#### ThreadLocal
在多线程环境下,每个线程都有自己的数据。一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁。
##### 1. 使用函数传参的方法
但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦:
~~~
def process_student(name):
std = Student(name)
# std是局部变量,但是每个函数都要用它,因此必须传进去:
do_task_1(std)
do_task_2(std)
def do_task_1(std):
do_subtask_1(std)
do_subtask_2(std)
def do_task_2(std):
do_subtask_2(std)
~~~
每个函数一层一层调用都这么传参数那还得了?用全局变量?也不行,因为每个线程处理不同的Student对象,不能共享。
##### 2. 使用全局字典的方法
如果用一个全局dict存放所有的Student对象,然后以thread自身作为key获得线程对应的Student对象如何?
~~~
global_dict = {}
def std_thread(name):
std = Student(name)
# 把std放到全局变量global_dict中:
global_dict[threading.current_thread()] = std
do_task_1()
do_task_2()
def do_task_1():
# 不传入std,而是根据当前线程查找:
std = global_dict[threading.current_thread()]
...
def do_task_2():
# 任何函数都可以查找出当前线程的std变量:
std = global_dict[threading.current_thread()]
...
~~~
这种方式理论上是可行的,它最大的优点是消除了std对象在每层函数中的传递问题,但是,每个函数获取std的代码有点low。
有没有更简单的方式?
##### 3.使用ThreadLocal的方法
ThreadLocal应运而生,不用查找dict,ThreadLocal帮你自动做这件事:
~~~
import threading
# 创建全局ThreadLocal对象:
local_school = threading.local()
def process_student():
# 获取当前线程关联的student:
std = local_school.student
print('Hello, %s (in %s)' % (std, threading.current_thread().name))
def process_thread(name):
# 绑定ThreadLocal的student:
local_school.student = name
process_student()
t1 = threading.Thread(target= process_thread, args=('dongGe',), name='Thread-A')
t2 = threading.Thread(target= process_thread, args=('老王',), name='Thread-B')
t1.start()
t2.start()
t1.join()
t2.join()
~~~
执行结果:
~~~
Hello, dongGe (in Thread-A)
Hello, 老王 (in Thread-B)
~~~
>[warning] 说明
全局变量local_school就是一个ThreadLocal对象,每个Thread对它都可以读写student属性,但互不影响。你可以把local_school看成全局变量,但每个属性如local_school.student都是线程的局部变量,可以任意读写而互不干扰,也不用管理锁的问题,ThreadLocal内部会处理。
可以理解为全局变量local_school是一个dict,不但可以用local_school.student,还可以绑定其他变量,如local_school.teacher等等。
ThreadLocal最常用的地方就是为每个线程绑定一个数据库连接,HTTP请求,用户身份信息等,这样一个线程的所有调用到的处理函数都可以非常方便地访问这些资源。
>[warning] 小结
一个ThreadLocal变量虽然是全局变量,但每个线程都只能读写自己线程的独立副本,互不干扰。ThreadLocal解决了参数在一个线程中各个函数之间互相传递的问
- 系统编程
- 1.进程
- 1.1.fork
- 1.2.多个进程能否修改全局变量
- 1.3多次fork的问题
- 1.4.进程的创建-multiprocessing
- 1.5.进程的创建-Process子类
- 1.6.进程池Pool
- 1.7.进程间通信--Queue
- 2.线程
- 2.1.多线程-Threading
- 2.2.threading注意点
- 2.3.多线程-共享全局变量
- 2.4.线程和进程的对比
- 2.5.同步
- 2.6.互斥锁
- 2.7.多线程-非共享数据
- 2.8.死锁
- 2.9.同步应用
- 2.10.生产者与消费者模式
- 2.11.ThreadLocal
- 2.12.异步
- 2.13.GIL的问题
- 网络编程
- 1.网络概述-udp
- 1.1.TCP/IP
- 1.2.端口
- 1.3.ip地址
- 1.4.socket简介
- 1.5.UDP介绍
- 1.6.udp网络程序-发送数据
- 1.7.udp网络程序-发送、接收数据
- 1.8.udp网络程序-端口问题
- 1.9.udp绑定信息
- 2.0.udp网络通信过程
- 2.1.udp应用:echo服务器
- 2.2.udp应用:聊天室
- 2.3.udp总结
- 2.4.udp综合-模拟QQ
- 2.TFTP下载和上传
- 3.TCP/IP
- 3.1.打开浏览器访问百度的过程
- web服务器
- 1.1.MyWebServer.py
- 1.2.MyWebFramework.py
- 正则
- 1.1.re模块
- 1.2.字符
- 1.3.原始字符串
- 1.4.表示数量
- 1.5.表示边界
- 1.6.匹配分组
- 1.7.贪婪和非贪婪
- 数据结构和算法
- 1.引入概念
- 1.1.第一次尝试
- 1.2.算法的提出
- 1.3.第二次尝试
- 1.4.算法效率衡量
- 1.5.算法分析
- 1.6.常见时间复杂度
- 1.7.python内置类型性能分析
- 1.8.数据结构
- 2.顺序表
- 2.1.顺序表的形式
- 2.2.顺序表的结构和实现
- 2.3.顺序表的操作
- 2.4.python中的顺序表
- 3.链表
- 3.1.单向链表
- 3.2.单向循环链表
- 3.3.双向链表
- 4.栈
- 4.1.栈的结构实现
- 5.队列
- 5.1.队列的实现
- 5.2.双端队列
- 6.排序和搜索
- 6.1.冒泡排序
- 6.2.选择排序
- 6.3.插入排序
- 6.4.快速排序
- 6.5.哈希排序
- 6.6.归并排序
- 6.7.常见排序算法效率比较
- 6.8.搜索
- 7.树与树算法
- 7.1.二叉树
- 7.2.二叉树的遍历
- 初识Django
- 1.小白
- 2.初次尝试
- 3.管理站点
- 4.视图
- 5.模板
- django模型
- 1.定义模型
- 2.模型成员
- 3.模型查询
- 4.自连接
- django视图
- django模板
- django高级
- django第三方
- django-git