💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
## 背景 在物联网、监控、传感器、金融等应用领域,数据在时间维度上流式的产生,而且数据量非常庞大。 例如我们经常看到的性能监控视图,就是很多点在时间维度上描绘的曲线。 又比如金融行业的走势数据等等。  ![screenshot](https://yqfile.alicdn.com/079d62c6cf4fcf9bd7549af226088d66bd4ac431.png) 我们想象一下,如果每个传感器或指标每100毫秒产生1个点,一天就是864000个点。 而传感器或指标是非常多的,例如有100万个传感器或指标,一天的量就接近一亿的量。 假设我们要描绘一个时间段的图形,这么多的点,渲染估计都要很久。 那么有没有好的压缩算法,即能保证失真度,又能很好的对数据进行压缩呢? ## 旋转门压缩算法原理 旋转门压缩算法(SDT)是一种直线趋势化压缩算法,其本质是通过一条由起点和终点确定的直线代替一系列连续数据点。 该算法需要记录每段时间间隔长度、起点数据和终点数据, 前一段的终点数据即为下一段的起点数据。 其基本原理较为简单, 参见图。 ![ec9c8725c8278f69c7dc7583b5b1f1ca2cba0673](https://yqfile.alicdn.com/8b083ee57eccd614414ae1cd3a2eb3b552da0c67.png) ![8fff584de2bc090714ad56d33b708771601a6633](https://yqfile.alicdn.com/720f9de3307a9fd5cb1c1ae9e9479c0d3c7f90cc.png) 第一个数据点a上下各有一点,它们与a点之间的距离为E(即门的宽度), 这两个点作为“门”的两个支点。 当只有第一个数据点时,两扇门都是关闭的;随着点数越来越多,门将逐步打开;注意到每扇门的宽度是可以伸缩的,在一段时间间隔里面,门一旦打开就不能闭; 只要两扇门未达到平行,或者说两个内角之和小于180°(本文的算法将利用这一点进行判断),这种“转门”操作即可继续进行。 图中第一个时间段是从a到e, 结果是用a点到e点之间的直线代替数据点(a,b,c,d,e); 起到了可控失真(E)的压缩作用。 第二个时间间隔从e点开始,开始时两扇门关闭,然后逐步打开,后续操作与前一段类似。 ## 在PostgreSQL中实现旋转门压缩算法 通过旋转门算法的原理,可以了解到,有几个必要的输入项。 * 有x坐标和y坐标的点(如果是时间轴上的点,可以通过epoch转换成这种形式) * E,即门的宽度,起到了控制压缩失真度的作用 ### 例子 #### 创建测试表 ~~~ create table tbl(id int, -- ID,可有可无 val numeric, -- 值(如传感器或金融行业的点值) t timestamp -- 取值时间戳 ); ~~~ #### 插入10万条测试数据 ~~~ insert into tbl select generate_series(1,100000), round((random()*100)::numeric, 2), clock_timestamp()+(generate_series(1,100000) || ' second')::interval ; test=> select * from tbl limit 10; id | val | t ----+-------+---------------------------- 1 | 31.79 | 2016-08-12 23:22:27.530318 2 | 18.23 | 2016-08-12 23:22:28.530443 3 | 5.14 | 2016-08-12 23:22:29.530453 4 | 90.25 | 2016-08-12 23:22:30.530459 5 | 8.17 | 2016-08-12 23:22:31.530465 6 | 97.43 | 2016-08-12 23:22:32.53047 7 | 17.41 | 2016-08-12 23:22:33.530476 8 | 0.23 | 2016-08-12 23:22:34.530481 9 | 84.67 | 2016-08-12 23:22:35.530487 10 | 16.37 | 2016-08-12 23:22:36.530493 (10 rows) ~~~ #### 时间如何转换成X轴的数值,假设每1秒为X坐标的1个单位 ~~~ test=> select (extract(epoch from t)-extract(epoch from first_value(t) over())) / 1 as x, -- 除以1秒为1个单位 val, t from tbl limit 100; x | val | t ------------------+-------+---------------------------- 0 | 31.79 | 2016-08-12 23:22:27.530318 1.00012493133545 | 18.23 | 2016-08-12 23:22:28.530443 2.00013494491577 | 5.14 | 2016-08-12 23:22:29.530453 3.00014090538025 | 90.25 | 2016-08-12 23:22:30.530459 4.00014686584473 | 8.17 | 2016-08-12 23:22:31.530465 5.00015187263489 | 97.43 | 2016-08-12 23:22:32.53047 6.00015807151794 | 17.41 | 2016-08-12 23:22:33.530476 7.00016307830811 | 0.23 | 2016-08-12 23:22:34.530481 8.00016903877258 | 84.67 | 2016-08-12 23:22:35.530487 ~~~ #### 编写实现螺旋门算法的函数 ~~~ create or replace function f ( i_radius numeric, -- 压缩半径 i_time timestamp, -- 开始时间 i_interval_s numeric, -- 时间转换间隔 (秒,例如每5秒在坐标上表示1个单位间隔,则这里使用5) OUT o_val numeric, -- 值,纵坐标 y (跳跃点y) OUT o_time timestamp, -- 时间,横坐标 x (跳跃点x) OUT o_x numeric -- 跳跃点x, 通过 o_time 转换 ) returns setof record as $$ declare v_time timestamp; -- 时间变量 v_x numeric; -- v_time 转换为v_x v_val numeric; -- y坐标 v1_time timestamp; -- 前一点 时间变量 v1_x numeric; -- 前一点 v_time 转换为v_x v1_val numeric; -- 前一点 y坐标 v_start_time numeric; -- 记录第一条的时间坐标, 用于计算x偏移量 v_rownum int8; -- 用于标记是否第一行 v_max_angle1 numeric; -- 最大上门夹角角度 v_max_angle2 numeric; -- 最大下门夹角角度 v_angle1 numeric; -- 上门夹角角度 v_angle2 numeric; -- 下门夹角角度 begin for v_rownum, v_time , v_val in select row_number() over(), t, val from tbl where t>i_time order by t limit 100 -- 这条QUERY可以做成execute的动态QUERY,本文略 LOOP -- 第一行,第一个点,是实际要记录的点位 if v_rownum=1 then v_start_time := extract(epoch from v_time); v_x := 0; o_val := v_val; o_time := v_time; o_x := v_x; -- raise notice 'rownum=1 %, %', o_val,o_time; return next; -- 返回第一个点 else v_x := (extract(epoch from v_time) - v_start_time) / i_interval_s; -- 生成X坐标 SELECT 180-ST_Azimuth( ST_MakePoint(o_x, o_val+i_radius), -- 门上点 ST_MakePoint(v_x, v_val) -- next point )/(2*pi())*360 as degAz, -- 上夹角 ST_Azimuth( ST_MakePoint(o_x, o_val-i_radius), -- 门下点 ST_MakePoint(v_x, v_val) -- next point )/(2*pi())*360 As degAzrev -- 下夹角 INTO v_angle1, v_angle2; select GREATEST(v_angle1, v_max_angle1), GREATEST(v_angle2, v_max_angle2) into v_max_angle1, v_max_angle2; if (v_max_angle1 + v_max_angle2) >= 180 then -- 找到四边形外的点位,输出上一个点,并从上一个点开始重新计算四边形 -- raise notice 'max1 %, max2 %', v_max_angle1 , v_max_angle2; -- 复原 v_angle1 := 0; v_max_angle1 := 0; v_angle2 := 0; v_max_angle2 := 0; -- 门已完全打开,输出前一个点的值 o_val := v1_val; o_time := v1_time; v1_x := (extract(epoch from v1_time) - v_start_time) / i_interval_s; -- 生成前一个点的X坐标 o_x := v1_x; -- 用新的门,与当前点计算新的夹角 SELECT 180-ST_Azimuth( ST_MakePoint(o_x, o_val+i_radius), -- 门上点 ST_MakePoint(v_x, v_val) -- next point )/(2*pi())*360 as degAz, -- 上夹角 ST_Azimuth( ST_MakePoint(o_x, o_val-i_radius), -- 门下点 ST_MakePoint(v_x, v_val) -- next point )/(2*pi())*360 As degAzrev -- 下夹角 INTO v_angle1, v_angle2; select