## 代价模型
mysql 5.7代价计算相对之前的版本有较大的改进。例如
* 代价模型参数可以动态配置,可以适应不同的硬件
* 区分考虑数据在内存和在磁盘中的代价
* 代价精度提升为浮点型
* jion计算时不仅要考虑condition,还要考虑condition上的filter,具体参见参数condition_fanout_filter
5.7 在代价类型上分为io,cpu和memory, 5.7的代价模型还在完善中,memory的代价虽然已经收集了,但还没有没有计算在最终的代价中。
5.7 在源码上对代价模型进行了大量重构,代价分为server层和engine层。server层主要是cpu的代价,而engine层主要是io的代价。
5.7 引入了两个系统表mysql.server_cost和mysql.engine_cost来分别配置这两个层的代价。
以下分析均基于mysql5.7.10
## server_cost
* row_evaluate_cost (default 0.2)
计算符合条件的行的代价,行数越多,此项代价越大
* memory_temptable_create_cost (default 2.0)
内存临时表的创建代价
* memory_temptable_row_cost (default 0.2)
内存临时表的行代价
* key_compare_cost (default 0.1)
键比较的代价,例如排序
* disk_temptable_create_cost (default 40.0)
内部myisam或innodb临时表的创建代价
* disk_temptable_row_cost (default 1.0)
内部myisam或innodb临时表的行代价
由上可以看出创建临时表的代价是很高的,尤其是内部的myisam或innodb临时表。
## engine_cost
* io_block_read_cost (default 1.0)
从磁盘读数据的代价,对innodb来说,表示从磁盘读一个page的代价
* memory_block_read_cost (default 1.0)
从内存读数据的代价,对innodb来说,表示从buffer pool读一个page的代价
目前io_block_read_cost和memory_block_read_cost默认值均为1,实际生产中建议酌情调大memory_block_read_cost,特别是对普通硬盘的场景。
## 代价配置
cost参数可以通过修改mysql.server_cost和mysql.engine_cost来实现。初始这两个表中的记录cost_value项均为NULL, 代价值都取上两节介绍的初始值。
当修改cost_value为非NULL时,代价值按设定的值计算。修改方法如下:
~~~
## 修改io_block_read_cost值为2
UPDATE mysql.engine_cost
SET cost_value = 2.0
WHERE cost_name = 'io_block_read_cost';
# FLUSH OPTIMIZER_COSTS 生效,只对新连接有效,老连接无效。
FLUSH OPTIMIZER_COSTS;
~~~
另外,在主备环境下,修改cost参数时主备都要修改。因为mysql.server_cost和mysql.engine_cost的更新不会参与复制。
## 代价分析示例
初始化数据
~~~
create table t1(c1 int primary key, c2 int unique,c3 int) engine=innodb;
let $loop=100;
while($loop)
{
eval insert into t1(c1,c2,c3) values($loop, $loop+1, $loop+2);
dec $loop;
}
set optimizer_trace = "enabled=on";
~~~
cost参数都取默认值,以下示例中会用到row_evaluate_cost(0.2),io_block_read_cost(1.0),io_block_read_cost(1.0),memory_block_read_cost(1.0)
### 示例1
以下语句选择覆盖索引c2
~~~
explain select c1,c2 from t1 where c2 > 10;
id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE t1 NULL range c2 c2 5 NULL 91 100.00 Using where; Using index
~~~
查看optimizer_trace, 可以看出全表扫描代价为23.1,通过c2上的索引扫描代价为19.309, 最后选择c2上的索引扫描。
~~~
"rows_estimation": [
{
"table": "`t1`",
"range_analysis": {
"table_scan": {
"rows": 100,
"cost": 23.1
},
"potential_range_indexes": [
{
"index": "PRIMARY",
"usable": false,
"cause": "not_applicable"
},
{
"index": "c2",
"usable": true,
