上一篇文章咱们对 ICP 进行了一次全面的分析,本篇文章小编继续为大家分析优化器的另外两个选项: MRR & batched_key_access(BKA) ,分析一下他们的作用、原理、相互关系、源码实现以及使用范围。
## 什么是 MRR
MRR 的全称是 Multi-Range Read Optimization,是优化器将随机 IO 转化为顺序 IO 以降低查询过程中 IO 开销的一种手段,咱们对比一下 mrr=on & mrr=off 时的执行计划:
其中表结构如下:
~~~
mysql> show create table t1\G
*************************** 1\. row ***************************
Table: t1
Create Table: CREATE TABLE `t1` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`a` int(11) DEFAULT NULL,
`b` int(11) DEFAULT NULL,
`c` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `mrrx` (`a`,`b`),
KEY `xx` (`c`)
) ENGINE=MyISAM AUTO_INCREMENT=11 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
~~~
操作如下:
~~~
mysql> set optimizer_switch='mrr=off';
Query OK, 0 rows affected (0.00 sec)
mysql> explain select * from test.t1 where (a between 1 and 10) and (c between 9 and 10) ;
+----+-------------+-------+-------+---------------+------+---------+------+------+------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+------+---------+------+------+------------------------------------+
| 1 | SIMPLE | t1 | range | mrrx,xx | xx | 5 | NULL | 2 | Using index condition; Using where |
+----+-------------+-------+-------+---------------+------+---------+------+------+------------------------------------+
1 row in set (0.00 sec)
~~~
当把 MRR 关掉的情况下,执行计划使用的是索引 xx(c),即从索引 xx 上读取一条数据后回表,取回该主键的完整数据,当数据较多且比较分散的情况下会有比较多的随机 IO, 导致性能低下,我们将 MRR 打开,执行以下操作:
~~~
mysql> set optimizer_switch='mrr=on';
Query OK, 0 rows affected (0.00 sec)
mysql> explain select * from test.t1 where (a between 1 and 10) and (c between 9 and 10) ;
+----+-------------+-------+-------+---------------+------+---------+------+------+-----------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+------+---------+------+------+-----------------------------------------------+
| 1 | SIMPLE | t1 | range | mrrx,xx | xx | 5 | NULL | 2 | Using index condition; Using where; Using MRR |
+----+-------------+-------+-------+---------------+------+---------+------+------+-----------------------------------------------+
1 row in set (0.00 sec)
~~~
可以看到 extra 的输出中多了 “Using MRR” 信息,即使用了 MRR Optimization IO 层面进行了优化,减少 IO 方面的开销,更详细的说明可以参考[这里](http://dev.mysql.com/doc/refman/5.6/en/mrr-optimization.html)。
## MRR 原理
在不使用 MRR 时,优化器需要根据二级索引返回的记录来进行“回表”,这个过程一般会有较多的随机 IO, 使用 MRR 时,SQL 语句的执行过程是这样的:
* 优化器将二级索引查询到的记录放到一块缓冲区中;
* 如果二级索引扫描到文件的末尾或者缓冲区已满,则使用快速排序对缓冲区中的内容按照主键进行排序;
* 用户线程调用 MRR 接口取 cluster index,然后根据cluster index 取行数据;
* 当根据缓冲区中的 cluster index 取完数据,则继续调用过程 2) 3),直至扫描结束;
通过上述过程,优化器将二级索引随机的 IO 进行排序,转化为主键的有序排列,从而实现了随机 IO 到顺序 IO 的转化,提升性能。
## MRR 源码分析
首先,咱们来看一下 mrr 相对应的内存结构:
~~~
class DsMrr_impl
{
...
handler *h;
TABLE *table; /* Always equal to h->table */
private:
/* Secondary handler object. It is used for scanning the index */
handler *h2;
/* Buffer to store rowids, or (rowid, range_id) pairs */
uchar *rowids_buf;
uchar *rowids_buf_cur; /* Current position when reading/writing */
uchar *rowids_buf_last; /* When reading: end of used buffer space */
uchar *rowids_buf_end; /* End of the buffer */
bool dsmrr_eof; /* TRUE <=> We have reached EOF when reading index tuples */
int dsmrr_init(handler *h, RANGE_SEQ_IF *seq_funcs, void *seq_init_param,
uint n_ranges, uint mode, HANDLER_BUFFER *buf);
….
int dsmrr_fill_buffer();
int dsmrr_next(char **range_info);
bool get_disk_sweep_mrr_cost(uint keynr, ha_rows rows, uint flags, uint *buffer_size, Cost_estimate *cost);
….
