在前面两期月报中,我们详细介绍了 InnoDB redo log 和 undo log 的相关知识,本文将介绍 InnoDB 在崩溃恢复时的主要流程。
本文代码分析基于 MySQL 5.7.7-RC 版本,函数入口为 `innobase_start_or_create_for_mysql`,这是一个非常冗长的函数,本文只涉及和崩溃恢复相关的代码。
在阅读本文前,强烈建议翻阅我们之前的两期月报:
1. [MySQL · 引擎特性 · InnoDB undo log 漫游](http://mysql.taobao.org/monthly/2015/04/01/)
2. [MySQL · 引擎特性 · InnoDB redo log漫游](http://mysql.taobao.org/monthly/2015/05/01/)
## 初始化崩溃恢复
首先初始化崩溃恢复所需要的内存对象:
~~~
recv_sys_create();
recv_sys_init(buf_pool_get_curr_size());
~~~
当InnoDB正常shutdown,在flush redo log 和脏页后,会做一次完全同步的checkpoint,并将checkpoint的LSN写到ibdata的第一个page中(`fil_write_flushed_lsn`)。
在重启实例时,会打开系统表空间ibdata,并读取存储在其中的LSN:
~~~
err = srv_sys_space.open_or_create(
false, &sum_of_new_sizes, &flushed_lsn);
~~~
上述调用将从ibdata中读取的LSN存储到变量flushed_lsn中,表示上次shutdown时的checkpoint点,在后面做崩溃恢复时会用到。另外这里也会将double write buffer内存储的page载入到内存中(`buf_dblwr_init_or_load_pages`),如果ibdata的第一个page损坏了,就从dblwr中恢复出来。
> Tips:注意在MySQL 5.6.16之前的版本中,如果InnoDB的表空间第一个page损坏了,就认为无法确定这个表空间的space id,也就无法决定使用dblwr中的哪个page来进行恢复,InnoDB将崩溃恢复失败(bug#70087),
> 由于每个数据页上都存储着表空间id,因此后面将这里的逻辑修改成往后多读几个page,并尝试不同的page size,直到找到一个完好的数据页, (参考函数`Datafile::find_space_id()`)。因此为了能安全的使用double write buffer保护数据,建议使用5.6.16及之后的MySQL版本。
## 恢复truncate操作
为了保证对 undo log 独立表空间和用户独立表空间进行 truncate 操作的原子性,InnoDB 采用文件日志的方式为每个 truncate 操作创建一个独特的文件,如果在重启时这个文件存在,说明上次 truncate 操作还没完成实例就崩溃了,在重启时,我们需要继续完成truncate操作。
这一块的崩溃恢复是独立于redo log系统之外的。
对于 undo log 表空间恢复,在初始化 undo 子系统时完成:
~~~
err = srv_undo_tablespaces_init(
create_new_db,
srv_undo_tablespaces,
&srv_undo_tablespaces_open);
~~~
对于用户表空间,扫描数据目录,找到 truncate 日志文件:如果文件中没有任何数据,表示truncate还没开始;如果文件中已经写了一个MAGIC NUM,表示truncate操作已经完成了;这两种情况都不需要处理。
~~~
err = TruncateLogParser::scan_and_parse(srv_log_group_home_dir);
~~~
但对用户表空间truncate操作的恢复是redo log apply完成后才进行的,这主要是因为恢复truncate可能涉及到系统表的更新操作(例如重建索引),需要在redo apply完成后才能进行。
## 进入redo崩溃恢复开始逻辑
入口函数:
`c err = recv_recovery_from_checkpoint_start(flushed_lsn);`
传递的参数flushed_lsn即为从ibdata第一个page读取的LSN,主要包含以下几步:
