# Profiling Queries
注意
Profile API 提供的详细信息直接暴露了Lucene的类名和概念,这意味着对结果的完整解释需要Lucene相当高级的知识。本页试图对Lucene如何执行查询提供速成教程,以便您可以成功地使用Profile API诊断和调试查询,但它只是一个概述。如需完整的理解,请参考Lucene对应位置的文档和代码。
也就是说,处理一个缓慢的查询往往不需要完整理解Lucene。例如,我们普遍知道某个特定的查询组件很缓慢,但不一定理解为什么该查询的advance前阶段是诱因。
原文链接 : [https://www.elastic.co/guide/en/elasticsearch/reference/5.4/_profiling_queries.html](https://www.elastic.co/guide/en/elasticsearch/reference/5.4/_profiling_queries.html)
译文链接 : [http://www.apache.wiki/display/Elasticsearch/Profiling+Queries](http://www.apache.wiki/display/Elasticsearch/Profiling+Queries)
贡献者 : [王晗](/display/~wanghan),[岑晓燕](/display/~cenxiaoyan)
## 查询部分/query Section
查询部分(query)包含由Lucene在一个特定的分块执行生成的查询树的详细时序。这个查询树的整体结构类似于原来的Elasticsearch查询,但可能会略有不同(偶尔会差异很大)。它也将使用类似但不总是相同的命名。使用我们以前的匹配查询(match)示例,让我们分析查询部分(query):
```
"query": [
{
"type": "BooleanQuery",
"description": "message:message message:number",
"time": "1.873811000ms",
"time_in_nanos": "1873811",
"breakdown": {...}, (1)
"children": [
{
"type": "TermQuery",
"description": "message:message",
"time": "0.3919430000ms",
"time_in_nanos": "391943",
"breakdown": {...}
},
{
"type": "TermQuery",
"description": "message:number",
"time": "0.2106820000ms",
"time_in_nanos": "210682",
"breakdown": {...}
}
]
}
]
```
(1)为简单起见,这里省略故障时间。
基于探查(profile)的结构,我们可以看到,我们的匹配查询(match)被Lucene重写为包含两个条款(均有术语查询(TermQuery))的布尔查询(BooleanQuery)。类型字段(type)显示Lucene类的名称,并经常与Elasticsearch中对应的名字相同。这个描述字段(description)显示Lucene查询的解析文本,并可用于帮助区分查询的各个部分。(如:message:search and message:test 都是术语查询(TermQuery),否则会出现相同的两个。)
时间字段(time)表明该查询了执行整个布尔查询(BooleanQuery)花费1.8ms,此记录时间包含了所有孩子节点。
time_in nanos字段显示一个精确的、机器可读格式的时间信息(以纳秒为单位)。
崩溃字段(breakdown)给出时间如何花费的详细数据,我们一眼可以看到它。最后,孩子(children)数组列出了所有可能出现的子查询。因为我们搜索了两个值(“search test”),布尔查询(BooleanQuery)有两个孩子术语查询(TermQueries)。它们有相同的信息(类型、时间、故障等)。孩子(children)可以嵌套自己的孩子(children)。
注意
时间字段(time)仅用于人类消费。如果你需要精确的定时值请使用time_in nanos字段。目前,默认打印时间字段(time),但这将在下一个主要版本 (6.0.0)的发生变化,将默认打印time_in_nanos字段。
### **定时故障/Timing Breakdown**
崩溃组件(breakdown)列出底层Lucene执行的详细时序统计:
```
"breakdown": {
"score": 51306,
"score_count": 4,
"build_scorer": 2935582,
"build_scorer_count": 1,
"match": 0,
"match_count": 0,
"create_weight": 919297,
"create_weight_count": 1,
"next_doc": 53876,
"next_doc_count": 5,
"advance": 0,
"advance_count": 0
}
```
时间信息用网络挂钟的纳秒列出来,且不规范化。所有关于时间的警告均适用于这里。 Breakdown的意图是让你感觉到(A)Lucene的运转实际上耗费时间的,(B)各部件耗费时间的差异是非常大的。像所有的时间一样,breakdown包含所有孩子的时间。
统计数据的含义如下:
### 所有的参数:/All parameters:
| create_weight | Lucene的查询必须能够在复杂的IndexSearchers重用(它被看做是针对特定的Lucene索引执行搜索的引擎。)。这使得Lucene处于一个棘手的境地,因为许多查询(Query)需要积累与它正在使用的索引相关联的临时的状态/统计信息,但查询(Query)合同授权要求它必须不可变的。为了解决这个问题,Lucene要求每个查询生成一个权重对象(weight object)作为临时的上下文对象为这个特定的元组(IndexSearcher,Query)保持状态信息。weight的度量表明这个过程所需要的时间长短。 |
| build_scorer | 此参数显示建立查询的记分器(Scorer)需要多长的时间。记分器(Scorer)是一种遍历所有匹配文档为每个文档生成得分的机制(例如,“foo”与文档的匹配程度是怎样的?)。注意,这记录了生成记分器(Scorer)对象而不是对文档进行评分所需的时间。不同查询初始化记分器(Scorer)有快有慢,取决于优化、复杂性等。这也可能说明计时与缓存(caching)是否被启用或缓存是否适用于查询(query)相关。 |
| next_doc | Lucene的方法next_doc返回下一个匹配查询的文档ID。此统计数据显示确定哪个文档是下一个匹配需要的时间,这是根据查询的性质而变化很大的过程。next_doc是一种特殊形式的advance(),它使得Lucene的许多查询更便捷。这相当于函数advance(docId() + 1)。 |
| advance | advance是next_doc的低版本:它的目的是找到下一个匹配的DOC,但需要调用查询执行额外任务,如识别和移动过去的跳跃。然而,不是所有的查询都可以使用next_doc,所以advance的目的是服务于那些查询。联合查询(Conjunctions)(如,布尔查询中有must)是advance的典型消费者。 |
| matches | 一些查询,如短语查询,使用“两阶段”过程匹配文档。首先,“近似”匹配文档,如果文档大约匹配,它将用更严格的(和昂贵的)的方法进行第二次检查。第二阶段验证是匹配的统计测量。例如,短语查询首先通过确保所有术语都存在于文档中来大约检查文档。如果所有的术语都存在,那么它执行第二阶段验证,以确保条款按次序形成短语,相比检查条款是否存在这是更昂贵的。
由于这两过程仅被少数查询使用,统计度量结果往往是零。 |
| score | 这记录了一个特定的文件通过评分器(Scorer)评分所需的时间。 |
| *_count | 纪录调用特定方法的数量。例如, ”next_doc_count”:2,意味着nextDoc()在两个不同的文档中被调用。这可以通过比较不同查询组件之间的计数来帮助判断如何选择查询。 |
## 收集部分/collectors Section
响应的收集器(Collectors)部分显示高级执行细节。Lucene通过定义一个“收集器(Collector)”来工作,它负责协调匹配文档的遍历、得分和集合。收集器(Collectors)也有单个查询如何记录聚合结果、执行无作用域的“global”查询、执行post-query过滤,等功能。
看前面的例子:
```
"collector": [
{
"name": "CancellableCollector",
"reason": "search_cancelled",
"time": "0.3043110000ms",
"time_in_nanos": "304311",
"children": [
{
"name": "SimpleTopScoreDocCollector",
"reason": "search_top_hits",
"time": "0.03227300000ms",
"time_in_nanos": "32273"
}
]
}
]
```
我们看到一个收集器(Collector)由SimpleTopScoreDocCollector包装成 CancellableCollector。SimpleTopScoreDocCollector是Elasticsearch使用的默认的“评分和排序”的收集器(Collector)。原因字段(reason)试图对类名进行简单的英文描述。时间字段(time)与查询树中的时间字段(time)相似:一个包括所有孩子节点的网络挂钟时间。同样的是,孩子(children)列出所有子收集器(Collector)。包装SimpleTopScoreDocCollector的CancellableCollector,被Elasticsearch用于检测当前搜索是否被取消,一旦发生取消搜索的行为则停止收集文件。
应该指出的是,Collector times与Query times相互独立。他们独立计算、合并和规范化!由于Lucene的执行的性质,它不可能把收集器(Collectors)的时间“合并“”到查询部分(Query),所以他们在不同的部分显示出来。
作为参考,各种收集器Collectors的原因是:
| search_sorted | 整理和分类文件的收集器(collector)。这是最常见的收集器,会最简单的搜索中出现。 |
| search_count | 一个仅计算查询匹配的文档数的收集器(collector),但不能获取源代码。只有当参数size被指定为0,这个收集器才会出现。 |
| search_terminate_after_count | 一个当N个匹配文档被发现就终止搜索的收集器(collector)。只有当terminate_after_count query参数被指定,这个收集器才会出现。 |
| search_min_score | 一个只返回评分大于 N的匹配文档的收集器(collector)。只有当顶层参数min_score被指定,这个收集器才会出现。 |