}
~~~
简单说明:h2 指的是 MRR 使用的 second index 或主键索引, h 是指利用 h2 返回的主建来查询的句柄,rowids_buf 是 MRR 执行过程中存储有序主键的缓存区,大小由 MySQL 的变量 `read_rnd_buffer_size` 设置,下面我们结合程序的执行过程来看一下源码。
1. MRR 中有序主建的收集过程
优化器对查询语句的条件进行分析并选择合适的二级索引,并对二级索引的条件进行筛选拼装成 DYNAMIC_ARRAY ranges,在执行的时候将 ranges 传入初始化函数 `ha_myisam::multi_range_read_init` ,继而会调用 `dsmrr_fill_buffer` 函数,在`dsmrr_fill_buffer`中会使用二级索引的句柄查找符合 ranges 的数据并添加至 rowids_buf 中,在扫描结束或缓冲区满的时候会对 rowids_buf 进行快速排序,详细过程可以参考函数:`dsmrr_fill_buffer`,其调用堆栈如下:
~~~
#0 DsMrr_impl::dsmrr_fill_buffer (this=0x2aab0000cf00)
#1 0x00000000006e49dd in DsMrr_impl::dsmrr_init(...)
#2 0x00000000017d35e4 in ha_myisam::multi_range_read_init(...)
#3 0x0000000000d134c6 in QUICK_RANGE_SELECT::reset (this=0x2aab00014070)
#4 0x00000000009a266f in join_init_read_record (tab=0x2aab0000f5b8)
#5 0x000000000099d6d4 in sub_select
#6 0x000000000099c914 in do_select (join=0x2aab000064b0)
#7 0x00000000009982f8 in JOIN::exec (this=0x2aab000064b0)
#8 0x0000000000a5bd7c in mysql_execute_select
........
~~~
2. MRR 中主建缓冲区的使用过程
物理执行阶段,调用 `ha_myisam::multi_range_read_next`,在使用 MRR 的情况下会从过程1)中收集的有序主建的缓冲区取主建,然后再调用引擎层的 rnd_pos 直接找到数据,其中使用 mrr 的调用堆栈如下:
~~~
#0 DsMrr_impl::dsmrr_next (this=0x2aab0000cf00, range_info=0x2aaafc03de70)
#1 0x00000000017d3634 in ha_myisam::multi_range_read_next (this=0x2aab0000ca40, range_info=0x2aaafc03de70)
#2 0x0000000000d138cc in QUICK_RANGE_SELECT::get_next (this=0x2aab00014070)
#3 0x0000000000d46908 in rr_quick (info=0x2aab0000f648)
#4 0x00000000009a2791 in join_init_read_record (tab=0x2aab0000f5b8)
#5 0x000000000099d6d4 in sub_select (join=0x2aab000064b0, join_tab=0x2aab0000f5b8, end_of_records=false)
#6 0x000000000099c914 in do_select (join=0x2aab000064b0)
~~~
二缓索引(h2)& 主建索引(h) 的协同是通过`rowids_buf_cur`来进行的。最初的初始化过程中,h2 会首先将数据填冲到 rowids_buf 中,如果发现缓冲区中的数据已经取完,则会继续调用 `dsmrr_fill_buffer` 往 rowids_buf 填主键并进行排序,如此反复,直至 h2 扫描至文件末尾,详情可以参考函数 `DsMrr_impl::dsmrr_next`。
通过上面的分析,是不是感觉 MRR 有点像二级索引与主键的 join 操作,那就是有点和 BKA 有些类似的概念了,咱们下面看一下 BKA 是如何实现的。
## BKA 原理
BKA 是指在表连接的过程中为了提升 join 性能而使用的一种 join buffer,其作用是在读取被 join 表的记录的时候使用顺序 IO,BKA 被使用的标识是执行计划的 extra 信息中会有 “Batched Key Access” 信息, 我们首先看一个例子:
~~~
DROP TABLE t1, t2;
CREATE TABLE t1 (a int PRIMARY KEY, b int);
CREATE TABLE t2 (a int PRIMARY KEY, b int);
INSERT INTO t1 VALUES (1,2), (2,1), (3,2), (4,3), (5,6), (6,5), (7,8), (8,7), (9,10);
