不像 Java 和 .NET,Go 语言为程序员提供了控制数据结构的指针的能力;但是,你不能进行指针运算。通过给予程序员基本内存布局,Go 语言允许你控制特定集合的数据结构、分配的数量以及内存访问模式,这些对构建运行良好的系统是非常重要的:指针对于性能的影响是不言而喻的,而如果你想要做的是系统编程、操作系统或者网络应用,指针更是不可或缺的一部分。
由于各种原因,指针对于使用面向对象编程的现代程序员来说可能显得有些陌生,不过我们将会在这一小节对此进行解释,并在未来的章节中展开深入讨论。
程序在内存中存储它的值,每个内存块(或字)有一个地址,通常用十六进制数表示,如:`0x6b0820` 或`0xf84001d7f0`。
Go 语言的取地址符是 `&`,放到一个变量前使用就会返回相应变量的内存地址。
下面的代码片段(示例 4.9 [pointer.go](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/examples/chapter_4/pointer.go))可能输出 `An integer: 5, its location in memory: 0x6b0820`(这个值随着你每次运行程序而变化)。
~~~
var i1 = 5
fmt.Printf("An integer: %d, it's location in memory: %p\n", i1, &i1)
~~~
这个地址可以存储在一个叫做指针的特殊数据类型中,在本例中这是一个指向 int 的指针,即 `i1`:此处使用 *int 表示。如果我们想调用指针 intP,我们可以这样声明它:
~~~
var intP *int
~~~
然后使用 `intP = &i1` 是合法的,此时 intP 指向 i1。
(指针的格式化标识符为 `%p`)
intP 存储了 i1 的内存地址;它指向了 i1 的位置,它引用了变量 i1。
**一个指针变量可以指向任何一个值的内存地址** 它指向那个值的内存地址,在 32 位机器上占用 4 个字节,在 64 位机器上占用 8 个字节,并且与它所指向的值的大小无关。当然,可以声明指针指向任何类型的值来表明它的原始性或结构性;你可以在指针类型前面加上 * 号(前缀)来获取指针所指向的内容,这里的 * 号是一个类型更改器。使用一个指针引用一个值被称为间接引用。
当一个指针被定义后没有分配到任何变量时,它的值为 `nil`。
一个指针变量通常缩写为 `ptr`。
> **注意事项**
> 在书写表达式类似 `var p *type` 时,切记在 * 号和指针名称间留有一个空格,因为 `- var p*type` 是语法正确的,但是在更复杂的表达式中,它容易被误认为是一个乘法表达式!
符号 * 可以放在一个指针前,如 `*intP`,那么它将得到这个指针指向地址上所存储的值;这被称为反引用(或者内容或者间接引用)操作符;另一种说法是指针转移。
对于任何一个变量 var, 如下表达式都是正确的:`var == *(&var)`。
现在,我们应当能理解 pointer.go 中的整个程序和他的输出:
示例 4.21 [pointer.go](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/examples/chapter_4/pointer.go):
~~~
package main
import "fmt"
func main() {
var i1 = 5
fmt.Printf("An integer: %d, its location in memory: %p\n", i1, &i1)
var intP *int
intP = &i1
fmt.Printf("The value at memory location %p is %d\n", intP, *intP)
}
~~~
输出:
~~~
An integer: 5, its location in memory: 0x24f0820
The value at memory location 0x24f0820 is 5
~~~
我们可以用下图来表示内存使用的情况:
[![](https://github.com/Unknwon/the-way-to-go_ZH_CN/raw/master/images/4.4.9_fig4.4.png?raw=true)](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/images/4.4.9_fig4.4.png?raw=true)
程序 string_pointer.go 为我们展示了指针对string的例子。
它展示了分配一个新的值给 *p 并且更改这个变量自己的值(这里是一个字符串)。
示例 4.22 [string_pointer.go](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/examples/chapter_4/string_pointer.go)
~~~
package main
import "fmt"
func main() {