| search_multi | 包裹其他几个收集器的收集器(collector)。只有当组合搜索(combinations of search),聚合(aggregations),全局聚合(global aggs)和post_filters结合在一个搜索里,这个收集器才会出现。 |
| search_timeout | 一个在特定时间中断执行的收集器(collector)。只有当顶层参数timeout被指定,这个收集器才会出现。 |
| aggregation | 一个Elasticsearch在查询范围使用聚合的收集器(collector)。一个为所有聚合采集文件的聚合采集器,所以你会看到一个聚合名称的列表。 |
| global_aggregation | 一个对全局查询(global query scope)而不是指定查询(specified query)执行聚合(aggregation)的收集器(Collector)。由于全局范围(global query)不同于执行普通查询(query),它必须执行它自己的match_all查询(这会被添加到查询部分(Query))来收集整个数据集。 |
## 重写部分/rewrite Section
Lucene中的所有查询都经过“重写”过程。一个查询(及其子查询)可以重写一次或多次,这过程继续进行,直到查询停止更改。这个过程让Lucene进行优化,如去除多余的条款,一个更有效的执行路径替换一个查询。例如Boolean → Boolean → TermQuery 可以改写为术语查询(TermQuery),因为在这种情况下所有的布尔值都是多余的。重写的过程是复杂的,难以显示,因为查询可以大幅改变。总改写时间不显示中间结果,只是显示为一个值(以纳秒为单位)。此值是累加的,包含所有被重写查询的总时间。
## 更复杂的例子/A more complex example
为了演示稍微复杂的查询和相关的结果,我们可以探查(profile)以下查询:
```
GET /test/_search
{
"profile": true,
"query": {
"term": {
"message": {
"value": "search"
}
}
},
"aggs": {
"non_global_term": {
"terms": {
"field": "agg"
},
"aggs": {
"second_term": {
"terms": {
"field": "sub_agg"
}
}
}
},
"another_agg": {
"cardinality": {
"field": "aggB"
}
},
"global_agg": {
"global": {},
"aggs": {
"my_agg2": {
"terms": {
"field": "globalAgg"
}
}
}
}
},
"post_filter": {
"term": {
"my_field": "foo"
}
}
}
```
这个例子有:
* 一个查询(query)
* 一个局部聚合(scoped aggregation)
* 一个全局聚合(global aggregation)
* 一个后过滤(post_filter)
响应:
```
{
"profile": {
"shards": [
{
"id": "[P6-vulHtQRWuD4YnubWb7A][test][0]",
"searches": [
{
"query": [
{
"type": "TermQuery",
"description": "my_field:foo",
"time": "0.4094560000ms",
"time_in_nanos": "409456",
"breakdown": {
"score": 0,
"score_count": 1,
"next_doc": 0,
"next_doc_count": 2,
"match": 0,
"match_count": 0,
"create_weight": 31584,
"create_weight_count": 1,
"build_scorer": 377872,
"build_scorer_count": 1,
"advance": 0,
"advance_count": 0
}
},
{
"type": "TermQuery",
"description": "message:search",
"time": "0.3037020000ms",
"time_in_nanos": "303702",
"breakdown": {
"score": 0,
"score_count": 1,
"next_doc": 5936,
"next_doc_count": 2,
"match": 0,
"match_count": 0,
"create_weight": 185215,
"create_weight_count": 1,
"build_scorer": 112551,
"build_scorer_count": 1,
"advance": 0,
"advance_count": 0
}
}
],
"rewrite_time": 7208,
"collector": [
{
"name": "MultiCollector",
"reason": "search_multi",
"time": "1.378943000ms",
"time_in_nanos": "1378943",
"children": [
{
"name": "FilteredCollector",
"reason": "search_post_filter",