INSERT INTO t2 VALUES (3,0), (4,1), (6,4), (7,5);
mysql> set optimizer_switch="mrr=on,mrr_cost_based=off,batched_key_access=on";
mysql> explain SELECT * FROM t1 LEFT JOIN t2 ON t1.a = t2.a WHERE t2.b <= t1.a AND t1.a <= t1.b;
+----+-------------+-------+--------+---------------+---------+---------+-----------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+---------------+---------+---------+-----------+------+-----------------------------------------------------+
| 1 | SIMPLE | t2 | ALL | PRIMARY | NULL | NULL | NULL | 4 | Using where |
| 1 | SIMPLE | t1 | eq_ref | PRIMARY | PRIMARY | 4 | test.t2.a | 1 | Using where; Using join buffer (Batched Key Access) |
+----+-------------+-------+--------+---------------+---------+---------+-----------+------+-----------------------------------------------------+
2 rows in set (0.00 sec)
~~~
从以上的例子中我们可以看到,在读取表 t1 的时候使用了带 BKA 功能的 join buffer, 其中 BKA & join buffer 的关系与实现我们放在后面详解。
## BKA & MRR 之间的关系
使用 BKA 的表的 JOIN 过程如下:
1. 连接表将满足条件的记录放入JOIN_CACHE,并将两表连接的字段放入一个 DYNAMIC_ARRAY ranges 中,此过程类似于 MRR 操作的过程,且在内存中使用的是同样的结构体 DsMrr_impl;
2. 在进行表的过接过程中,会将 ranges 相关的信息传入 `DsMrr_impl::dsmrr_fill_buffer`,并进行被连接表主建的查找及排序等操作操作,这个过程比较复杂,包括需要判断使用的 key、key 是主建时的特殊操作等;
3. `JOIN_CACHE_BKA::join_matching_records` 会调用过程2中产生的有序主建,然后顺序读取数据并进入下一步的操作(`evaluate_join_record` 等);
4. 当缓冲区的数据被读完后,会重复进行过程2,3, 直到记录被读取完。
由上面的分析可以看出,BKA将有序主建投递到存储引擎是通过 MRR 的接口的调用来实现的(`DsMrr_impl::dsmrr_next`),所以BKA 依赖 MRR,如果要使用BKA, MRR 是需要打开的,另外 `batched_key_access` 是默认关闭的,如果要使用,需要打开此选项。
BKA 的详细说明可参考[这里](https://dev.mysql.com/doc/refman/5.6/en/bnl-bka-optimization.html)。
## BKA 源码实现
表之间的连接操作是通过 JOIN_CACHE 来做的,5.6 目前实现了 BNL, BKA (JOIN_CACHE_BKA & JOIN_CACHE_BKA_UNIQUE) 两种表连接的优化方式,其中 BKA 就是其中减少随机 IO 的一种方式,BKA内存中对应的结构是 JOIN_CACHE_BKA,咱们首先看一下多表 JOIN 之间的过程;
1. 优化器生成的执行计划是由一个 JOIN_TAB 的左支树组成,每个 JOIN_TAB 包含了相关的表、使用的索引、语句中包含的条件等信息;
2. 进入物理执行计划后,会对每一个表进行读数据,然后进入 `evaluate_join_record`, 当发现满足条件的记录时,则会将该记录添加到下一个JOIN_TAB 中的JOIN_CACHE 中,其堆栈如下:
~~~
#0 JOIN_CACHE::put_record (this=0x2aab00019d20)
#1 0x000000000099d29c in sub_select_op (join=0x2aab00016268, join_tab=0x2aab00018ed8, end_of_records=false)
#2 0x000000000099ee1c in evaluate_join_record (join=0x2aab00016268, join_tab=0x2aab00018bd8)
#3 0x000000000099d984 in sub_select (join=0x2aab00016268, join_tab=0x2aab00018bd8, end_of_records=false)