Step 1: 为每个buffer pool instance创建一棵红黑树,指向`buffer_pool_t::flush_rbt`,主要用于加速插入flush list (`buf_flush_init_flush_rbt`);
Step 2: 读取存储在第一个redo log文件头的CHECKPOINT LSN,并根据该LSN定位到redo日志文件中对应的位置,从该checkpoint点开始扫描。
在这里会调用三次`recv_group_scan_log_recs`扫描redo log文件:
1\. 第一次的目的是找到MLOG_CHECKPOINT日志
MLOG_CHECKPOINT 日志中记录了CHECKPOINT LSN,当该日志中记录的LSN和日志头中记录的CHECKPOINT LSN相同时,表示找到了符合的MLOG_CHECKPOINT LSN,将扫描到的LSN号记录到 `recv_sys->mlog_checkpoint_lsn` 中。(在5.6版本里没有这一次扫描)
MLOG_CHECKPOINT在[WL#7142](http://dev.mysql.com/worklog/task/?id=7142)中被引入,其目的是为了简化 InnoDB 崩溃恢复的逻辑,根据WL#7142的描述,包含几点改进:
1. 避免崩溃恢复时读取每个ibd的第一个page来确认其space id;
2. 无需检查$datadir/*.isl,新的日志类型记录了文件全路径,并消除了isl文件和实际ibd目录的不一致可能带来的问题;
3. 自动忽略那些还没有导入到InnoDB的ibd文件(例如在执行IMPORT TABLESPACE时crash);
4. 引入了新的日志类型MLOG_FILE_DELETE来跟踪ibd文件的删除操作。
这里可能会产生的问题是,如果MLOG_CHECKPOINT日志和文件头记录的CHECKPOINT LSN差距太远的话,在第一次扫描时可能花费大量的时间做无谓的解析,感觉这里还有优化的空间。
在我的测试实例中,由于崩溃时施加的负载比较大,MLOG_CHECKPOINT和CHECKPOINT点的LSN相差约1G的redo log。
2\. 第二次扫描,再次从checkpoint点开始重复扫描,存储日志对象
日志解析后的对象类型为`recv_t`,包含日志类型、长度、数据、开始和结束LSN。日志对象的存储使用hash结构,根据 space id 和 page no 计算hash值,相同页上的变更作为链表节点链在一起,大概结构可以表示为:
![recv hash 结构](https://box.kancloud.cn/2015-09-24_560396dc0fe39.png)
扫描的过程中,会基于MLOG_FILE_NAME 和MLOG_FILE_DELETE 这样的redo日志记录来构建`recv_spaces`,存储space id到文件信息的映射(`fil_name_parse` –> `fil_name_process`),这些文件可能需要进行崩溃恢复。(实际上第一次扫描时,也会向`recv_spaces`中插入数据,但只到MLOG_CHECKPOINT日志记录为止)
> Tips:在一次checkpoint后第一次修改某个表的数据时,总是先写一条MLOG_FILE_NAME 日志记录;通过该类型的日志可以跟踪一次CHECKPOINT后修改过的表空间,避免打开全部表。
> 在第二次扫描时,总会判断将要修改的表空间是否在`recv_spaces`中,如果不存在,则认为产生列严重的错误,拒绝启动(`recv_parse_or_apply_log_rec_body`)
默认情况下,Redo log以一批64KB(RECV_SCAN_SIZE)为单位读入到`log_sys->buf`中,然后调用函数`recv_scan_log_recs`处理日志块。这里会判断到日志块的有效性:是否是完整写入的、日志块checksum是否正确, 另外也会根据一些标记位来做判断:
* 在每次写入redo log时,总会将写入的起始block头的flush bit设置为true,表示一次写入的起始位置,因此在重启扫描日志时,也会根据flush bit来推进扫描的LSN点;
* 每次写redo时,还会在每个block上记录下一个checkpoint no(每次做checkpoint都会递增),由于日志文件是循环使用的,因此需要根据checkpoint no判断是否读到了老旧的redo日志。