"time": "0.4036590000ms",
"time_in_nanos": "403659",
"children": [
{
"name": "SimpleTopScoreDocCollector",
"reason": "search_top_hits",
"time": "0.006391000000ms",
"time_in_nanos": "6391"
}
]
},
{
"name": "BucketCollector: [[non_global_term, another_agg]]",
"reason": "aggregation",
"time": "0.9546020000ms",
"time_in_nanos": "954602"
}
]
}
]
},
{
"query": [
{
"type": "MatchAllDocsQuery",
"description": "*:*",
"time": "0.04829300000ms",
"time_in_nanos": "48293",
"breakdown": {
"score": 0,
"score_count": 1,
"next_doc": 3672,
"next_doc_count": 2,
"match": 0,
"match_count": 0,
"create_weight": 6311,
"create_weight_count": 1,
"build_scorer": 38310,
"build_scorer_count": 1,
"advance": 0,
"advance_count": 0
}
}
],
"rewrite_time": 1067,
"collector": [
{
"name": "GlobalAggregator: [global_agg]",
"reason": "aggregation_global",
"time": "0.1226310000ms",
"time_in_nanos": "122631"
}
]
}
]
}
]
}
}
```
正如你所看到的,输出明显比前面冗长。查询的所有主要部分都表示:
1. 第一个TermQuery (message:search) 代表主术语查询。
2. 第二个TermQuery (my_field:foo) 代表后过滤(post_filter)查询。
3. 有一个MatchAllDocsQuery (*:*)查询,作为执行第二个不同的搜索。这不是由用户指定的查询的一部分,而是由全局聚合(global aggregation)为提供全局查询范围而自动生成的。
收集树是相当简单的,显示了一个MultiCollector如何包裹FilteredCollector去执行post_filter(反过来,包裹正常的评分SimpleCollector),和bucketcollector运行所有作用域的聚合。 In the MatchAll search, there is a single GlobalAggregator to run the global aggregation.在MatchAll搜索中,有一个全局聚合器(GlobalAggregator)运行全局的聚合。
## 了解MultiTermQuery的输出/Understanding MultiTermQuery output
这里需要对MultiTermQuery类查询做一个特别注释。这包括通配符(wildcards),正则表达式(regex)和模糊(fuzzy)查询。这些查询发出非常冗长的响应,并且不过度结构化。
从本质上讲,这些查询(query)在每一个段的基础上改写自己。如果你想象中的通配符查询为"b*",在技术上它可以匹配任何以字母“b”开头的标记。无法枚举所有可能的组合,所以Lucene重写查询中被评估的段落。例如,某段中可能包含标记 [bar, baz],所以查询query重写到布尔查询(BooleanQuery)中包含了"bar"和"baz"。另一段可能只有标记 [bakery],所以查询query重写成只包含"bakery"的术语查询(TermQuery)。
由于这种每段重写的动态,干净的树结构变得扭曲,并且不再有清晰的世系去显示一个查询如何被重写rewriter成下一个。目前,我们所能做的就是道歉,如果它太混乱,建议您检查该查询的孩子节点的崩溃的细节。幸运的是,所有的时间统计都是正确的,只是不在响应(response)的物理布局中,因此只需分析顶层的MultiTermQuery,如果你发现的细节很难解释请忽视的它的孩子节点。
希望在未来的迭代它会变成固定,但它是一个很难解决的、正在改善中的棘手问题 :)
- Getting Started(入门指南)
- Basic Concepts(基础概念)
- Installation(安装)
- Exploring Your Cluster(探索集群)
- Cluster Health(集群健康)
- List All Indices(列出所有索引)
- Create an Index(创建索引)
- Index and Query a Document(索引和查询文档)
- Delete an Index(删除索引)
- Modifying Your Data(修改数据)
- Updating Documents(更新文档)
- Deleting Documents(删除文档)
- Batch Processing(批处理)
- Exploring Your Data(探索数据)
- The Search API(搜索 API)
- Introducing the Query Language(介绍查询语言)