#4 0x000000000099c914 in do_select (join=0x2aab00016268)
#5 0x00000000009982f8 in JOIN::exec (this=0x2aab00016268)
#6 0x0000000000a5bd7c in mysql_execute_select (thd=0x314d690, select_lex=0x31503a8, free_join=true)
~~~
3. 当缓冲区满或者读到文件的末尾时,会调用下一个JOIN_TAB 中 `JOIN_CACHE::join_records` 方法(BKA 使用时 JOIN_CACHE 为 JOIN_CACHE_BKA),然后会进入 MRR 的相关逻辑,其完整的堆栈为:
~~~
#0 DsMrr_impl::dsmrr_fill_buffer (this=0x2aab000128e0)
#1 0x00000000006e49dd in DsMrr_impl::dsmrr_init
#2 0x00000000017d35e4 in ha_myisam::multi_range_read_init
#3 0x0000000000d838aa in JOIN_CACHE_BKA::init_join_matching_records (this=0x2aab00019d20, seq_funcs=0x2aaafc03dd80, ranges=4)
#4 0x0000000000d8335c in JOIN_CACHE_BKA::join_matching_records (this=0x2aab00019d20, skip_last=false)
#5 0x0000000000d812e8 in JOIN_CACHE::join_records (this=0x2aab00019d20, skip_last=false)
#6 0x0000000000d86ed3 in JOIN_CACHE::end_send (this=0x2aab00019d20)
#7 0x000000000099d0d1 in sub_select_op (join=0x2aab00016268, join_tab=0x2aab00018ed8, end_of_records=true)
#8 0x000000000099d3c4 in sub_select (join=0x2aab00016268, join_tab=0x2aab00018bd8, end_of_records=true) at
#9 0x000000000099c97d in do_select (join=0x2aab00016268)
#10 0x00000000009982f8 in JOIN::exec (this=0x2aab00016268)
#11 0x0000000000a5bd7c in mysql_execute_select
~~~
4. `dsmrr_fill_buffer` 的过程相对复杂,需要首先取出两表相连接的字段的索引,如果没有索引,则会使用主建并直接读取,如果使用了索引,则需要从上一个JOIN_TAB中将索引的信息读出来并从 join_cache 的 buffer 中取出该索引的数据,然后再进行回表,查找主建、排序等操作,其堆栈如下:
~~~
#0 JOIN_CACHE_BKA::get_next_key (this=0x2aab00019d20, key=0x2aab0001e178)
#1 0x0000000000d82f83 in bka_range_seq_next (rseq=0x2aab00019d20, range=0x2aab0001e178)
#2 0x00000000006e3cac in handler::multi_range_read_next (this=0x2aab0001e020, range_info=0x2aaafc03dc10)
#3 0x00000000006e5466 in DsMrr_impl::dsmrr_fill_buffer (this=0x2aab000128e0)
#4 0x00000000006e49dd in DsMrr_impl::dsmrr_init (…)
#5 0x00000000017d35e4 in ha_myisam::multi_range_read_init (…)
#6 0x0000000000d838aa in JOIN_CACHE_BKA::init_join_matching_records (this=0x2aab00019d20, seq_funcs=0x2aaafc03dd80, ranges=4)
~~~
此过程只是两个表的使用 BKA 时的过程,当是多表时,过程将更为复杂。
## 小结
本篇文章中我们详细的介绍了 MRR、BKA 以及 MRR & BKA 之间的关系等内容,测试用例都是在mrr_cost_based=OFF 的情况下进行的,因为SQL 语句是否使用 MRR 优化依赖于其代价的大小,优化器的代价计算是一个比较复杂的过程,无论是 MRR 还是 BKA 都只是优化器进行优化的方法,当其发现优化后的代价过高时就会不使用该项优化,因此在使用 MRR 相关的优化时,尽量设置 mrr_cost_based=ON,毕竟大多数情况下优化器是对的。