"key_parts": [
"c2"
]
}
],
"best_covering_index_scan": {
"index": "c2",
"cost": 21.109,
"chosen": true
},
"setup_range_conditions": [
],
"group_index_range": {
"chosen": false,
"cause": "not_group_by_or_distinct"
},
"analyzing_range_alternatives": {
"range_scan_alternatives": [
{
"index": "c2",
"ranges": [
"10 < c2"
],
"index_dives_for_eq_ranges": true,
"rowid_ordered": false,
"using_mrr": false,
"index_only": true,
"rows": 91,
"cost": 19.309,
"chosen": true
}
],
"analyzing_roworder_intersect": {
"usable": false,
"cause": "too_few_roworder_scans"
}
},
"chosen_range_access_summary": {
"range_access_plan": {
"type": "range_scan",
"index": "c2",
"rows": 91,
"ranges": [
"10 < c2"
]
},
"rows_for_plan": 91,
"cost_for_plan": 19.309,
"chosen": true
}
}
}
]
},
{
"considered_execution_plans": [
{
"plan_prefix": [
],
"table": "`t1`",
"best_access_path": {
"considered_access_paths": [
{
"rows_to_scan": 91,
"access_type": "range",
"range_details": {
"used_index": "c2"
},
"resulting_rows": 91,
"cost": 37.509,
"chosen": true
}
]
},
"condition_filtering_pct": 100,
"rows_for_plan": 91,
"cost_for_plan": 37.509,
"chosen": true
}
]
~~~
全表扫描的代价23.1
包括io和cpu的代价
~~~
test_quick_select:
double scan_time=
cost_model->row_evaluate_cost(static_cast<double>(records)) + 1;
Cost_estimate cost_est= head->file->table_scan_cost();
cost_est.add_io(1.1);//这里加1.1应该是个调节值
cost_est.add_cpu(scan_time);
~~~
其中io代价table_scan_cost会根据buffer pool大小和索引大小来估算page in memory和in disk的比例,分别算出代价。
~~~
handler::table_scan_cost()
ha_innobase::scan_time()*table->cost_model()->page_read_cost(1.0);//1*1=1
//其中scan_time计算数据所占page数,
~~~
page_read_cost计算读取单个page的代价
~~~
buffer_block_read_cost(pages_in_mem) + io_block_read_cost(pages_on_disk);
~~~
io代价为1+1.1=2.1
cpu代价为row_evaluate_cost
~~~
double row_evaluate_cost(double rows) const
{
DBUG_ASSERT(m_initialized);
DBUG_ASSERT(rows >= 0.0);
return rows * m_server_cost_constants->row_evaluate_cost(); // 100 * 0.2(row_evaluate_cost)=20;
}
~~~
cpu代价为20+1=21;
最终代价为2.1+21=23.1
c2索引扫描代价19.309
同样也分为io和cpu代价
~~~
multi_range_read_info_const:
*cost= index_scan_cost(keyno, static_cast<double>(n_ranges),
static_cast<double>(total_rows));
cost->add_cpu(cost_model->row_evaluate_cost(static_cast<double>(total_rows)) + 0.01);
~~~
io代价 1.0987925356750823*1=1.0987925356750823
~~~
index_scan_cost:
const double io_cost= index_only_read_time(index, rows) * //估算index占page个数 = 1.0987925356750823
table->cost_model()->page_read_cost_index(index, 1.0); //根据buffer pool大小和索引大小来估算page in memory和in disk的比例,计算读一个page的代价。 = 1
~~~
cpu代价91*0.2+0.01=18.21
~~~
cost->add_cpu(cost_model->row_evaluate_cost(
static_cast<double>(total_rows)) + 0.01); //这里根据过滤条件算出的total_rows为91
~~~
最终代价1.0987925356750823+18.21=19.309
### 示例2
以下语句选择了全表扫描
~~~
explain select * from t1 where c2 > 10;
id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE t1 NULL ALL c2 NULL NULL NULL 100 91.00 Using where
~~~
查看optimizer_trace, 可以看出全表扫描代价为23.1,通过c2上的索引扫描代价为110.21, 最后选择全表扫描。
~~~
"rows_estimation": [
{
"table": "`t1`",
"range_analysis": {
"table_scan": {
"rows": 100,
"cost": 23.1
},
"potential_range_indexes": [
{
"index": "PRIMARY",
"usable": false,
"cause": "not_applicable"
},
{
"index": "c2",
"usable": true,
"key_parts": [
"c2"
]
}
],
"setup_range_conditions": [
],
"group_index_range": {
"chosen": false,
"cause": "not_group_by_or_distinct"
},
"analyzing_range_alternatives": {
"range_scan_alternatives": [
{
"index": "c2",
"ranges": [
"10 < c2"
],
"index_dives_for_eq_ranges": true,
"rowid_ordered": false,
"using_mrr": false,
"index_only": false,
"rows": 91,
"cost": 110.21,
"chosen": false,
"cause": "cost"
}
],
"analyzing_roworder_intersect": {
"usable": false,
"cause": "too_few_roworder_scans"
}
}
}
}
]
},
{
"considered_execution_plans": [
{
"plan_prefix": [
],
"table": "`t1`",
"best_access_path": {
"considered_access_paths": [
{
"rows_to_scan": 100,
"access_type": "scan",
"resulting_rows": 91,
"cost": 21,
"chosen": true
}
]
},
"condition_filtering_pct": 100,
"rows_for_plan": 91,
"cost_for_plan": 21,
"chosen": true
}
]
},
~~~
全表扫描代价23.1
同上一节分析
c2索引扫描代价为110.21
上一节通过c2索引扫描代价为19.309,因为是覆盖索引不需要回表,所以代价较少。而此例是需要回表的。
~~~
multi_range_read_info_const:
*cost= read_cost(keyno, static_cast<double>(n_ranges),
static_cast<double>(total_rows));
cost->add_cpu(cost_model->row_evaluate_cost(
static_cast<double>(total_rows)) + 0.01);
~~~
io代价需回表
~~~
read_cost: //92*1=92
const double io_cost= read_time(index, static_cast<uint>(ranges)
static_cast<ha_rows>(rows)) *
table->cost_model()->page_read_cost(1.0);
read_time: //91+1=92
virtual double read_time(uint index, uint ranges, ha_rows rows)
{ return rows2double(ranges+rows); }
~~~
这里回表时计算代价为每行代价为1,默认认为回表时每行都对于聚集索引的一个page.
io代价为92
cpu代价为91*0.2+0.01=18.21