对于合法的日志,会拷贝到缓冲区`recv_sys->buf`中,调用函数`recv_parse_log_recs`解析日志记录。 这里会根据不同的日志类型分别进行处理,并尝试进行apply,堆栈为:
~~~
recv_parse_log_recs
--> recv_parse_log_rec
--> recv_parse_or_apply_log_rec_body
~~~
如果想理解InnoDB如何基于不同的日志类型进行崩溃恢复的,非常有必要细读函数`recv_parse_or_apply_log_rec_body`,这里是redo日志apply的入口。
例如如果解析到的日志类型为MLOG_UNDO_HDR_CREATE,就会从日志中解析出事务ID,为其重建undo log头(`trx_undo_parse_page_header`);如果是一条插入操作标识(MLOG_REC_INSERT 或者 MLOG_COMP_REC_INSERT),就需要从中解析出索引信息(`mlog_parse_index`)和记录信息(`page_cur_parse_insert_rec`);或者解析一条IN-PLACE UPDATE (MLOG_REC_UPDATE_IN_PLACE)日志,则调用函数`btr_cur_parse_update_in_place`。
第二次扫描只会应用MLOG_FILE_*类型的日志,记录到`recv_spaces`中,对于其他类型的日志在解析后存储到哈希对象里。然后调用函数`recv_init_crash_recovery_spaces`对涉及的表空间进行初始化处理:
* 首先会打印两条我们非常熟悉的日志信息:
~~~
[Note] InnoDB: Database was not shutdown normally!
[Note] InnoDB: Starting crash recovery.
~~~
* 如果`recv_spaces`中的表空间未被删除,且ibd文件存在时,则表明这是个普通的文件操作,将该table space加入到`fil_system->named_spaces`链表上(`fil_names_dirty`),后续可能会对这些表做redo apply操作;
* 对于已经被删除的表空间,我们可以忽略日志apply,将对应表的space id在`recv_sys->addr_hash`上的记录项设置为RECV_DISCARDED;
* 调用函数`buf_dblwr_process()`,该函数会检查所有记录在double write buffer中的page,其对应的数据文件页是否完好,如果损坏了,则直接从dblwr中恢复;
* 最后创建一个临时的后台线程,线程函数为`recv_writer_thread`,这个线程和page cleaner线程配合使用,它会去通知page cleaner线程去flush崩溃恢复产生的脏页,直到`recv_sys`中存储的redo记录都被应用完成并彻底释放掉(`recv_sys->heap == NULL`)
3\. 如果第二次扫描hash表空间不足,无法全部存储到hash表中,则发起第三次扫描,清空hash,重新从checkpoint点开始扫描。
hash对象的空间最大一般为buffer pool size - 512个page大小。
第三次扫描不会尝试一起全部存储到hash里,而是一旦发现hash不够了,就立刻apply redo日志。但是…如果总的日志需要存储的hash空间略大于可用的最大空间,那么一次额外的扫描开销还是非常明显的。
简而言之,第一次扫描找到正确的MLOG_CHECKPOINT位置;第二次扫描解析 redo 日志并存储到hash中;如果hash空间不够用,则再来一轮重新开始,解析一批,应用一批。
三次扫描后,hash中通常还有redo日志没有被应用掉。这个留在后面来做,随后将`recv_sys->apply_log_recs` 设置为true,并从函数`recv_recovery_from_checkpoint_start`返回。
对于正常shutdown的场景,一次checkpoint完成后是不记录MLOG_CHECKPOINT日志的,如果扫描过程中没有找到对应的日志,那就认为上次是正常shutdown的,不用考虑崩溃恢复了。
> Tips:偶尔我们会看到日志中报类似这样的信息:
> “The log sequence number xxx in the system tablespace does not match the log sequence number xxxx in the ib_logfiles!”