- 数据库内核月报目录
- 数据库内核月报 - 2016/09
- MySQL · 社区贡献 · AliSQL那些事儿
- PetaData · 架构体系 · PetaData第二代低成本存储体系
- MySQL · 社区动态 · MariaDB 10.2 前瞻
- MySQL · 特性分析 · 执行计划缓存设计与实现
- PgSQL · 最佳实践 · pg_rman源码浅析与使用
- MySQL · 捉虫状态 · bug分析两例
- PgSQL · 源码分析 · PG优化器浅析
- MongoDB · 特性分析· Sharding原理与应用
- PgSQL · 源码分析 · PG中的无锁算法和原子操作应用一则
- SQLServer · 最佳实践 · TEMPDB的设计
- 数据库内核月报 - 2016/08
- MySQL · 特性分析 ·MySQL 5.7新特性系列四
- PgSQL · PostgreSQL 逻辑流复制技术的秘密
- MySQL · 特性分析 · MyRocks简介
- GPDB · 特性分析· Greenplum 备份架构
- SQLServer · 最佳实践 · RDS for SQLServer 2012权限限制提升与改善
- TokuDB · 引擎特性 · REPLACE 语句优化
- MySQL · 专家投稿 · InnoDB物理行中null值的存储的推断与验证
- PgSQL · 实战经验 · 旋转门压缩算法在PostgreSQL中的实现
- MySQL · 源码分析 · Query Cache并发处理
- PgSQL · 源码分析· pg_dump分析
- 数据库内核月报 - 2016/07
- MySQL · 特性分析 ·MySQL 5.7新特性系列三
- MySQL · 特性分析 · 5.7 代价模型浅析
- PgSQL · 实战经验 · 分组TOP性能提升44倍
- MySQL · 源码分析 · 网络通信模块浅析
- MongoDB · 特性分析 · 索引原理
- SQLServer · 特性分析 · XML与JSON应用比较
- MySQL · 最佳实战 · 审计日志实用案例分析
- MySQL · 性能优化 · 条件下推到物化表
- MySQL · 源码分析 · Query Cache内部剖析
- MySQL · 捉虫动态 · 备库1206错误问题说明
- 数据库内核月报 - 2016/06
- MySQL · 特性分析 · innodb 锁分裂继承与迁移
- MySQL · 特性分析 ·MySQL 5.7新特性系列二
- PgSQL · 实战经验 · 如何预测Freeze IO风暴
- GPDB · 特性分析· Filespace和Tablespace
- MariaDB · 新特性 · 窗口函数
- MySQL · TokuDB · checkpoint过程
- MySQL · 特性分析 · 内部临时表
- MySQL · 最佳实践 · 空间优化
- SQLServer · 最佳实践 · 数据库实现大容量插入的几种方式
- 数据库内核月报 - 2016/05
- MySQL · 引擎特性 · 基于InnoDB的物理复制实现
- MySQL · 特性分析 · MySQL 5.7新特性系列一
- PostgreSQL · 特性分析 · 逻辑结构和权限体系
- MySQL · 特性分析 · innodb buffer pool相关特性
- PG&GP · 特性分析 · 外部数据导入接口实现分析
- SQLServer · 最佳实践 · 透明数据加密在SQLServer的应用
- MySQL · TokuDB · 日志子系统和崩溃恢复过程
- MongoDB · 特性分析 · Sharded cluster架构原理
- PostgreSQL · 特性分析 · 统计信息计算方法
- MySQL · 捉虫动态 · left-join多表导致crash
- 数据库内核月报 - 2016/04
- MySQL · 参数故事 · innodb_additional_mem_pool_size
- GPDB · 特性分析 · Segment事务一致性与异常处理
- GPDB · 特性分析 · Segment 修复指南
- MySQL · 捉虫动态 · 并行复制外键约束问题二
- PgSQL · 性能优化 · 如何潇洒的处理每天上百TB的数据增量
- Memcached · 最佳实践 · 热点 Key 问题解决方案
- MongoDB · 最佳实践 · 短连接Auth性能优化
- MySQL · 最佳实践 · RDS 只读实例延迟分析
- MySQL · TokuDB · TokuDB索引结构--Fractal Tree
- MySQL · TokuDB · Savepoint漫谈
- 数据库内核月报 - 2016/03
- MySQL · TokuDB · 事务子系统和 MVCC 实现
- MongoDB · 特性分析 · MMAPv1 存储引擎原理
- PgSQL · 源码分析 · 优化器逻辑推理
- SQLServer · BUG分析 · Agent 链接泄露分析
- Redis · 特性分析 · AOF Rewrite 分析
- MySQL · BUG分析 · Rename table 死锁分析
