以及服务和使用视觉特征进行产品检索的各种方法。
第 4 章,“对象检测”讨论了检测图像中的对象。 读者将学习各种对象检测技术,并将其应用于行人检测。 本章将使用用于对象检测的 TensorFlow API。
第 5 章,“语义分割”涵盖了像素级图像分割。 读者将获得有关分割技术的知识,并训练用于医学图像分割的模型。
第 6 章,“相似性学习”讨论了关于相似性学习的。 读者将学习相似度匹配以及如何训练人脸识别模型。 示出了训练人脸标志的模型。
第 7 章,“图像字幕生成”是关于生成或选择图像字幕生成的 。 读者将学习自然语言处理技术以及如何使用这些技术为图像生成字幕。
第 8 章,“生成模型”讨论了关于出于各种目的生成合成图像的问题。 读者将了解什么是生成模型,并将其用于图像生成应用,例如样式转换,训练数据等。
第 9 章,“视频分类”涵盖了用于视频数据的计算机视觉技术。 读者将了解解决视频与图像问题之间的主要区别,并实现视频分类技术。
第 10 章,“部署”讨论了深度学习模型的部署步骤。 读者将学习如何在各种平台上部署训练有素的模型并优化速度。
# 充分利用这本书
本书涵盖的示例可以在 Windows,Ubuntu 或 Mac 上运行。 涵盖了所有安装说明。 需要具备 Python 和机器学习的基础知识。 读取器最好具有 GPU 硬件,但这不是必需的。
# 使用约定
本书中使用了许多文本约定。
`CodeInText`:表示文本中的词,数据库表名称,文件夹名称,文件名,文件扩展名,路径名,伪 URL,用户输入和 Twitter 句柄。 这里是一个示例:“ 请注意,图是用 `summary_writer`编写的。
代码块设置如下:
```py
merged_summary_operation = tf.summary.merge_all()
train_summary_writer = tf.summary.FileWriter('/tmp/train', session.graph)
test_summary_writer = tf.summary.FileWriter('/tmp/test')
```
任何命令行输入或输出的编写方式如下:
```py
wget http://www.robots.ox.ac.uk/~vgg/data/pets/daimg.tar.gz
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
```
**粗体**:表示您在屏幕上看到的新术语,重要单词或顺序。 例如,菜单或对话框中的单词会出现在这样的文本中。 这是一个示例:“完成后,通过单击‘操作 | 实例状态 | 终端’来终止实例。”
警告或重要提示如下所示。
提示和技巧如下所示。
- TensorFlow 1.x 深度学习秘籍
- 零、前言
- 一、TensorFlow 简介
- 二、回归
- 三、神经网络:感知器
- 四、卷积神经网络
- 五、高级卷积神经网络
- 六、循环神经网络
- 七、无监督学习
- 八、自编码器
- 九、强化学习
- 十、移动计算
- 十一、生成模型和 CapsNet
- 十二、分布式 TensorFlow 和云深度学习
- 十三、AutoML 和学习如何学习(元学习)
- 十四、TensorFlow 处理单元
- 使用 TensorFlow 构建机器学习项目中文版
- 一、探索和转换数据
- 二、聚类
- 三、线性回归
- 四、逻辑回归
- 五、简单的前馈神经网络
- 六、卷积神经网络
- 七、循环神经网络和 LSTM
- 八、深度神经网络
- 九、大规模运行模型 -- GPU 和服务
- 十、库安装和其他提示
- TensorFlow 深度学习中文第二版
- 一、人工神经网络
- 二、TensorFlow v1.6 的新功能是什么?
- 三、实现前馈神经网络
- 四、CNN 实战
- 五、使用 TensorFlow 实现自编码器
- 六、RNN 和梯度消失或爆炸问题
- 七、TensorFlow GPU 配置
- 八、TFLearn
- 九、使用协同过滤的电影推荐
- 十、OpenAI Gym
- TensorFlow 深度学习实战指南中文版
- 一、入门
- 二、深度神经网络
- 三、卷积神经网络
- 四、循环神经网络介绍
- 五、总结
- 精通 TensorFlow 1.x
- 一、TensorFlow 101
- 二、TensorFlow 的高级库
- 三、Keras 101
- 四、TensorFlow 中的经典机器学习
- 五、TensorFlow 和 Keras 中的神经网络和 MLP
- 六、TensorFlow 和 Keras 中的 RNN
- 七、TensorFlow 和 Keras 中的用于时间序列数据的 RNN
- 八、TensorFlow 和 Keras 中的用于文本数据的 RNN
- 九、TensorFlow 和 Keras 中的 CNN
- 十、TensorFlow 和 Keras 中的自编码器
- 十一、TF 服务:生产中的 TensorFlow 模型
- 十二、迁移学习和预训练模型
- 十三、深度强化学习
- 十四、生成对抗网络
- 十五、TensorFlow 集群的分布式模型
- 十六、移动和嵌入式平台上的 TensorFlow 模型
- 十七、R 中的 TensorFlow 和 Keras