- Executing Searches(执行查询)
- Executing Filters(执行过滤)
- Executing Aggregations(执行聚合)
- Conclusion(总结)
- Setup Elasticsearch(设置)
- Installing Elasticsearch(安装)
- zip 或 tar.gz 安装
- Debian软件包安装Elasticsearch
- 用RPM安装Elasticsearch
- Windows 环境下安装ES
- Docker 方式安装
- 配置Elasticsearch
- 重要Elasticsearch配置
- 安全配置
- 启动前检查
- 堆大小检查
- 文件描述符检查
- 内存锁定检查
- 最大线程数检查
- 最大虚拟内存检查
- 最大map数检查
- JVM Client模式检查
- 串行收集使用检查
- 系统调用过滤检查
- OnError与OnOutOfMemoryError检查
- G1GC检查
- 重要的系统配置
- 系统设置
- 在jvm.options中设置JVM堆大小
- 禁用swapping
- 文件描述符
- 虚拟内存
- 线程数
- 升级Elasticsearch
- Elasticsearch停机
- 重大改变
- 在5.3 重大改变
- 在5.2 重大改变
- Shadow Replicas已被弃用
- 在5.1 重大改变
- 在5.0 重大改变
- 搜索和查询DSL改变
- 映射改变
- 过滤器改变
- Suggester变化
- 索引API改变
- 文档API改变
- 设置的改变
- 分配改变
- HTTP改变
- REST API改变
- CAT API改变
- Java API改变
- Packaging
- Plugin改变
- 文件系统相关改变
- 磁盘上数据的路径
- 聚合改变
- 脚本相关改变
- API 规范
- Multiple Indices(多个索引)
- Date math support in index names(索引名称对 Date 和 Math 的支持)
- 常见选项
- URL-based access control(基于 URL 的访问控制)
- Document APIS
- Index API
- Get API
- Update API
- 通过查询 API 更新
- 多个 GET API
- Bulk API
- Reading and Writing documents(读写文档)
- Delete API
- Delete By Query API
- Reindex API
- Term Vectors
- Multi termvectors API
- ?refresh
- Search APIs
- Search
- URI Search
- Request Body Search
- Query
- From / Size
- Sort
- Source filtering
- Fields
- Script Fields
- Doc value Fields
- Post filter
- Highlighting
- Rescoring
- Search Type
- Scroll
- Preference
- Explain
- Version
- Index Boost
- min_score
- Named Queries
- Inner hits
- Search After
- Field Collapsing 字段折叠
- Search 模板
- Multi Search 模板
- Search Shards API
- Suggesters
- Completion Suggester
- Context Suggester
- Phrase Suggester
- Term suggester
- Multi Search API
- Count API
- Validate API
- Explain API
- Profile API
- Profiling Queries
- Profiling Aggregations
- Profiling Considerations
- Aggregations
- Metric Aggregations
- 值计数聚合(Value Count Aggregation)
- 地理边界聚合
- 地理重心聚合
- 基数聚合
- 平均值聚合
- 扩展统计聚合
- 最大值聚合
- 最小值聚合
- Bucket Aggregations
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation(过滤器聚合)
- Filters Aggregation
- Geo Distance Aggregation(地理距离聚合)
- GeoHash grid Aggregation(GeoHash网格聚合)
- Global Aggregation(全局聚合)
- Histogram Aggregation
- IP Range Aggregation(IP范围聚合)
- Missing Aggregation
- Nested Aggregation(嵌套聚合)
- Range Aggregation(范围聚合)
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- 邻接矩阵聚合
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation(导数聚合)
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation(扩展信息桶聚合)
