题目链接:[点击打开链接](http://acm.hdu.edu.cn/showproblem.php?pid=1394)
对于求逆序数的问题, 通常用线段树或者树状数组来维护, 树状数组代码短,好写, 还是尽量写树状数组吧。
首先求出原始排列的逆序数, 那么对于每一次操作, 因为都是将当前排列的第一个数拿到最后一个位置, 所以答案就增加了所有比他大的数字个数,减小了所有比他小的数字个数。
细节参见代码:
~~~
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int INF = 1000000000;
const int maxn = 5000+10;
int T,n,m,bit[maxn],a[maxn];
int sum(int x) {
int ans = 0;
while(x > 0) {
ans += bit[x];
x -= x & -x;
}
return ans;
}
void add(int x, int d) {
while(x <= n) {
bit[x] += d;
x += x & -x;
}
}
int main() {
while(~scanf("%d",&n)) {
memset(bit, 0, sizeof(bit));
int ans = 0;
for(int i=1;i<=n;i++) {
scanf("%d",&a[i]);
a[i]++;
ans += sum(n) - sum(a[i]);
add(a[i], 1);
}
int cur = ans;
for(int i=1;i<n;i++) {
int cnt = sum(a[i]-1);
cur += n - 1 - cnt - cnt;
ans = min(ans, cur);
}
printf("%d\n",ans);
}
return 0;
}
~~~
- 前言
- 1608 - Non-boring sequences(折半递归。。暂且这么叫吧)
- 11491 - Erasing and Winning(贪心)
- 1619 - Feel Good(高效算法-利用数据结构优化-优先队列)
- hdu-4127 Flood-it!(IDA*算法)
- UESTC 1132 酱神赏花 (用数据结构优化DP)
- HDU 2874 Connections between cities(LCA离线算法)
- Codeforces Round #317 A. Lengthening Sticks(组合+容斥)
- HDU 3085 Nightmare Ⅱ(双向BFS)
- HDU 5592 ZYB&#39;s Premutation(二分+树状数组)
- Codeforces Round #320 (Div. 1) C. Weakness and Poorness(三分)
- HDU 5212 Code(容斥)
- HDU 5596 GTW likes gt(multiset)
- FZU 2159 WuYou(贪心)
- HDU 3450 Counting Sequences(DP + 树状数组)
- HDU 5493 Queue(二分+树状数组)
- HDU 1166 敌兵布阵(线段树版)
- HDU 1394 Minimum Inversion Number(树状数组||线段树)
- HDU 2795 Billboard(线段树)
- POJ 2828 Buy Tickets(树状数组)
- 《完全版线段树》- NotOnlySuccess
- POJ 2886 Who Gets the Most Candies?(树状数组+二分)
- HDU 1698 Just a Hook(线段树区间修改)
- POJ 3468 A Simple Problem with Integers(线段树|区间加减&amp;&amp;区间求和)
- POJ 2528 Mayor&#39;s posters(线段树区间修改+离散化)
- HDU 5606 tree(并查集)
- POJ 3734 Blocks(矩阵优化+DP)
- POJ 3233 Matrix Power Series(矩阵优化)
- HDU 5607 graph(矩阵优化+概率DP)
- POJ 2777 Count Color(线段树区间修改+位运算)
- POJ 1436 Horizontally Visible Segments(线段树区间修改)
- UVA 1513 - Movie collection(树状数组)
- UVA 1232 - SKYLINE(线段树区间更新)
- 11525 - Permutation(二分+树状数组)
- 11402 - Ahoy, Pirates!(线段树区间更新(标记重叠的处理))
- Educational Codeforces Round 6 E. New Year Tree(DFS序+线段树)