GREATEST(v_angle1, v_max_angle1), GREATEST(v_angle2, v_max_angle2) into v_max_angle1, v_max_angle2; -- raise notice 'new max %, new max %', v_max_angle1 , v_max_angle2; -- raise notice 'rownum<>1 %, %', o_val, o_time; return next; end if; -- 记录当前值,保存作为下一个点的前点 v1_val := v_val; v1_time := v_time; end if; END LOOP; end; $$ language plpgsql strict; ~~~ #### 压缩测试 门宽为15,起始时间为’2016-08-12 23:22:27.530318’,每1秒表示1个X坐标单位。 ~~~ test=> select * from f(15,'2016-08-12 23:22:27.530318',1); o_val | o_time | o_x -------+----------------------------+------------------ 18.23 | 2016-08-12 23:22:28.530443 | 0 5.14 | 2016-08-12 23:22:29.530453 | 1.00001287460327 90.25 | 2016-08-12 23:22:30.530459 | 2.00001883506775 ...... 87.90 | 2016-08-12 23:24:01.53098 | 93.0005400180817 29.94 | 2016-08-12 23:24:02.530985 | 94.0005450248718 63.53 | 2016-08-12 23:24:03.53099 | 95.0005497932434 12.25 | 2016-08-12 23:24:04.530996 | 96.0005559921265 83.21 | 2016-08-12 23:24:05.531001 | 97.0005609989166 (71 rows) ~~~ 可以看到100个点,压缩成了71个点。 #### 对比一下原来的100个点的值 ~~~ test=> select val, t, (extract(epoch from t)-extract(epoch from first_value(t) over()))/1 as x from tbl where t>'2016-08-12 23:22:27.530318' order by t limit 100; val | t | x -------+----------------------------+------------------ 18.23 | 2016-08-12 23:22:28.530443 | 0 5.14 | 2016-08-12 23:22:29.530453 | 1.00001001358032 90.25 | 2016-08-12 23:22:30.530459 | 2.0000159740448 ...... 83.21 | 2016-08-12 23:24:05.531001 | 97.0005581378937 87.97 | 2016-08-12 23:24:06.531006 | 98.0005631446838 58.97 | 2016-08-12 23:24:07.531012 | 99.0005691051483 (100 rows) ~~~ 使用excel绘图,进行压缩前后的对比 上面是压缩后的数据绘图,下面是压缩前的数据绘图 红色标记的位置,就是通过旋转门算法压缩掉的数据。 失真度是可控的。 ![screenshot](https://yqfile.alicdn.com/6f690f94107e0ff41a178ec323429f10b6ba5b53.png) ## 流式压缩的实现 本文略,其实也很简单,这个函数改一下,创建一个以数组为输入参数的函数。 以lambda的方式,实时的从流式输入的管道取数,并执行即可。 也可以写成聚合函数,在基于PostgreSQL 的流式数据库pipelineDB中调用,实现流式计算。 ## 小结 通过旋转门算法,对IT监控、金融、电力、水利等监控、物联网、等流式数据进行实时的压缩。 数据不需要从数据库LOAD出来即可在库内完成运算和压缩。 用户也可以根据实际的需求,进行流式的数据压缩,同样数据也不需要从数据库LOAD出来,在数据库端即可完成。 PostgreSQL的功能一如既往的强大,好用,快用起来吧。 ## 参考 1. http://baike.baidu.com/view/3478397.htm 2. http://postgis.net/docs/manual-2.2/ST_Azimuth.html 3. https://www.postgresql.org/docs/devel/static/functions-conditional.html 4. http://gis.stackexchange.com/questions/25126/how-to-calculate-the-angle-at-which-two-lines-intersect-in-postgis 5. http://gis.stackexchange.com/questions/668/how-can-i-calculate-the-bearing-between-two-points-in-postgis 6. http://www.pipelinedb.com/