- Percentiles Bucket Aggregation(百分数桶聚合)
- Cumulative Sum Aggregation(累积汇总聚合)
- Bucket Script Aggregation(桶脚本聚合)
- Bucket Selector Aggregation(桶选择器聚合)
- Serial Differencing Aggregation(串行差异聚合)
- Matrix Aggregations
- Matrix Stats
- Matrix Stats(矩阵统计)
- Caching heavy aggregations(缓存频繁聚合)
- Returning only aggregation results(仅返回需要聚合的结果)
- Aggregation Metadata(聚合元数据)
- Returning the type of the aggregation(返回聚合的类型)
- 索引 API
- Create Index /创建索引
- Delete Index /删除索引
- Get Index /获取索引
- Indices Exists /索引存在
- Open / Close Index API /启动关闭索引
- Shrink Index /缩小索引
- Rollover Index/滚动索引
- Put Mapping /提交映射
- Get Mapping /获取映射
- Get Field Mapping /获取字段映射
- 卷影副本索引
- 依赖卷影副本的节点级设置
- 索引统计信息
- 索引段
- 索引恢复
- 索引分片存储
- 清理缓存
- 刷新
- 同步刷新
- 重新加载
- 强制合并
- cat APIs
- cat aliases
- cat allocation
- cat count
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat thread pool
- cat shards
- cat segments
- cat snapshots
- 集群 API
- Cluster Allocation Explain API
- Cluster Health
- Cluster Reroute
- Cluster State
- Cluster Stats
- Cluster Update Settings
- Nodes hot_threads
- Nodes Info
- Nodes Stats
- Pending cluster tasks
- Task Management API
- 查询 DSL
- 查询和过滤上下文
- Match ALL 查询
- 全文搜索
- 匹配查询
- 短语匹配查询
- 短语前缀匹配查询
- 多字段查询
- 常用术语查询
- 查询语句查询
- 简单查询语句
- 复合查询家族
- Constant Score 查询
- Bool 查询
- Dis Max 查询
- Function Score 查询
- Boosting 查询
- Indices 查询
- Join 查询
- Has Child Query
- Has Parent Query
- Nested Query(嵌套查询)
- Parent Id Query
- 术语查询
- Exists Query(非空值查询)
- Fuzzy Query(模糊查询)
- Ids Query(ID 查询)
- Prefix Query(前缀查询)
- Range Query(范围查询)
- Regexp Query(正则表达式查询)
- Term Query(项查询)
- Terms Query(多项查询)
- Type Query(类型查询)
- Wildcard Query(通配符查询)
- 地理位置查询
- GeoShape Query(地理形状查询)
- Geo Bounding Box Query(地理边框查询)
- Geo Distance Query(地理距离查询)
- Geo Distance Range Query(地理距离范围查询)
- Geo Polygon Query(地理多边形查询)
- Span 查询
- Span Term 查询
- Span Multi Term 查询
- Span First 查询
- Span Near 查询
- Span Or 查询
- Span Not 查询
- Span Containing 查询
- Span Within 查询
- Span Field Masking 查询
- Specialized queries(专业查询)
- Mapping(映射)
- 字段类型
- Array
- Binary
- Range
- Boolean
- Date
- Geo-point datatype
- String
- Text
- Token数
- 渗滤型
- KeyWord
- Nested
- Object
- Numeric
- Meta-Fields(元字段)
- _all field
- _field_names field
- _id field
- _index field
- _meta field
- _parent field
- _routing field
- _source field
- _type field
- _uid field
- Mapping parameters(映射参数)
- analyzer(分析器)
- normalizer(归一化)
- boost(提升)
- Coerce(强制类型转换)
- copy_to(合并参数)
- doc_values(文档值)
