企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
#### 进程间通信---Queue Process之间有时需要通信,操作系统提供了很多机制来时间进程间的通信. ##### 1.Queue的使用 可以使用multiprocessing模块的queue实现多进程间的数据传递,queue本身是一个消息队列程序,如: ~~~ #coding=utf-8 from multiprocessing import Queue q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息 q.put("消息1") q.put("消息2") print(q.full()) #False q.put("消息3") print(q.full()) #True #因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常 try: q.put("消息4",True,2) except: print("消息列队已满,现有消息数量:%s"%q.qsize()) try: q.put_nowait("消息4") except: print("消息列队已满,现有消息数量:%s"%q.qsize()) #推荐的方式,先判断消息列队是否已满,再写入 if not q.full(): q.put_nowait("消息4") #读取消息时,先判断消息列队是否为空,再读取 if not q.empty(): for i in range(q.qsize()): print(q.get_nowait()) ~~~ 运行结果: ~~~ False True 消息列队已满,现有消息数量:3 消息列队已满,现有消息数量:3 消息1 消息2 消息3 ~~~ **说明** 初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头); * Queue.qsize():返回当前队列包含的消息数量; * Queue.empty():如果队列为空,返回True,反之False ; * Queue.full():如果队列满了,返回True,反之False; * Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True; 1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常; 2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常; * Queue.get_nowait():相当Queue.get(False); * Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True; 1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常; 2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常; * Queue.put_nowait(item):相当Queue.put(item, False); ##### 2. Queue实例 我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据: ~~~ from multiprocessing import Process, Queue import os, time, random # 写数据进程执行的代码: def write(q): for value in ['A', 'B', 'C']: print 'Put %s to queue...' % value q.put(value) time.sleep(random.random()) # 读数据进程执行的代码: def read(q): while True: if not q.empty(): value = q.get(True) print 'Get %s from queue.' % value time.sleep(random.random()) else: break if __name__=='__main__': # 父进程创建Queue,并传给各个子进程: q = Queue() pw = Process(target=write, args=(q,)) pr = Process(target=read, args=(q,)) # 启动子进程pw,写入: pw.start() # 等待pw结束: pw.join() # 启动子进程pr,读取: pr.start() pr.join() # pr进程里是死循环,无法等待其结束,只能强行终止: print '' print '所有数据都写入并且读完' ~~~ 运行结果: ![](https://box.kancloud.cn/bcd5edc8a94ad8a1c5cd7e423555f8e2_820x223.gif) ##### 3. 进程池中的Queue 如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息: RuntimeError: Queue objects should only be shared between processes through inheritance. 下面的实例演示了进程池中的进程如何通信: ~~~ #coding=utf-8 #修改import中的Queue为Manager from multiprocessing import Manager,Pool import os,time,random def reader(q): print("reader启动(%s),父进程为(%s)"%(os.getpid(),os.getppid())) for i in range(q.qsize()): print("reader从Queue获取到消息:%s"%q.get(True)) def writer(q): print("writer启动(%s),父进程为(%s)"%(os.getpid(),os.getppid())) for i in "dongGe": q.put(i) if __name__=="__main__": print("(%s) start"%os.getpid()) q=Manager().Queue() #使用Manager中的Queue来初始化 po=Pool() #使用阻塞模式创建进程,这样就不需要在reader中使用死循环了,可以让writer完全执行完成后,再用reader去读取 po.apply(writer,(q,)) po.apply(reader,(q,)) po.close() po.join() print("(%s) End"%os.getpid()) ~~~ 运行结果: ~~~ (21156) start writer启动(21162),父进程为(21156) reader启动(21162),父进程为(21156) reader从Queue获取到消息:d reader从Queue获取到消息:o reader从Queue获取到消息:n reader从Queue获取到消息:g reader从Queue获取到消息:G reader从Queue获取到消息:e (21156) End ~~~