💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
PostgreSQL内核中引入了一个很有意思的插件,pg_prewarm。它可以用于在系统重启时,手动加载经常访问的表到操作系统的cache或PG的shared buffer,从而减少检查系统重启对应用的影响。这个插件是这个通过这个[patch](http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=c32afe53c2e87a56e2ff930798a5588db0f7a516)加入PG内核的。 pg_prewarm的开发者在设计pg_prewarm时,把它设计成一个执行单一任务的工具,尽求简单,所以我们看到的pg_prearm功能和实现都非常简单。下面我们对它进行性能实测并分析一下它的实现。 **基本信息** 利用下面的语句可以创建此插件: ~~~ create EXTENSION pg_prewarm; ~~~ 实际上,创建插件的过程只是用下面的语句创建了pg_prewarm函数。这个函数是此插件提供的唯一函数: ~~~ CREATE FUNCTION pg_prewarm(regclass, mode text default 'buffer', fork text default 'main', first_block int8 default null, last_block int8 default null) RETURNS int8 AS 'MODULE_PATHNAME', 'pg_prewarm' LANGUAGE C ~~~ 函数的第一个参数是要做prewarm的表名,第二个参数是prewarm的模式(prefetch模式表示异步预取到操作系统cache;read表示同步预取;buffer则表示同步读入到PG的shared buffer),第三个参数是relation fork的类型(一般用main,其他类型有visibilitymap和fsm,参见[[1]](https://github.com/postgres/postgres/blob/4baaf863eca5412e07a8441b3b7e7482b7a8b21a/src/include/common/relpath.h)[[2]](https://github.com/postgres/postgres/blob/b819dd7cb55aed1d607cef36b0ecd1a0642872b2/src/backend/storage/smgr/README)),最后两个参数是开始和结束的block number(一个表的block number从0开始,block总数可以通过pg_class系统表的relpages字段获得)。 **性能实测** 再来看看,这个prewarm性能上能达到多大效果。我们先将PG的shared buffer设为2G,OS总的memory有7G。然后创建下面的大小近1G的表test: ~~~ pgbench=# \d test Table "public.test" Column | Type | Modifiers --------+---------------+----------- name | character(20) | ~~~ ~~~ pgbench=# SELECT pg_size_pretty(pg_total_relation_size('test')); pg_size_pretty ---------------- 995 MB ~~~ 在每次都清掉操作系统cache和PG的shared buffer的情况下,分别测试下面几种场景: 1)不进行pg_prewarm的情况: ~~~ pgbench=# explain analyze select count(*) from test; QUERY PLAN --------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=377389.91..377389.92 rows=1 width=0) (actual time=22270.304..22270.304 rows=1 loops=1) -> Seq Scan on test (cost=0.00..327389.73 rows=20000073 width=0) (actual time=0.699..18287.199 rows=20000002 loops=1) Planning time: 0.134 ms Execution time: 22270.383 ms ~~~ 可以看到,近1G的表,全表扫描一遍,耗时22秒多。 2)下面我们先做read这种模式的prewarm,test表的数据被同步读入操作系统cache(pg_prewarm返回的是处理的block数目,此处我们没指定block number,也就是读入test的所有block),然后再做全表扫: ~~~ pgbench=# select pg_prewarm('test', 'read', 'main'); pg_prewarm ------------ 127389 ~~~ ~~~ pgbench=# explain analyze select count(*) from test; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=377389.90..377389.91 rows=1 width=0) (actual time=8577.767..8577.767 rows=1 loops=1) -> Seq Scan on test (cost=0.00..327389.72 rows=20000072 width=0) (actual time=0.086..4716.444 rows=20000002 loops=1) Planning time: 0.049 ms Execution time: 8577.831 ms ~~~ 时间降至8秒多!这时反复执行全表扫描,时间稳定在8秒多。 3)再尝试buffer模式: ~~~ pgbench=# select pg_prewarm('test', 'buffer', 'main'); pg_prewarm ------------ 127389 ~~~ ~~~ pgbench=# explain analyze select count(*) from test; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=377389.90..377389.91 rows=1 width=0) (actual time=8214.277..8214.277 rows=1 loops=1) -> Seq Scan on test (cost=0.00..327389.72 rows=20000072 width=0) (actual time=0.015..4250.300 rows=20000002 loops=1) Planning time: 0.049 ms Execution time: 8214.340 ms ~~~ 比read模式时间略少,但相差不大。可见,如果操作系统的cache够大,数据取到OS cache还是shared buffer对执行时间影响不大(在不考虑其他应用影响PG的情况下)。 4)最后尝试prefetch模式,即异步预取。这里,我们有意在pg_prewarm返回后,立即执行全表查询。这样在执行全表查询时,可能之前的预取还没完成,从而使全表查询和预取并发进行,缩短了总的响应时间: ~~~ explain analyze select pg_prewarm('test', 'prefetch', 'main'); QUERY PLAN ------------------------------------------------------------------------------------------ Result (cost=0.00..0.01 rows=1 width=0) (actual time=1011.338..1011.339 rows=1 loops=1) Planning time: 0.124 ms Execution time: 1011.402 ms ~~~ ~~~ explain analyze select count(*) from test; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------- Aggregate (cost=377389.90..377389.91 rows=1 width=0) (actual time=8420.652..8420.652 rows=1 loops=1) -> Seq Scan on test (cost=0.00..327389.72 rows=20000072 width=0) (actual time=0.065..4583.200 rows=20000002 loops=1) Planning time: 0.344 ms Execution time: 8420.723 ms ~~~ 可以看到,总的完成时间是9秒多,使用pg_prewarm做预取大大缩短了总时间。因此在进行全表扫描前,做一次异步的prewarm,不失为一种优化全表查询的方法。 **实现** pg_prewarm的代码只有一个pg_prewarm.c文件。可以看出,prefetch模式下,对于表的每个block,调用一次PrefetchBuffer,后面的调用为: ~~~ PrefetchBuffer -> smgrprefetch -> mdprefetch -> FilePrefetch -> posix_fadvise(POSIX_FADV_WILLNEED) ~~~ 可见,它是最终调用posix_fadvise,把读请求交给操作系统,然后返回,实现的异步读取。 而在read和buffer模式(调用逻辑分别如下)中,最终都调用了系统调用read,来实现同步读入OS cache和shared buffer的(注意buffer模式实际上是先读入OS cache,再拷贝到shared buffer): ~~~ read模式:smgrread -> mdread -> FileRead -> read ~~~ ~~~ buffer模式:ReadBufferExtended -> ReadBuffer_common -> smgrread -> mdread -> FileRead -> read ~~~ **问题** 可能有人比较疑惑:执行1次select * from 不就可以将表的数据读入shared buffer和OS cache而实现预热了吗?岂不是比做这样一个插件更简单?实际上,对于较大的表(大小超过shared buff的1/4),进行全表扫描时,PG认为没必要为这种操作使用所有shared buffer,只会让其使用很少的一部分buffer,一般只有几百K,详细描述可以参见[关于BAS_BULKREAD策略的代码](https://github.com/postgres/postgres/blob/4baaf863eca5412e07a8441b3b7e7482b7a8b21a/src/include/storage/bufmgr.h)和[README](https://github.com/postgres/postgres/tree/17792bfc5b62f42a9dfbd2ac408e7e71c239330a/src/backend/storage/buffer))。所以,预热大表是不能用一个查询直接实现的,而pg_prewarm正是在这方面大大方便了用户。