- dynamic(动态设置)
- enabled(开启字段)
- fielddata(字段数据)
- format (日期格式)
- ignore_above(忽略超越限制的字段)
- ignore_malformed(忽略格式不对的数据)
- include_in_all(_all 查询包含字段)
- index_options(索引设置)
- index (索引)
- fields(字段)
- Norms (标准信息)
- null_value(空值)
- position_increment_gap(短语位置间隙)
- properties (属性)
- search_analyzer (搜索分析器)
- similarity (匹配方法)
- store(存储)
- Term_vectors(词根信息)
- Dynamic Mapping(动态映射)
- default mapping(mapping中的_default_)
- Dynamic field mapping(动态字段映射)
- Dynamic templates(动态模板)
- Override default template(覆盖默认模板)
- Mapping(映射)
- Analysis
- Tokenizers(分词器)
- Standard Tokenizer(标准分词器)
- Letter Tokenizer
- Lowercase Tokenizer (小写分词器)
- Whitespace Analyzer
- 停止分析器
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer(泰语分词器)
- NGram Tokenizer
- Keyword Analyzer
- Path Hierarchy Tokenizer(路径层次分词器)
- Pattern Tokenizer
- Token Filters(词元过滤器)
- Apostrophe Token Filter(撇号/单引号过滤器)
- ASCII Folding Token Filter(ASCII Folding 词元过滤器)
- CJK Bigram Token Filter(CJK Bigram词元过滤器)
- CJK Width Token Filter(CJK宽度过滤器)
- Classic Token Filter(经典过滤器)
- Common Grams Token Filter(近义词词元过滤器)
- Compound Word Token Filter(复合词过滤器)
- Decimal Digit Token Filter(十进制数字过滤器)
- Delimited Payload Token Filter(Delimited Payload词元分析器)
- Edge NGram Token Filter(Edge NGram 词元过滤器)
- Elision Token Filter(Elision词元过滤器)
- Fingerprint Token Filter(指纹过滤器)
- Flatten Graph Token Filter(Flatten Graph 词元过滤器)
- Hunspell Token Filter(Hunspell 词元过滤器)
- Keep Types Token Filter(保留指定类型过滤器)
- Keep Words Token Filter(保留字过滤器)
- Keyword Marker Token Filter(Keyword Marker 词元过滤器)
- Keyword Repeat Token Filter(Keyword Repeat 词元过滤器)
- KStem Token Filter(KStem 词元过滤器)
- Length Token Filter(长度词元过滤器)
- Limit Token Count Token Filter(限制词元数量过滤器)
- Lowercase Token Filter(Lowercase 词元过滤器)
- Minhash Token Filter(Minhash过滤器)
- NGram Token Filter(NGram词元过滤器)
- Normalization Token Filter(标准化词元过滤器)
- Pattern Capture Token Filter(模式匹配词元过滤器)
- Pattern Replace Token Filter(模式替换词元过滤器)
- Phonetic Token Filter(Phonetic 词元过滤器)
- Porter Stem Token Filter(Porter Stem 词元过滤器)
- Reverse Token Filteredit(反向词元过滤器)
- Shingle Token Filter(Shingle 词元过滤器)
- Snowball Token Filter(Snowball 词元过滤器)
- Standard Token Filters(标准词元过滤器)
- Stemmer Override Token Filter(Stemmer Override 词元过滤器)
- Stemmer Token Filter(Stemmer 词元过滤器)
- Stop Token Filter(Stop 词元过滤器)
- Synonym Graph Token Filter(Synonym Graph 词元过滤器)
- Synonym Token Filter(Synonym 词元过滤器)
- Trim Token Filter(Trim词元过滤器)
- Truncate Token Filter(截断词元过滤器)