`cost->add_cpu(cost_model->row_evaluate_cost( static_cast<double>(total_rows)) + 0.01);`
最后代价为92+18.21=110.21
## 总结
5.7 代价模型优化还在持续改进中,相信后续的版本会越来越好。代价的参数的配置需谨慎,需要大量的测试和验证。
- 数据库内核月报目录
- 数据库内核月报 - 2016/09
- MySQL · 社区贡献 · AliSQL那些事儿
- PetaData · 架构体系 · PetaData第二代低成本存储体系
- MySQL · 社区动态 · MariaDB 10.2 前瞻
- MySQL · 特性分析 · 执行计划缓存设计与实现
- PgSQL · 最佳实践 · pg_rman源码浅析与使用
- MySQL · 捉虫状态 · bug分析两例
- PgSQL · 源码分析 · PG优化器浅析
- MongoDB · 特性分析· Sharding原理与应用
- PgSQL · 源码分析 · PG中的无锁算法和原子操作应用一则
- SQLServer · 最佳实践 · TEMPDB的设计
- 数据库内核月报 - 2016/08
- MySQL · 特性分析 ·MySQL 5.7新特性系列四
- PgSQL · PostgreSQL 逻辑流复制技术的秘密
- MySQL · 特性分析 · MyRocks简介
- GPDB · 特性分析· Greenplum 备份架构
- SQLServer · 最佳实践 · RDS for SQLServer 2012权限限制提升与改善
- TokuDB · 引擎特性 · REPLACE 语句优化
- MySQL · 专家投稿 · InnoDB物理行中null值的存储的推断与验证
- PgSQL · 实战经验 · 旋转门压缩算法在PostgreSQL中的实现
- MySQL · 源码分析 · Query Cache并发处理
- PgSQL · 源码分析· pg_dump分析
- 数据库内核月报 - 2016/07
- MySQL · 特性分析 ·MySQL 5.7新特性系列三
- MySQL · 特性分析 · 5.7 代价模型浅析
- PgSQL · 实战经验 · 分组TOP性能提升44倍
- MySQL · 源码分析 · 网络通信模块浅析
- MongoDB · 特性分析 · 索引原理
- SQLServer · 特性分析 · XML与JSON应用比较
- MySQL · 最佳实战 · 审计日志实用案例分析
- MySQL · 性能优化 · 条件下推到物化表
- MySQL · 源码分析 · Query Cache内部剖析
- MySQL · 捉虫动态 · 备库1206错误问题说明
- 数据库内核月报 - 2016/06
- MySQL · 特性分析 · innodb 锁分裂继承与迁移
- MySQL · 特性分析 ·MySQL 5.7新特性系列二
- PgSQL · 实战经验 · 如何预测Freeze IO风暴
- GPDB · 特性分析· Filespace和Tablespace
- MariaDB · 新特性 · 窗口函数
- MySQL · TokuDB · checkpoint过程
- MySQL · 特性分析 · 内部临时表
- MySQL · 最佳实践 · 空间优化
- SQLServer · 最佳实践 · 数据库实现大容量插入的几种方式
- 数据库内核月报 - 2016/05
- MySQL · 引擎特性 · 基于InnoDB的物理复制实现
- MySQL · 特性分析 · MySQL 5.7新特性系列一
- PostgreSQL · 特性分析 · 逻辑结构和权限体系
- MySQL · 特性分析 · innodb buffer pool相关特性
- PG&GP · 特性分析 · 外部数据导入接口实现分析
- SQLServer · 最佳实践 · 透明数据加密在SQLServer的应用
- MySQL · TokuDB · 日志子系统和崩溃恢复过程
- MongoDB · 特性分析 · Sharded cluster架构原理
- PostgreSQL · 特性分析 · 统计信息计算方法
- MySQL · 捉虫动态 · left-join多表导致crash
- 数据库内核月报 - 2016/04
- MySQL · 参数故事 · innodb_additional_mem_pool_size
- GPDB · 特性分析 · Segment事务一致性与异常处理
- GPDB · 特性分析 · Segment 修复指南
- MySQL · 捉虫动态 · 并行复制外键约束问题二
- PgSQL · 性能优化 · 如何潇洒的处理每天上百TB的数据增量
- Memcached · 最佳实践 · 热点 Key 问题解决方案
- MongoDB · 最佳实践 · 短连接Auth性能优化
- MySQL · 最佳实践 · RDS 只读实例延迟分析
- MySQL · TokuDB · TokuDB索引结构--Fractal Tree
- MySQL · TokuDB · Savepoint漫谈
- 数据库内核月报 - 2016/03
- MySQL · TokuDB · 事务子系统和 MVCC 实现
- MongoDB · 特性分析 · MMAPv1 存储引擎原理
- PgSQL · 源码分析 · 优化器逻辑推理