> 从内部逻辑来看是因为ibdata中记录的lsn和iblogfile中记录的checkpoint lsn不一致,但系统又判定无需崩溃恢复时会报这样的错。单纯从InnoDB实例来看是可能的,因为做checkpint 和更新ibdata不是原子的操作,这样的日志信息一般我们也是可以忽略的。
## 初始化事务子系统(trx_sys_init_at_db_start)
这里会涉及到读入undo相关的系统页数据,在崩溃恢复状态下,所有的page都要先进行日志apply后,才能被调用者使用,例如如下堆栈:
~~~
trx_sys_init_at_db_start
--> trx_sysf_get -->
....->buf_page_io_complete --> recv_recover_page
~~~
因此在初始化回滚段的时候,我们通过读入回滚段页并进行redo log apply,就可以将回滚段信息恢复到一致的状态,从而能够 “复活”在系统崩溃时活跃的事务,维护到读写事务链表中。对于处于prepare状态的事务,我们后续需要做额外处理。
关于事务如何从崩溃恢复中复活,参阅4月份的月报 “[MySQL · 引擎特性 · InnoDB undo log 漫游](http://mysql.taobao.org/monthly/2015/05/01/)“最后一节。
## 应用redo日志(`recv_apply_hashed_log_recs`)
根据之前搜集到`recv_sys->addr_hash`中的日志记录,依次将page读入内存,并对每个page进行崩溃恢复操作(`recv_recover_page_func`):
* 已经被删除的表空间,直接跳过其对应的日志记录;
* 在读入需要恢复的文件页时,会主动尝试采用预读的方式多读点page (`recv_read_in_area`),搜集最多连续32个(RECV_READ_AHEAD_AREA)需要做恢复的page no,然后发送异步读请求。 page 读入buffer pool时,会主动做崩溃恢复逻辑;
* 只有LSN大于数据页上LSN的日志才会被apply; 忽略被truncate的表的redo日志;
* 在恢复数据页的过程中不产生新的redo 日志;
* 在完成修复page后,需要将脏页加入到buffer pool的flush list上;由于innodb需要保证flush list的有序性,而崩溃恢复过程中修改page的LSN是基于redo 的LSN而不是全局的LSN,无法保证有序性;InnoDB另外维护了一颗红黑树来维持有序性,每次插入到flush list前,查找红黑树找到合适的插入位置,然后加入到flush list上。(`buf_flush_recv_note_modification`)
## 完成崩溃恢复(`recv_recovery_from_checkpoint_finish`)
在完成所有redo日志apply后,基本的崩溃恢复也完成了,此时可以释放资源,等待recv writer线程退出 (崩溃恢复产生的脏页已经被清理掉),释放红黑树,回滚所有数据词典操作产生的非prepare状态的事务 (`trx_rollback_or_clean_recovered`)
### 无效数据清理及事务回滚:
调用函数`recv_recovery_rollback_active`完成下述工作:
* 删除临时创建的索引,例如在DDL创建索引时crash时的残留临时索引(`row_merge_drop_temp_indexes()`);
* 清理InnoDB临时表 (`row_mysql_drop_temp_tables`);
* 清理全文索引的无效的辅助表(`fts_drop_orphaned_tables()`);
* 创建后台线程,线程函数为`trx_rollback_or_clean_all_recovered`,和在`recv_recovery_from_checkpoint_finish`中的调用不同,该后台线程会回滚所有不处于prepare状态的事务。
至此InnoDB层的崩溃恢复算是告一段落,只剩下处于prepare状态的事务还有待处理,而这一部分需要和Server层的binlog联合来进行崩溃恢复。
## Binlog/InnoDB XA Recover
回到Server层,在初始化完了各个存储引擎后,如果binlog打开了,我们就可以通过binlog来进行XA恢复:
* 首先扫描最后一个binlog文件,找到其中所有的XID事件,并将其中的XID记录到一个hash结构中(`MYSQL_BIN_LOG::recover`);