s := "good bye"
var p *string = &s
*p = "ciao"
fmt.Printf("Here is the pointer p: %p\n", p) // prints address
fmt.Printf("Here is the string *p: %s\n", *p) // prints string
fmt.Printf("Here is the string s: %s\n", s) // prints same string
}
~~~
输出:
~~~
Here is the pointer p: 0x2540820
Here is the string *p: ciao
Here is the string s: ciao
~~~
通过对 *p 赋另一个值来更改“对象”,这样 s 也会随之更改。
内存示意图如下:
[![](https://github.com/Unknwon/the-way-to-go_ZH_CN/raw/master/images/4.4.9_fig4.5.png?raw=true)](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/images/4.4.9_fig4.5.png?raw=true)
**注意事项**
你不能得到一个文字或常量的地址,例如:
~~~
const i = 5
ptr := &i //error: cannot take the address of i
ptr2 := &10 //error: cannot take the address of 10
~~~
所以说,Go 语言和 C、C++ 以及 D 语言这些低级(系统)语言一样,都有指针的概念。但是对于经常导致 C 语言内存泄漏继而程序崩溃的指针运算(所谓的指针算法,如:`pointer+2`,移动指针指向字符串的字节数或数组的某个位置)是不被允许的。Go 语言中的指针保证了内存安全,更像是 Java、C# 和 VB.NET 中的引用。
因此 `c = *p++` 在 Go 语言的代码中是不合法的。
指针的一个高级应用是你可以传递一个变量的引用(如函数的参数),这样不会传递变量的拷贝。指针传递是很廉价的,只占用 4 个或 8 个字节。当程序在工作中需要占用大量的内存,或很多变量,或者两者都有,使用指针会减少内存占用和提高效率。被指向的变量也保存在内存中,直到没有任何指针指向它们,所以从它们被创建开始就具有相互独立的生命周期。
另一方面(虽然不太可能),由于一个指针导致的间接引用(一个进程执行了另一个地址),指针的过度频繁使用也会导致性能下降。
指针也可以指向另一个指针,并且可以进行任意深度的嵌套,导致你可以有多级的间接引用,但在大多数情况这会使你的代码结构不清晰。
如我们所见,在大多数情况下 Go 语言可以使程序员轻松创建指针,并且隐藏间接引用,如:自动反向引用。
对一个空指针的反向引用是不合法的,并且会使程序崩溃:
示例 4.23 [testcrash.go](https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/examples/chapter_4/testcrash.go):
~~~
package main
func main() {
var p *int = nil
*p = 0
}
// in Windows: stops only with: <exit code="-1073741819" msg="process crashed"/>
// runtime error: invalid memory address or nil pointer dereference
~~~
**问题 4.2** 列举 Go 语言中 * 号的所有用法。
- 前言
- 第一部分:学习 Go 语言
- 第1章:Go 语言的起源,发展与普及
- 1.1 起源与发展
- 1.2 语言的主要特性与发展的环境和影响因素
- 第2章:安装与运行环境
- 2.1 平台与架构
- 2.2 Go 环境变量
- 2.3 在 Linux 上安装 Go
- 2.4 在 Mac OS X 上安装 Go
- 2.5 在 Windows 上安装 Go
- 2.6 安装目录清单
- 2.7 Go 运行时(runtime)
- 2.8 Go 解释器
- 第3章:编辑器、集成开发环境与其它工具
- 3.1 Go 开发环境的基本要求
- 3.2 编辑器和集成开发环境
- 3.3 调试器
- 3.4 构建并运行 Go 程序
- 3.5 格式化代码
- 3.6 生成代码文档
- 3.7 其它工具
- 3.8 Go 性能说明
- 3.9 与其它语言进行交互
- 第二部分:语言的核心结构与技术
- 第4章:基本结构和基本数据类型
- 4.1 文件名、关键字与标识符
- 4.2 Go 程序的基本结构和要素
- 4.3 常量
- 4.4 变量
- 4.5 基本类型和运算符
- 4.6 字符串
- 4.7 strings 和 strconv 包
- 4.8 时间和日期
- 4.9 指针
- 第5章:控制结构
- 5.1 if-else 结构