- SQLServer · BUG分析 · Agent 链接泄露分析
- Redis · 特性分析 · AOF Rewrite 分析
- MySQL · BUG分析 · Rename table 死锁分析
- MySQL · 物理备份 · Percona XtraBackup 备份原理
- GPDB · 特性分析· GreenPlum FTS 机制
- MySQL · 答疑解惑 · 备库Seconds_Behind_Master计算
- MySQL · 答疑解惑 · MySQL 锁问题最佳实践
- 数据库内核月报 - 2016/02
- MySQL · 引擎特性 · InnoDB 文件系统之文件物理结构
- MySQL · 引擎特性 · InnoDB 文件系统之IO系统和内存管理
- MySQL · 特性分析 · InnoDB transaction history
- PgSQL · 会议见闻 · PgConf.Russia 2016 大会总结
- PgSQL · 答疑解惑 · PostgreSQL 9.6 并行查询实现分析
- MySQL · TokuDB · TokuDB之黑科技工具
- PgSQL · 性能优化 · PostgreSQL TPC-C极限优化玩法
- MariaDB · 版本特性 · MariaDB 的 GTID 介绍
- MySQL · 特性分析 · 线程池
- MySQL · 答疑解惑 · mysqldump tips 两则
- 数据库内核月报 - 2016/01
- MySQL · 引擎特性 · InnoDB 事务锁系统简介
- GPDB · 特性分析· GreenPlum Primary/Mirror 同步机制
- MySQL · 专家投稿 · MySQL5.7 的 JSON 实现
- MySQL · 特性分析 · 优化器 MRR & BKA
- MySQL · 答疑解惑 · 物理备份死锁分析
- MySQL · TokuDB · Cachetable 的工作线程和线程池
- MySQL · 特性分析 · drop table的优化
- MySQL · 答疑解惑 · GTID不一致分析
- PgSQL · 特性分析 · Plan Hint
- MariaDB · 社区动态 · MariaDB on Power8 (下)
- 数据库内核月报 - 2015/12
- MySQL · 引擎特性 · InnoDB 事务子系统介绍
- PgSQL · 特性介绍 · 全文搜索介绍
- MongoDB · 捉虫动态 · Kill Hang问题排查记录
- MySQL · 参数优化 ·RDS MySQL参数调优最佳实践
- PgSQL · 特性分析 · 备库激活过程分析
- MySQL · TokuDB · 让Hot Backup更完美
- PgSQL · 答疑解惑 · 表膨胀
- MySQL · 特性分析 · Index Condition Pushdown (ICP)
- MariaDB · 社区动态 · MariaDB on Power8
- MySQL · 特性分析 · 企业版特性一览
- 数据库内核月报 - 2015/11
- MySQL · 社区见闻 · OOW 2015 总结 MySQL 篇
- MySQL · 特性分析 · Statement Digest
- PgSQL · 答疑解惑 · PostgreSQL 用户组权限管理
- MySQL · 特性分析 · MDL 实现分析
- PgSQL · 特性分析 · full page write 机制
- MySQL · 捉虫动态 · MySQL 外键异常分析
- MySQL · 答疑解惑 · MySQL 优化器 range 的代价计算
- MySQL · 捉虫动态 · ORDER/GROUP BY 导致 mysqld crash
- MySQL · TokuDB · TokuDB 中的行锁
- MySQL · 捉虫动态 · order by limit 造成优化器选择索引错误
- 数据库内核月报 - 2015/10
- MySQL · 引擎特性 · InnoDB 全文索引简介
- MySQL · 特性分析 · 跟踪Metadata lock
- MySQL · 答疑解惑 · 索引过滤性太差引起CPU飙高分析
- PgSQL · 特性分析 · PG主备流复制机制
- MySQL · 捉虫动态 · start slave crash 诊断分析
- MySQL · 捉虫动态 · 删除索引导致表无法打开
- PgSQL · 特性分析 · PostgreSQL Aurora方案与DEMO
- TokuDB · 捉虫动态 · CREATE DATABASE 导致crash问题
- PgSQL · 特性分析 · pg_receivexlog工具解析
- MySQL · 特性分析 · MySQL权限存储与管理
- 数据库内核月报 - 2015/09
- MySQL · 引擎特性 · InnoDB Adaptive hash index介绍
- PgSQL · 特性分析 · clog异步提交一致性、原子操作与fsync
- MySQL · 捉虫动态 · BUG 几例
- PgSQL · 答疑解惑 · 诡异的函数返回值
- MySQL · 捉虫动态 · 建表过程中crash造成重建表失败
- PgSQL · 特性分析 · 谈谈checkpoint的调度
- MySQL · 特性分析 · 5.6 并行复制恢复实现