- Unique Token Filter(唯一词元过滤器)
- Uppercase Token Filter(Uppercase词元过滤器)
- Word Delimiter Token Filter(Word Delimiter 词元过滤器)
- Character Filters(字符过滤器)
- md Strip Character Filter
- Mapping Character Filter
- Pattern Replace Character Filter
- Anatomy of an analyzer(分析器的分析)
- Testing analyzers(测试分析器)
- Analyzers(分析器)
- Configuring built-in analyzers(配置内置分析器)
- Standard Analyzer(标准分析器)
- Simple Analyzer(简单分析器)
- 空白分析器
- Stop Analyzer
- 指纹分析器
- 模式分析器
- 自定义分析器
- 语言分析器
- 模块
- Indices(索引)
- Circuit breakers(熔断器)
- Fielddata cache(列数据缓存)
- indexing buffer(索引写入缓冲)
- indices Recovery(索引恢复)
- NetWork Setting(网络配置)
- Node Query Cache(节点查询缓存)
- Shard request cache(分片请求缓存)
- 脚本
- Groovy 脚本语言
- Painless 脚本语言
- Painless 语法
- Painless 调试
- Lucene表达式语言
- 原生(Java)脚本
- 高级文本评分脚本
- 快照和还原
- 线程池
- 传输
- HTTP
- Tribe Node (部落节点)
- 跨集群搜索
- Cluster(集群)
- Disk-based Shard Allocation ( 基于磁盘的分片分配 )
- Shard Allocation Awareness ( 分片分配意识 )
- 群集级别分片分配
- Node
- 插件
- Index Modules(索引模块)
- Analysis(分析)
- 索引分片分配
- 分片分配过滤
- 节点丢失时的延迟分配
- 索引恢复的优先级
- 每个节点的总分片数
- Mapper(映射)
- Merge(合并)
- Similarity module(相似模块)
- Slow log(慢日志)
- Store
- 预加载数据到文件系统缓存
- Translog(事务日志)
- Ingest Node(预处理节点)
- Pipeline Definition(管道定义)
- Ingest APIs
- Put Pipeline API
- Get Pipeline API
- Delete Pipeline API
- Simulate Pipeline API(模拟管道 API)
- Accessing Data in Pipelines(访问管道中的数据)
- Handling Failures in Pipelines(处理管道中的故障)
- Processors(处理器)
- Append Processor(追加处理器)
- Convert Processor(转换处理器)
- Date Processor(日期处理器)
- Date Index Name Processor(日期索引名称处理器)
- Fail Processor(故障处理器)
- Foreach Processor(循环处理器)
- Grok Processor(Grok 处理器)
- Gsub Processor(Gsub 处理器)
- Join Processor(连接处理器)
- JSON Processor(JSON 处理器)
- KV Processor(KV 处理器)
- Lowercase Processor(小写处理器)
- Remove Processor(删除处理器)
- Rename Processor(重命名处理器)
- Script Processor(脚本处理器)
- Set Processor(设置处理器)
- Split Processor(拆分处理器)
- Sort Processor(排序处理器)
- Trim Processor(修剪处理器)
- Uppercase Processor(大写处理器)
- Dot Expander Processor(点扩展器处理器)
- How to(操作方式)
- 一些建议
- Recipes(诀窍)
- 索引速率调优
- 查询优化
- 磁盘使用调优
- Testing(测试)
- Java Testing Framework(测试框架)
- ( why randomized testing ) 为什么随机测试?
- Using the elasticsearch test classes ( 使用 elasticsearch 测试类 )
- unit tests(单元测试)
- integreation test(集成测试)
- Randomized testing(随机测试)
- Assertions()
- Glossary of terms (词汇表)
- Release Notes(版本说明)
- 5.3.0 版本说明
- 5.2.2 Release Notes
- 5.2.1 Release Notes
- 5.2.0 Release Notes
- 5.1.2 Release Notes
- 5.1.1 Release Notes
- 5.1.0 Release Notes
- 5.0.1 Release Notes