- 5.2 测试多返回值函数的错误
- 5.3 switch 结构
- 5.4 for 结构
- 5.5 Break 与 continue
- 5.6 标签与 goto
- 第6章:函数(function)
- 6.1 介绍
- 6.2 函数参数与返回值
- 6.3 传递变长参数
- 6.4 defer 和追踪
- 6.5 内置函数
- 6.6 递归函数
- 6.7 将函数作为参数
- 6.8 闭包
- 6.9 应用闭包:将函数作为返回值
- 6.10 使用闭包调试
- 6.11 计算函数执行时间
- 6.12 通过内存缓存来提升性能
- 第7章:数组与切片
- 7.1 声明和初始化
- 7.2 切片
- 7.3 For-range 结构
- 7.4 切片重组(reslice)
- 7.5 切片的复制与追加
- 7.6 字符串、数组和切片的应用
- 第8章:Map
- 8.1 声明、初始化和 make
- 8.2 测试键值对是否存在及删除元素
- 8.3 for-range 的配套用法
- 8.4 map 类型的切片
- 8.5 map 的排序
- 8.6 将 map 的键值对调
- 第9章:包(package)
- 9.1 标准库概述
- 9.2 regexp 包
- 9.3 锁和 sync 包
- 9.4 精密计算和 big 包
- 9.5 自定义包和可见性
- 9.6 为自定义包使用 godoc
- 9.7 使用 go install 安装自定义包
- 9.8 自定义包的目录结构、go install 和 go test
- 9.9 通过 Git 打包和安装
- 9.10 Go 的外部包和项目
- 9.11 在 Go 程序中使用外部库
- 第10章:结构(struct)与方法(method)
- 10.1 结构体定义
- 10.2 使用工厂方法创建结构体实例
- 10.3 使用自定义包中的结构体
- 10.4 带标签的结构体
- 10.5 匿名字段和内嵌结构体
- 10.6 方法
- 10.8 垃圾回收和 SetFinalizer
- 第11章:接口(interface)与反射(reflection)
- 11.1 接口是什么
- 11.2 接口嵌套接口
- 11.3 类型断言:如何检测和转换接口变量的类型
- 11.4 类型判断:type-switch
- 11.5 测试一个值是否实现了某个接口
- 11.6 使用方法集与接口
- 11.7 第一个例子:使用 Sorter 接口排序
- 11.8 第二个例子:读和写
- 11.9 空接口
- 11.10 反射包
- 第三部分:Go 高级编程
- 第12章 读写数据
- 12.1 读取用户的输入
- 12.2 文件读写
- 12.3 文件拷贝
- 12.4 从命令行读取参数
- 12.5 用buffer读取文件
- 12.6 用切片读写文件
- 12.7 用 defer 关闭文件
- 12.8 使用接口的实际例子:fmt.Fprintf
- 12.9 Json 数据格式
- 12.10 XML 数据格式
- 12.11 用 Gob 传输数据
- 12.12 Go 中的密码学
- 第13章 错误处理与测试
- 13.1 错误处理
- 13.2 运行时异常和 panic
- 13.3 从 panic 中恢复(Recover)
- 13.4 自定义包中的错误处理和 panicking
- 13.5 一种用闭包处理错误的模式
- 13.6 启动外部命令和程序
- 13.7 Go 中的单元测试和基准测试
- 13.8 测试的具体例子
- 13.9 用(测试数据)表驱动测试
- 13.10 性能调试:分析并优化 Go 程序
- 第14章:协程(goroutine)与通道(channel)
- 14.1 并发、并行和协程
- 14.2 使用通道进行协程间通信
- 14.3 协程同步:关闭通道-对阻塞的通道进行测试
- 14.4 使用 select 切换协程
- 14.5 通道,超时和计时器(Ticker)
- 14.6 协程和恢复(recover)
- 第15章:网络、模版与网页应用
- 15.1 tcp服务器
- 15.2 一个简单的web服务器
- 15.3 访问并读取页面数据
- 15.4 写一个简单的网页应用
- 第四部分:实际应用
- 第16章:常见的陷阱与错误
- 16.1 误用短声明导致变量覆盖
- 16.2 误用字符串
- 16.3 发生错误时使用defer关闭一个文件
- 16.5 不需要将一个指向切片的指针传递给函数
- 16.6 使用指针指向接口类型
- 16.7 使用值类型时误用指针
- 16.8 误用协程和通道
- 16.9 闭包和协程的使用
- 16.10 糟糕的错误处理
- 第17章:模式
- 17.1 关于逗号ok模式
- 第18章:出于性能考虑的实用代码片段
- 18.1 字符串
- 18.2 数组和切片
- 18.3 映射
- 18.4 结构体
- 18.5 接口
- 18.6 函数
- 18.7 文件
- 18.8 协程(goroutine)与通道(channel)
- 18.9 网络和网页应用
- 18.10 其他
- 18.11 出于性能考虑的最佳实践和建议
- 附录