- MySQL · 物理备份 · Percona XtraBackup 备份原理
- GPDB · 特性分析· GreenPlum FTS 机制
- MySQL · 答疑解惑 · 备库Seconds_Behind_Master计算
- MySQL · 答疑解惑 · MySQL 锁问题最佳实践
- 数据库内核月报 - 2016/02
- MySQL · 引擎特性 · InnoDB 文件系统之文件物理结构
- MySQL · 引擎特性 · InnoDB 文件系统之IO系统和内存管理
- MySQL · 特性分析 · InnoDB transaction history
- PgSQL · 会议见闻 · PgConf.Russia 2016 大会总结
- PgSQL · 答疑解惑 · PostgreSQL 9.6 并行查询实现分析
- MySQL · TokuDB · TokuDB之黑科技工具
- PgSQL · 性能优化 · PostgreSQL TPC-C极限优化玩法
- MariaDB · 版本特性 · MariaDB 的 GTID 介绍
- MySQL · 特性分析 · 线程池
- MySQL · 答疑解惑 · mysqldump tips 两则
- 数据库内核月报 - 2016/01
- MySQL · 引擎特性 · InnoDB 事务锁系统简介
- GPDB · 特性分析· GreenPlum Primary/Mirror 同步机制
- MySQL · 专家投稿 · MySQL5.7 的 JSON 实现
- MySQL · 特性分析 · 优化器 MRR & BKA
- MySQL · 答疑解惑 · 物理备份死锁分析
- MySQL · TokuDB · Cachetable 的工作线程和线程池
- MySQL · 特性分析 · drop table的优化
- MySQL · 答疑解惑 · GTID不一致分析
- PgSQL · 特性分析 · Plan Hint
- MariaDB · 社区动态 · MariaDB on Power8 (下)
- 数据库内核月报 - 2015/12
- MySQL · 引擎特性 · InnoDB 事务子系统介绍
- PgSQL · 特性介绍 · 全文搜索介绍
- MongoDB · 捉虫动态 · Kill Hang问题排查记录
- MySQL · 参数优化 ·RDS MySQL参数调优最佳实践
- PgSQL · 特性分析 · 备库激活过程分析
- MySQL · TokuDB · 让Hot Backup更完美
- PgSQL · 答疑解惑 · 表膨胀
- MySQL · 特性分析 · Index Condition Pushdown (ICP)
- MariaDB · 社区动态 · MariaDB on Power8
- MySQL · 特性分析 · 企业版特性一览
- 数据库内核月报 - 2015/11
- MySQL · 社区见闻 · OOW 2015 总结 MySQL 篇
- MySQL · 特性分析 · Statement Digest
- PgSQL · 答疑解惑 · PostgreSQL 用户组权限管理
- MySQL · 特性分析 · MDL 实现分析
- PgSQL · 特性分析 · full page write 机制
- MySQL · 捉虫动态 · MySQL 外键异常分析
- MySQL · 答疑解惑 · MySQL 优化器 range 的代价计算
- MySQL · 捉虫动态 · ORDER/GROUP BY 导致 mysqld crash
- MySQL · TokuDB · TokuDB 中的行锁
- MySQL · 捉虫动态 · order by limit 造成优化器选择索引错误
- 数据库内核月报 - 2015/10
- MySQL · 引擎特性 · InnoDB 全文索引简介
- MySQL · 特性分析 · 跟踪Metadata lock
- MySQL · 答疑解惑 · 索引过滤性太差引起CPU飙高分析
- PgSQL · 特性分析 · PG主备流复制机制
- MySQL · 捉虫动态 · start slave crash 诊断分析
- MySQL · 捉虫动态 · 删除索引导致表无法打开
- PgSQL · 特性分析 · PostgreSQL Aurora方案与DEMO
- TokuDB · 捉虫动态 · CREATE DATABASE 导致crash问题
- PgSQL · 特性分析 · pg_receivexlog工具解析
- MySQL · 特性分析 · MySQL权限存储与管理
- 数据库内核月报 - 2015/09
- MySQL · 引擎特性 · InnoDB Adaptive hash index介绍
- PgSQL · 特性分析 · clog异步提交一致性、原子操作与fsync
- MySQL · 捉虫动态 · BUG 几例
- PgSQL · 答疑解惑 · 诡异的函数返回值
- MySQL · 捉虫动态 · 建表过程中crash造成重建表失败
- PgSQL · 特性分析 · 谈谈checkpoint的调度
- MySQL · 特性分析 · 5.6 并行复制恢复实现
- MySQL · 备库优化 · relay fetch 备库优化
- MySQL · 特性分析 · 5.6并行复制事件分发机制
- MySQL · TokuDB · 文件目录谈