* 然后对每个引擎调用接口函数`xarecover_handlerton`, 拿到每个事务引擎中处于prepare状态的事务xid,如果这个xid存在于binlog中,则提交;否则回滚事务。
很显然,如果我们弱化配置的持久性(`innodb_flush_log_at_trx_commit != 1` 或者 `sync_binlog != 1`), 宕机可能导致两种丢数据的场景:
1. 引擎层提交了,但binlog没写入,备库丢事务;
2. 引擎层没有prepare,但binlog写入了,主库丢事务。
即使我们将参数设置成`innodb_flush_log_at_trx_commit =1` 和 `sync_binlog = 1`,也还会面临这样一种情况:主库crash时还有binlog没传递到备库,如果我们直接提升备库为主库,同样会导致主备不一致,老主库必须根据新主库重做,才能恢复到一致的状态。针对这种场景,我们可以通过开启semisync的方式来解决,一种可行的方案描述如下:
1. 设置双1强持久化配置;
2. 我们将semisync的超时时间设到极大值,同时使用semisync AFTER_SYNC模式,即用户线程在写入binlog后,引擎层提交前等待备库ACK;
3. 基于步骤1的配置,我们可以保证在主库crash时,所有老主库比备库多出来的事务都处于prepare状态;
4. 备库完全apply日志后,记下其执行到的relay log对应的位点,然后将备库提升为新主库;
5. 将老主库的最后一个binlog进行截断,截断的位点即为步骤3记录的位点;
6. 启动老主库,那些已经传递到备库的事务都会提交掉,未传递到备库的binlog都会回滚掉。
- 数据库内核月报目录
- 数据库内核月报 - 2016/09
- MySQL · 社区贡献 · AliSQL那些事儿
- PetaData · 架构体系 · PetaData第二代低成本存储体系
- MySQL · 社区动态 · MariaDB 10.2 前瞻
- MySQL · 特性分析 · 执行计划缓存设计与实现
- PgSQL · 最佳实践 · pg_rman源码浅析与使用
- MySQL · 捉虫状态 · bug分析两例
- PgSQL · 源码分析 · PG优化器浅析
- MongoDB · 特性分析· Sharding原理与应用
- PgSQL · 源码分析 · PG中的无锁算法和原子操作应用一则
- SQLServer · 最佳实践 · TEMPDB的设计
- 数据库内核月报 - 2016/08
- MySQL · 特性分析 ·MySQL 5.7新特性系列四
- PgSQL · PostgreSQL 逻辑流复制技术的秘密
- MySQL · 特性分析 · MyRocks简介
- GPDB · 特性分析· Greenplum 备份架构
- SQLServer · 最佳实践 · RDS for SQLServer 2012权限限制提升与改善
- TokuDB · 引擎特性 · REPLACE 语句优化
- MySQL · 专家投稿 · InnoDB物理行中null值的存储的推断与验证
- PgSQL · 实战经验 · 旋转门压缩算法在PostgreSQL中的实现
- MySQL · 源码分析 · Query Cache并发处理
- PgSQL · 源码分析· pg_dump分析
- 数据库内核月报 - 2016/07
- MySQL · 特性分析 ·MySQL 5.7新特性系列三
- MySQL · 特性分析 · 5.7 代价模型浅析
- PgSQL · 实战经验 · 分组TOP性能提升44倍
- MySQL · 源码分析 · 网络通信模块浅析
- MongoDB · 特性分析 · 索引原理
- SQLServer · 特性分析 · XML与JSON应用比较
- MySQL · 最佳实战 · 审计日志实用案例分析
- MySQL · 性能优化 · 条件下推到物化表
- MySQL · 源码分析 · Query Cache内部剖析
- MySQL · 捉虫动态 · 备库1206错误问题说明
- 数据库内核月报 - 2016/06
- MySQL · 特性分析 · innodb 锁分裂继承与迁移
- MySQL · 特性分析 ·MySQL 5.7新特性系列二
- PgSQL · 实战经验 · 如何预测Freeze IO风暴
- GPDB · 特性分析· Filespace和Tablespace
- MariaDB · 新特性 · 窗口函数
- MySQL · TokuDB · checkpoint过程
- MySQL · 特性分析 · 内部临时表
- MySQL · 最佳实践 · 空间优化
