* 导师视频讲解:[**去听课**](https://www.bilibili.com/video/BV1k34y1D7Vz?p=12)
>[success] **技术支持说明:**
>**1**.一般以自主学习为主
> **2**.可到官方问答社区中提问:[**去提问**](https://bbs.csdn.net/forums/zigbee)
> **3**.工程师**会尽快**解答社区问题,但他们是一线开发,【**难以保证**】解答时效,解答辛苦,感谢理解!
<br/>
本节将使用CC2530内部的定时器1对LED等进行定时的开关控制,从而实现闪烁LED的效果。
<br/>
## **定时器基础理论**
* **系统时钟频率**:时钟发生器会以恒定的时间间隔产生脉冲,这个间歇性的脉冲可以形象理解为芯片的心跳,时钟频率则是用来描述这个心跳的速率。大家通常用1s内时钟发生器产生的脉冲数量来描述时钟频率,例如“时钟频率10 MHz”表示1s内的心跳次数为10 000 000次。CC2530有两种时钟频率可供开发者使用:32MHz和16MHz。
###
* **分频系数**:分频是指将时钟频率降低为原来的1/N,也称为N分频。比如当时钟频率是16MHz的时候,那么2分频是8MHz。分频系数则是用1/N来表示,比如2分频的分频系数为:1/2。
###
* **系统时钟周期**:周期和频率的关系可以用公式表示: T = 1 / f,其中T为时钟周期,f为时钟频率。时钟周期和时钟频率成倒数关系。举个例子说明一下,时钟频率为16MHz时表示在1s内时钟发生器可以产生16 000 000个脉冲,而时钟周期则可以表示产生一个脉冲所需要的时间,即1 / 160 000 00s。
###
* **计数器**:计数器是定时器的核心,用于记录时钟发生器产生的脉冲数量。由于脉冲的时钟周期是恒定的,因此计算定时时间的公式是:t=nT,其中t为定时时间,n为计数次数,T为时钟周期
###
* **溢出**:由于计数器的范围是有限的,当计数次数超过最大值时就会产生溢出。例如当计数器的大小是16位时,那么计数范围是0~65535,因此计数次数超过65535后计数器就会产生溢出。在产生溢出后,计算器的值会从最大值变为0。
<br/>
## **定时原理**
我们利用公式对频率和周期的关系作进一步的解释。
我们利用f表示时钟频率,T来表示时钟周期,那么可以用此关系式来表示它们的关系:
* T = 1 / f (1)
我们计时t秒后,假设此时计数器从0开始计数了N次(假设此时计数器没有溢出)。前面已经讲解过,时钟周期T表示心跳1次所需要时间,因此t与N的关系如下:
* t = N × T (2)
接着,我们可以推导出:
* N = t / T (3)
<br/>
CC2530的默认系统时钟频率是16MHz(16000000Hz),其定时器1使用128分频,因此定时器的时钟频率是 16000000 / 128 Hz。
###
* 根据公式(1)T = 1 / f 可以算出定时器1时钟周期为T = 128/16000000 秒。
* 在定时5秒的情况下(即t=5秒),根据公式(2)N = t / T,计数器的计数值N = 5 / (128/16000000) = 625000。
###
### **处理溢出**
  当定时器溢出时会发生中断,此时寄存器IRCON的Bit1位会由原先的0被设置为1,因此我们只需要检测这个标志位即可判断是否发生了溢出。
>[info] 具体的相关寄存器说明,请阅读下文的说明
  定时器1是一个16位定时器,每溢出一次计数65536次,所以定时5秒后将会溢出: 625000 / 65536 = 9.54,取整数,即9次。反过来,如果溢出了9次,我们可以大约第认为时间过了5秒。
<br/>
## **相关寄存器**
![](https://img.kancloud.cn/86/5d/865d48b7de54066667b3ab2ee7c81044_886x830.png =600x)
![](https://img.kancloud.cn/9b/af/9baf0b9af0615ed85ac7a270b4b92978_878x708.png =600x)
<br/>
## **寄存器配置**
* 定时器1是一个16位的定时器,也就是说计数器能从0~65535进行计数。
* 定时器1支持5个通道
```
1.T1CTL = 0x0D; // 0000 1101:128分频,自由计数(从0~65535)
2.T1STAT= 0x21; // bit0写1,清空通道0中断状态位