- 数据库内核月报 - 2015/08
- MySQL · 社区动态 · InnoDB Page Compression
- PgSQL · 答疑解惑 · RDS中的PostgreSQL备库延迟原因分析
- MySQL · 社区动态 · MySQL5.6.26 Release Note解读
- PgSQL · 捉虫动态 · 执行大SQL语句提示无效的内存申请大小
- MySQL · 社区动态 · MariaDB InnoDB表空间碎片整理
- PgSQL · 答疑解惑 · 归档进程cp命令的core文件追查
- MySQL · 答疑解惑 · open file limits
- MySQL · TokuDB · 疯狂的 filenum++
- MySQL · 功能分析 · 5.6 并行复制实现分析
- MySQL · 功能分析 · MySQL表定义缓存
- 数据库内核月报 - 2015/07
- MySQL · 引擎特性 · Innodb change buffer介绍
- MySQL · TokuDB · TokuDB Checkpoint机制
- PgSQL · 特性分析 · 时间线解析
- PgSQL · 功能分析 · PostGIS 在 O2O应用中的优势
- MySQL · 引擎特性 · InnoDB index lock前世今生
- MySQL · 社区动态 · MySQL内存分配支持NUMA
- MySQL · 答疑解惑 · 外键删除bug分析
- MySQL · 引擎特性 · MySQL logical read-ahead
- MySQL · 功能介绍 · binlog拉取速度的控制
- MySQL · 答疑解惑 · 浮点型的显示问题
- 数据库内核月报 - 2015/06
- MySQL · 引擎特性 · InnoDB 崩溃恢复过程
- MySQL · 捉虫动态 · 唯一键约束失效
- MySQL · 捉虫动态 · ALTER IGNORE TABLE导致主备不一致
- MySQL · 答疑解惑 · MySQL Sort 分页
- MySQL · 答疑解惑 · binlog event 中的 error code
- PgSQL · 功能分析 · Listen/Notify 功能
- MySQL · 捉虫动态 · 任性的 normal shutdown
- PgSQL · 追根究底 · WAL日志空间的意外增长
- MySQL · 社区动态 · MariaDB Role 体系
- MySQL · TokuDB · TokuDB数据文件大小计算
- 数据库内核月报 - 2015/05
- MySQL · 引擎特性 · InnoDB redo log漫游
- MySQL · 专家投稿 · MySQL数据库SYS CPU高的可能性分析
- MySQL · 捉虫动态 · 5.6 与 5.5 InnoDB 不兼容导致 crash
- MySQL · 答疑解惑 · InnoDB 预读 VS Oracle 多块读
- PgSQL · 社区动态 · 9.5 新功能BRIN索引
- MySQL · 捉虫动态 · MySQL DDL BUG
- MySQL · 答疑解惑 · set names 都做了什么
- MySQL · 捉虫动态 · 临时表操作导致主备不一致
- TokuDB · 引擎特性 · zstd压缩算法
- MySQL · 答疑解惑 · binlog 位点刷新策略
- 数据库内核月报 - 2015/04
- MySQL · 引擎特性 · InnoDB undo log 漫游
- TokuDB · 产品新闻 · RDS TokuDB小手册
- PgSQL · 社区动态 · 说一说PgSQL 9.4.1中的那些安全补丁
- MySQL · 捉虫动态 · 连接断开导致XA事务丢失
- MySQL · 捉虫动态 · GTID下slave_net_timeout值太小问题
- MySQL · 捉虫动态 · Relay log 中 GTID group 完整性检测
- MySQL · 答疑释惑 · UPDATE交换列单表和多表的区别
- MySQL · 捉虫动态 · 删被引用索引导致crash
- MySQL · 答疑释惑 · GTID下auto_position=0时数据不一致
- 数据库内核月报 - 2015/03
- MySQL · 答疑释惑· 并发Replace into导致的死锁分析
- MySQL · 性能优化· 5.7.6 InnoDB page flush 优化
- MySQL · 捉虫动态· pid file丢失问题分析
- MySQL · 答疑释惑· using filesort VS using temporary
- MySQL · 优化限制· MySQL index_condition_pushdown
- MySQL · 捉虫动态·DROP DATABASE外键约束的GTID BUG
- MySQL · 答疑释惑· lower_case_table_names 使用问题
- PgSQL · 特性分析· Logical Decoding探索
- PgSQL · 特性分析· jsonb类型解析
- TokuDB ·引擎机制· TokuDB线程池
- 数据库内核月报 - 2015/02
- MySQL · 性能优化· InnoDB buffer pool flush策略漫谈