- MySQL · 备库优化 · relay fetch 备库优化
- MySQL · 特性分析 · 5.6并行复制事件分发机制
- MySQL · TokuDB · 文件目录谈
- 数据库内核月报 - 2015/08
- MySQL · 社区动态 · InnoDB Page Compression
- PgSQL · 答疑解惑 · RDS中的PostgreSQL备库延迟原因分析
- MySQL · 社区动态 · MySQL5.6.26 Release Note解读
- PgSQL · 捉虫动态 · 执行大SQL语句提示无效的内存申请大小
- MySQL · 社区动态 · MariaDB InnoDB表空间碎片整理
- PgSQL · 答疑解惑 · 归档进程cp命令的core文件追查
- MySQL · 答疑解惑 · open file limits
- MySQL · TokuDB · 疯狂的 filenum++
- MySQL · 功能分析 · 5.6 并行复制实现分析
- MySQL · 功能分析 · MySQL表定义缓存
- 数据库内核月报 - 2015/07
- MySQL · 引擎特性 · Innodb change buffer介绍
- MySQL · TokuDB · TokuDB Checkpoint机制
- PgSQL · 特性分析 · 时间线解析
- PgSQL · 功能分析 · PostGIS 在 O2O应用中的优势
- MySQL · 引擎特性 · InnoDB index lock前世今生
- MySQL · 社区动态 · MySQL内存分配支持NUMA
- MySQL · 答疑解惑 · 外键删除bug分析
- MySQL · 引擎特性 · MySQL logical read-ahead
- MySQL · 功能介绍 · binlog拉取速度的控制
- MySQL · 答疑解惑 · 浮点型的显示问题
- 数据库内核月报 - 2015/06
- MySQL · 引擎特性 · InnoDB 崩溃恢复过程
- MySQL · 捉虫动态 · 唯一键约束失效
- MySQL · 捉虫动态 · ALTER IGNORE TABLE导致主备不一致
- MySQL · 答疑解惑 · MySQL Sort 分页
- MySQL · 答疑解惑 · binlog event 中的 error code
- PgSQL · 功能分析 · Listen/Notify 功能
- MySQL · 捉虫动态 · 任性的 normal shutdown
- PgSQL · 追根究底 · WAL日志空间的意外增长
- MySQL · 社区动态 · MariaDB Role 体系
- MySQL · TokuDB · TokuDB数据文件大小计算
- 数据库内核月报 - 2015/05
- MySQL · 引擎特性 · InnoDB redo log漫游
- MySQL · 专家投稿 · MySQL数据库SYS CPU高的可能性分析
- MySQL · 捉虫动态 · 5.6 与 5.5 InnoDB 不兼容导致 crash
- MySQL · 答疑解惑 · InnoDB 预读 VS Oracle 多块读
- PgSQL · 社区动态 · 9.5 新功能BRIN索引
- MySQL · 捉虫动态 · MySQL DDL BUG
- MySQL · 答疑解惑 · set names 都做了什么
- MySQL · 捉虫动态 · 临时表操作导致主备不一致
- TokuDB · 引擎特性 · zstd压缩算法
- MySQL · 答疑解惑 · binlog 位点刷新策略
- 数据库内核月报 - 2015/04
- MySQL · 引擎特性 · InnoDB undo log 漫游
- TokuDB · 产品新闻 · RDS TokuDB小手册
- PgSQL · 社区动态 · 说一说PgSQL 9.4.1中的那些安全补丁
- MySQL · 捉虫动态 · 连接断开导致XA事务丢失
- MySQL · 捉虫动态 · GTID下slave_net_timeout值太小问题
- MySQL · 捉虫动态 · Relay log 中 GTID group 完整性检测
- MySQL · 答疑释惑 · UPDATE交换列单表和多表的区别
- MySQL · 捉虫动态 · 删被引用索引导致crash
- MySQL · 答疑释惑 · GTID下auto_position=0时数据不一致
- 数据库内核月报 - 2015/03
- MySQL · 答疑释惑· 并发Replace into导致的死锁分析
- MySQL · 性能优化· 5.7.6 InnoDB page flush 优化
- MySQL · 捉虫动态· pid file丢失问题分析
- MySQL · 答疑释惑· using filesort VS using temporary
- MySQL · 优化限制· MySQL index_condition_pushdown
- MySQL · 捉虫动态·DROP DATABASE外键约束的GTID BUG
- MySQL · 答疑释惑· lower_case_table_names 使用问题
- PgSQL · 特性分析· Logical Decoding探索
- PgSQL · 特性分析· jsonb类型解析
- TokuDB ·引擎机制· TokuDB线程池
- 数据库内核月报 - 2015/02