3. // bit5写1,清空计数器中断状态位
```
<br/>
## **程序说明**
主函数:
```
void main()
{
uint8_t Counter = 0;
initLed();
initTimer1();
while(1) {
if (!(IRCON & 0x02)) continue; // Timer1 interrupt not pending
IRCON &= ~(0x02); // Clear timer1 interrupt flag
if (++Counter < 9) continue; // ~5 second
else Counter = 0;
DEBUG_LOG("~5 Second.\r\n");
LED = (LED == LED_ON)?LED_OFF : LED_ON;
} /* while */
}
```
###
  主函数定义了一个计数器,用来记录定时器溢出的次数。前面我们已经算出了定时5秒后会溢出9次。每当定时器溢出后都需要清除溢出标志位。溢出9次后我们需要把计数器归0,重新计数。这样,我们就实现了每隔5秒中打印输出相应提示,并翻转LED灯的亮灭状态。
<br/>
## **仿真调试**
>[danger] 在学习本节课前,需要先掌握基本的程序下载及仿真操作,参考:[程序下载及仿真](2482302)
把开发板连接仿真器,进入仿真模式:
![](https://img.kancloud.cn/1d/15/1d1558cd149452fda895264e0a215aac_354x384.png =300x)
###
可以看到,每隔大概5秒打印出信息,并且LED灯翻转。
<br/>
<br/>
## **项目定制**
* 如需项目定制开发,可扫码添加项目经理好友(注明“**项目定制**”)
* 定制范围:**NB-IoT**、**CATn(4G)**、**WiFi**、**ZigBee**、**BLE Mesh**以及**STM32**、**嵌入式Linux**等IoT技术方案
* 善学坊官网:[www.sxf-iot.com](https://www.sxf-iot.com/)
![](https://img.kancloud.cn/ca/73/ca739f92cab220a3059378642e3bd502_430x430.png =200x)
* 非项目定制**勿扰**,此处**非**技术支持
- 课程简介
- 配套资源下载
- 配套开发套件简介
- 简介
- 技术参数
- 电路原理图 & PCB图——标准板
- 电路原理图 & PCB图——MiNi板
- CC2530F256 核心模组
- MCU简介
- 模组尺寸 & 引脚定义
- 模组技术参数
- 电路原理图 & PCB设计图
- 封装及生产指导
- 第一部分:准备
- 1.1 小白也能读懂的 ZigBee 3.0 简介
- 1.2 IAR EW for 8051 简介与安装
- 1.3 TI Z-Stack 3.0 简介与安装
- 1.4 SmartRF Flash Programmer 下载与安装
- 1.5 串口助手简介与安装
- 1.6 SmartRF04EB 驱动程序
- 1.7 USB转串口驱动程序
- 其他软件安装(非必须)
- 1.7.1 Xshell 7 简介与安装指南
- 1.7.2 PuTTY 简介与安装
- 第二部分:51单片机入门——基于CC2530
- 第1章:CC2530 开发基础实验
- 1.1 新建工作空间及工程
- 1.2 源代码编写及编译
- 1.3 程序下载及仿真
- 1.4 固件烧录
- 第2章:GPIO实验
- 2.1 多工程管理基础
- 2.2 GPIO输出实验——LED控制
- 2.3 GPIO输入实验——机械按键
- 2.4 GPIO输入输出通用配置实验
- 2.5 GPIO外部中断实验
- 第3章:定时器实验
- 3.1 工程概述
- 3.2 定时器T1实验——查询触发
- 3.3 定时器T3实验——中断触发
- 3.4 看门狗定时器实验
- 3.5 低功耗定时器实验
- 第4章:串口通信实验
- 第5章:ADC实验——使用光照传感器
- 第6章:OLED 显示器实验
- 第7章:外设实验
- 7.1 DHT11温湿度传感器
- 7.2 NorFLASH读写实验
- 7.3 继电器控制实验
- 第三部分:Z-Stack 3.0 详解
- 第1章:Z-Stack 3.0 架构详解
- 1.1 Z-Stack 3.0.1 文件组织