- MySQL · 社区动态· 5.6.23 InnoDB相关Bugfix
- PgSQL · 特性分析· Replication Slot
- PgSQL · 特性分析· pg_prewarm
- MySQL · 答疑释惑· InnoDB丢失自增值
- MySQL · 答疑释惑· 5.5 和 5.6 时间类型兼容问题
- MySQL · 捉虫动态· 变量修改导致binlog错误
- MariaDB · 特性分析· 表/表空间加密
- MariaDB · 特性分析· Per-query variables
- TokuDB · 特性分析· 日志详解
- 数据库内核月报 - 2015/01
- MySQL · 性能优化· Group Commit优化
- MySQL · 新增特性· DDL fast fail
- MySQL · 性能优化· 启用GTID场景的性能问题及优化
- MySQL · 捉虫动态· InnoDB自增列重复值问题
- MySQL · 优化改进· 复制性能改进过程
- MySQL · 谈古论今· key分区算法演变分析
- MySQL · 捉虫动态· mysql client crash一例
- MySQL · 捉虫动态· 设置 gtid_purged 破坏AUTO_POSITION复制协议
- MySQL · 捉虫动态· replicate filter 和 GTID 一起使用的问题
- TokuDB·特性分析· Optimize Table
- 数据库内核月报 - 2014/12
- MySQL· 性能优化·5.7 Innodb事务系统
- MySQL· 踩过的坑·5.6 GTID 和存储引擎那会事
- MySQL· 性能优化·thread pool 原理分析
- MySQL· 性能优化·并行复制外建约束问题
- MySQL· 答疑释惑·binlog event有序性
- MySQL· 答疑释惑·server_id为0的Rotate
- MySQL· 性能优化·Bulk Load for CREATE INDEX
- MySQL· 捉虫动态·Opened tables block read only
- MySQL· 优化改进· GTID启动优化
- TokuDB· Binary Log Group Commit with TokuDB
- 数据库内核月报 - 2014/11
- MySQL· 捉虫动态·OPTIMIZE 不存在的表
- MySQL· 捉虫动态·SIGHUP 导致 binlog 写错
- MySQL· 5.7改进·Recovery改进
- MySQL· 5.7特性·高可用支持
- MySQL· 5.7优化·Metadata Lock子系统的优化
- MySQL· 5.7特性·在线Truncate undo log 表空间
- MySQL· 性能优化·hash_scan 算法的实现解析
- TokuDB· 版本优化· 7.5.0
- TokuDB· 引擎特性· FAST UPDATES
- MariaDB· 性能优化·filesort with small LIMIT optimization
- 数据库内核月报 - 2014/10
- MySQL· 5.7重构·Optimizer Cost Model
- MySQL· 系统限制·text字段数
- MySQL· 捉虫动态·binlog重放失败
- MySQL· 捉虫动态·从库OOM
- MySQL· 捉虫动态·崩溃恢复失败
- MySQL· 功能改进·InnoDB Warmup特性
- MySQL· 文件结构·告别frm文件
- MariaDB· 新鲜特性·ANALYZE statement 语法
- TokuDB· 主备复制·Read Free Replication
- TokuDB· 引擎特性·压缩
- 数据库内核月报 - 2014/09
- MySQL· 捉虫动态·GTID 和 DELAYED
- MySQL· 限制改进·GTID和升级
- MySQL· 捉虫动态·GTID 和 binlog_checksum
- MySQL· 引擎差异·create_time in status
- MySQL· 参数故事·thread_concurrency
- MySQL· 捉虫动态·auto_increment
- MariaDB· 性能优化·Extended Keys
- MariaDB·主备复制·CREATE OR REPLACE
- TokuDB· 参数故事·数据安全和性能
- TokuDB· HA方案·TokuDB热备
- 数据库内核月报 - 2014/08
- MySQL· 参数故事·timed_mutexes
- MySQL· 参数故事·innodb_flush_log_at_trx_commit
- MySQL· 捉虫动态·Count(Distinct) ERROR
- MySQL· 捉虫动态·mysqldump BUFFER OVERFLOW
- MySQL· 捉虫动态·long semaphore waits
- MariaDB·分支特性·支持大于16K的InnoDB Page Size
- MariaDB·分支特性·FusionIO特性支持
- TokuDB· 性能优化·Bulk Fetch
- TokuDB· 数据结构·Fractal-Trees与LSM-Trees对比
- TokuDB·社区八卦·TokuDB团队