- MySQL · 性能优化· InnoDB buffer pool flush策略漫谈
- MySQL · 社区动态· 5.6.23 InnoDB相关Bugfix
- PgSQL · 特性分析· Replication Slot
- PgSQL · 特性分析· pg_prewarm
- MySQL · 答疑释惑· InnoDB丢失自增值
- MySQL · 答疑释惑· 5.5 和 5.6 时间类型兼容问题
- MySQL · 捉虫动态· 变量修改导致binlog错误
- MariaDB · 特性分析· 表/表空间加密
- MariaDB · 特性分析· Per-query variables
- TokuDB · 特性分析· 日志详解
- 数据库内核月报 - 2015/01
- MySQL · 性能优化· Group Commit优化
- MySQL · 新增特性· DDL fast fail
- MySQL · 性能优化· 启用GTID场景的性能问题及优化
- MySQL · 捉虫动态· InnoDB自增列重复值问题
- MySQL · 优化改进· 复制性能改进过程
- MySQL · 谈古论今· key分区算法演变分析
- MySQL · 捉虫动态· mysql client crash一例
- MySQL · 捉虫动态· 设置 gtid_purged 破坏AUTO_POSITION复制协议
- MySQL · 捉虫动态· replicate filter 和 GTID 一起使用的问题
- TokuDB·特性分析· Optimize Table
- 数据库内核月报 - 2014/12
- MySQL· 性能优化·5.7 Innodb事务系统
- MySQL· 踩过的坑·5.6 GTID 和存储引擎那会事
- MySQL· 性能优化·thread pool 原理分析
- MySQL· 性能优化·并行复制外建约束问题
- MySQL· 答疑释惑·binlog event有序性
- MySQL· 答疑释惑·server_id为0的Rotate
- MySQL· 性能优化·Bulk Load for CREATE INDEX
- MySQL· 捉虫动态·Opened tables block read only
- MySQL· 优化改进· GTID启动优化
- TokuDB· Binary Log Group Commit with TokuDB
- 数据库内核月报 - 2014/11
- MySQL· 捉虫动态·OPTIMIZE 不存在的表
- MySQL· 捉虫动态·SIGHUP 导致 binlog 写错
- MySQL· 5.7改进·Recovery改进
- MySQL· 5.7特性·高可用支持
- MySQL· 5.7优化·Metadata Lock子系统的优化
- MySQL· 5.7特性·在线Truncate undo log 表空间
- MySQL· 性能优化·hash_scan 算法的实现解析
- TokuDB· 版本优化· 7.5.0
- TokuDB· 引擎特性· FAST UPDATES
- MariaDB· 性能优化·filesort with small LIMIT optimization
- 数据库内核月报 - 2014/10
- MySQL· 5.7重构·Optimizer Cost Model
- MySQL· 系统限制·text字段数
- MySQL· 捉虫动态·binlog重放失败
- MySQL· 捉虫动态·从库OOM
- MySQL· 捉虫动态·崩溃恢复失败
- MySQL· 功能改进·InnoDB Warmup特性
- MySQL· 文件结构·告别frm文件
- MariaDB· 新鲜特性·ANALYZE statement 语法
- TokuDB· 主备复制·Read Free Replication
- TokuDB· 引擎特性·压缩
- 数据库内核月报 - 2014/09
- MySQL· 捉虫动态·GTID 和 DELAYED
- MySQL· 限制改进·GTID和升级
- MySQL· 捉虫动态·GTID 和 binlog_checksum
- MySQL· 引擎差异·create_time in status
- MySQL· 参数故事·thread_concurrency
- MySQL· 捉虫动态·auto_increment
- MariaDB· 性能优化·Extended Keys
- MariaDB·主备复制·CREATE OR REPLACE
- TokuDB· 参数故事·数据安全和性能
- TokuDB· HA方案·TokuDB热备
- 数据库内核月报 - 2014/08
- MySQL· 参数故事·timed_mutexes
- MySQL· 参数故事·innodb_flush_log_at_trx_commit
- MySQL· 捉虫动态·Count(Distinct) ERROR
- MySQL· 捉虫动态·mysqldump BUFFER OVERFLOW
- MySQL· 捉虫动态·long semaphore waits
- MariaDB·分支特性·支持大于16K的InnoDB Page Size
- MariaDB·分支特性·FusionIO特性支持
- TokuDB· 性能优化·Bulk Fetch
- TokuDB· 数据结构·Fractal-Trees与LSM-Trees对比
- TokuDB·社区八卦·TokuDB团队