- 2.2 Z-Stack 3.0.1 工程框架
- 第2章:操作系统的任务调度原理
- 第3章:OSAL 详解
- 3.1 OSAL的任务调度原理
- 3.2 任务初池始化与事件处理
- 3.3 Z-Stack 事件的应用
- 3.4 使用动态内存
- 第4章:硬件适配层应用——LED
- 4.1 HAL的文件结构和工程结构
- 4.2 HAL的架构简介
- 4.2 LED API简介
- 4.3 LED 实验
- 第5章:硬件适配层应用——按键
- 5.1 按键实验
- 5.2 HAL 按键框架详解(选修)
- 第6章:硬件适配层应用——串口
- 第7章:硬件适配层应用——显示屏
- 第8章:硬件适配层应用——ADC
- 第四部分:ZigBee 3.0 网络编程
- 第1章:ZigBee 3.0 网络原理
- 1.1 协议层次结构
- 1.2 IEEE 802.15.4协议
- 1.3 网络层
- 第2章:ZigBee 3.0 BDB
- 2.1 BDB 简介
- 2.2 BDB Commissioning Modes
- 2.3 ZigBee 3.0 组网实验
- 第3章:基于AF的数据通信
- 3.1 简单描述符
- 3.2 通信原理
- 3.3 数据发送API简介
- 3.4 ZigBee 3.0 通信实验
- 第4章:ZCL 基本原理
- 4.1 ZCL 简介
- 4.2 ZCL 内容详解
- 第5章:基于ZCL的开关命令收发
- 5.1 应用层对 ZCL API 的调用
- 5.2 ZCL 开关命令收发 API
- 5.3 ZCL 开关命令收发实验
- 第6章:基于ZCL的属性读写
- 6.1 ZCL 属性读写 API
- 6.2 ZCL 属性读写实验
- 第7章:基于ZCL的属性上报实验
- 7.1 概述
- 7.2 终端设备开发
- 7.3 协调器设备开发
- 7.4 仿真调试
- 课外篇:项目实战
- ZigBee 3.0 环境信息采集
- 基于ZigBee的农业环境信息采集
- 基于ZigBee的文件传输系统
- 基于ZigBee的光照自动开关窗帘
- 基于ZigBee的温湿度 & 光照强度采集系统
- 其他项目
- 基于ZigBee的温度和有害气体短信报警系统
- 基于ZigBee的多传感器探测与亮灯报警系统
- 基于ZigBee的温湿度、人体红外与声光报警系统
- ZigBee 3.0 多节点组网实战
- 基于ZigBee的温湿度 & 信号强度探测系统
- 课外篇:进阶选修
- 《课外篇:进阶选修》的说明
- 第1章:串口通信协议设计
- 1.1 设计基础
- 1.2 协议格式
- 第2章:优化协调器工程结构
- 2.1 工程结构
- 2.2 应用框架详解
- 2.2.1 框架说明
- 2.2.2 zbmsg
- 2.2.3 zbcategory
- 第3章:协调器上位机调试
- 3.1上位机说明
- 3.2 调试说明
- 第4章:信道及PanId的动态修改
- 4.1 串口协议
- 4.2 重要接口说明
- 4.2.1 NIB
- 4.2.2 NLME_UpdateNV
- 4.3 架构调整
- 4.4 应用
- 4.4.1 zbnwk接口实现
- 4.4.2 串口通信解析
- 4.4.3 烧录调试
- 第5章:网络短地址及MAC地址的获取
- 5.1 接口说明
- 5.1.1 描述
- 5.1.2 调用流程
- 5.1.3 异步数据
- 5.2 调试
- 第6章:入网控制及白名单
- 6.1 基本内容
- 6.1.1 入网控制
- 6.1.2 白名单
- 6.2 函数封装
- 6.3 程序调试
- 第7章:协调器分区存储管理
- 7.1 软件框架
- 7.2 应用
- 7.3 调试
- ZigBee 2 WiFi —— 基于ESP8266
- 1.使用云端服务器
- 2.源码说明与测试
- 3.ESP8266模块参考资料
- ZigBee 无线报文的抓取与分析
- 接入小米Aqara智能插座和温湿度传感器
- Z-Stack的NV应用
- 1. NV 简介
- 2. NV的读写
- 基于HAL的外部FLASH应用
- TFT显示器实验(选修)
- Lighting工程源码分析
- 9.1 ZHA Lighting工程
- 9.2 ZHA Lighting源码分析
- 9.3 Lighting亮度调节实验
- TemperatureSensor工程源码分析
- 10.1 ZHA TemperatureSensor工程
- 10.2 ZHA TemperatureSensor源码分析
- 版权声明与免责声明