- 十八、调试 TensorFlow 模型
- 十九、张量处理单元
- TensorFlow 机器学习秘籍中文第二版
- 一、TensorFlow 入门
- 二、TensorFlow 的方式
- 三、线性回归
- 四、支持向量机
- 五、最近邻方法
- 六、神经网络
- 七、自然语言处理
- 八、卷积神经网络
- 九、循环神经网络
- 十、将 TensorFlow 投入生产
- 十一、更多 TensorFlow
- 与 TensorFlow 的初次接触
- 前言
- 1. TensorFlow 基础知识
- 2. TensorFlow 中的线性回归
- 3. TensorFlow 中的聚类
- 4. TensorFlow 中的单层神经网络
- 5. TensorFlow 中的多层神经网络
- 6. 并行
- 后记
- TensorFlow 学习指南
- 一、基础
- 二、线性模型
- 三、学习
- 四、分布式
- TensorFlow Rager 教程
- 一、如何使用 TensorFlow Eager 构建简单的神经网络
- 二、在 Eager 模式中使用指标
- 三、如何保存和恢复训练模型
- 四、文本序列到 TFRecords
- 五、如何将原始图片数据转换为 TFRecords
- 六、如何使用 TensorFlow Eager 从 TFRecords 批量读取数据
- 七、使用 TensorFlow Eager 构建用于情感识别的卷积神经网络(CNN)
- 八、用于 TensorFlow Eager 序列分类的动态循坏神经网络
- 九、用于 TensorFlow Eager 时间序列回归的递归神经网络
- TensorFlow 高效编程
- 图嵌入综述:问题,技术与应用
- 一、引言
- 三、图嵌入的问题设定
- 四、图嵌入技术
- 基于边重构的优化问题
- 应用
- 基于深度学习的推荐系统:综述和新视角
- 引言
- 基于深度学习的推荐:最先进的技术
- 基于卷积神经网络的推荐
- 关于卷积神经网络我们理解了什么
- 第1章概论
- 第2章多层网络
- 2.1.4生成对抗网络
- 2.2.1最近ConvNets演变中的关键架构
- 2.2.2走向ConvNet不变性
- 2.3时空卷积网络
- 第3章了解ConvNets构建块
- 3.2整改
- 3.3规范化
- 3.4汇集
- 第四章现状
- 4.2打开问题
- 参考
- 机器学习超级复习笔记
- Python 迁移学习实用指南
- 零、前言
- 一、机器学习基础
- 二、深度学习基础
- 三、了解深度学习架构
- 四、迁移学习基础
- 五、释放迁移学习的力量
- 六、图像识别与分类
- 七、文本文件分类
- 八、音频事件识别与分类
- 九、DeepDream
- 十、自动图像字幕生成器
- 十一、图像着色
- 面向计算机视觉的深度学习
- 零、前言
- 一、入门
- 二、图像分类
- 三、图像检索
- 四、对象检测
- 五、语义分割
- 六、相似性学习
- 七、图像字幕
- 八、生成模型
- 九、视频分类
- 十、部署
- 深度学习快速参考
- 零、前言
- 一、深度学习的基础
- 二、使用深度学习解决回归问题
- 三、使用 TensorBoard 监控网络训练
- 四、使用深度学习解决二分类问题
- 五、使用 Keras 解决多分类问题
- 六、超参数优化
- 七、从头开始训练 CNN
- 八、将预训练的 CNN 用于迁移学习
- 九、从头开始训练 RNN
- 十、使用词嵌入从头开始训练 LSTM
- 十一、训练 Seq2Seq 模型
- 十二、深度强化学习
- 十三、生成对抗网络
- TensorFlow 2.0 快速入门指南
- 零、前言
- 第 1 部分:TensorFlow 2.00 Alpha 简介
- 一、TensorFlow 2 简介
- 二、Keras:TensorFlow 2 的高级 API
- 三、TensorFlow 2 和 ANN 技术
- 第 2 部分:TensorFlow 2.00 Alpha 中的监督和无监督学习
- 四、TensorFlow 2 和监督机器学习
- 五、TensorFlow 2 和无监督学习
- 第 3 部分:TensorFlow 2.00 Alpha 的神经网络应用
- 六、使用 TensorFlow 2 识别图像
- 七、TensorFlow 2 和神经风格迁移
- 八、TensorFlow 2 和循环神经网络
- 九、TensorFlow 估计器和 TensorFlow HUB
- 十、从 tf1.12 转换为 tf2
- TensorFlow 入门
- 零、前言
- 一、TensorFlow 基本概念
- 二、TensorFlow 数学运算
- 三、机器学习入门
- 四、神经网络简介
- 五、深度学习
- 六、TensorFlow GPU 编程和服务
- TensorFlow 卷积神经网络实用指南
- 零、前言
- 一、TensorFlow 的设置和介绍
- 二、深度学习和卷积神经网络
- 三、TensorFlow 中的图像分类
- 四、目标检测与分割
- 五、VGG,Inception,ResNet 和 MobileNets
- 六、自编码器,变分自编码器和生成对抗网络
- 七、迁移学习
- 八、机器学习最佳实践和故障排除
- 九、大规模训练
- 十、参考文献