- SQLServer · 最佳实践 · 数据库实现大容量插入的几种方式
- 数据库内核月报 - 2016/05
- MySQL · 引擎特性 · 基于InnoDB的物理复制实现
- MySQL · 特性分析 · MySQL 5.7新特性系列一
- PostgreSQL · 特性分析 · 逻辑结构和权限体系
- MySQL · 特性分析 · innodb buffer pool相关特性
- PG&GP · 特性分析 · 外部数据导入接口实现分析
- SQLServer · 最佳实践 · 透明数据加密在SQLServer的应用
- MySQL · TokuDB · 日志子系统和崩溃恢复过程
- MongoDB · 特性分析 · Sharded cluster架构原理
- PostgreSQL · 特性分析 · 统计信息计算方法
- MySQL · 捉虫动态 · left-join多表导致crash
- 数据库内核月报 - 2016/04
- MySQL · 参数故事 · innodb_additional_mem_pool_size
- GPDB · 特性分析 · Segment事务一致性与异常处理
- GPDB · 特性分析 · Segment 修复指南
- MySQL · 捉虫动态 · 并行复制外键约束问题二
- PgSQL · 性能优化 · 如何潇洒的处理每天上百TB的数据增量
- Memcached · 最佳实践 · 热点 Key 问题解决方案
- MongoDB · 最佳实践 · 短连接Auth性能优化
- MySQL · 最佳实践 · RDS 只读实例延迟分析
- MySQL · TokuDB · TokuDB索引结构--Fractal Tree
- MySQL · TokuDB · Savepoint漫谈
- 数据库内核月报 - 2016/03
- MySQL · TokuDB · 事务子系统和 MVCC 实现
- MongoDB · 特性分析 · MMAPv1 存储引擎原理
- PgSQL · 源码分析 · 优化器逻辑推理
- SQLServer · BUG分析 · Agent 链接泄露分析
- Redis · 特性分析 · AOF Rewrite 分析
- MySQL · BUG分析 · Rename table 死锁分析
- MySQL · 物理备份 · Percona XtraBackup 备份原理
- GPDB · 特性分析· GreenPlum FTS 机制
- MySQL · 答疑解惑 · 备库Seconds_Behind_Master计算
- MySQL · 答疑解惑 · MySQL 锁问题最佳实践
- 数据库内核月报 - 2016/02
- MySQL · 引擎特性 · InnoDB 文件系统之文件物理结构
- MySQL · 引擎特性 · InnoDB 文件系统之IO系统和内存管理
- MySQL · 特性分析 · InnoDB transaction history
- PgSQL · 会议见闻 · PgConf.Russia 2016 大会总结
- PgSQL · 答疑解惑 · PostgreSQL 9.6 并行查询实现分析
- MySQL · TokuDB · TokuDB之黑科技工具
- PgSQL · 性能优化 · PostgreSQL TPC-C极限优化玩法
- MariaDB · 版本特性 · MariaDB 的 GTID 介绍
- MySQL · 特性分析 · 线程池
- MySQL · 答疑解惑 · mysqldump tips 两则
- 数据库内核月报 - 2016/01
- MySQL · 引擎特性 · InnoDB 事务锁系统简介
- GPDB · 特性分析· GreenPlum Primary/Mirror 同步机制
- MySQL · 专家投稿 · MySQL5.7 的 JSON 实现
- MySQL · 特性分析 · 优化器 MRR & BKA
- MySQL · 答疑解惑 · 物理备份死锁分析
- MySQL · TokuDB · Cachetable 的工作线程和线程池
- MySQL · 特性分析 · drop table的优化
- MySQL · 答疑解惑 · GTID不一致分析
- PgSQL · 特性分析 · Plan Hint
- MariaDB · 社区动态 · MariaDB on Power8 (下)
- 数据库内核月报 - 2015/12
- MySQL · 引擎特性 · InnoDB 事务子系统介绍
- PgSQL · 特性介绍 · 全文搜索介绍
- MongoDB · 捉虫动态 · Kill Hang问题排查记录
- MySQL · 参数优化 ·RDS MySQL参数调优最佳实践
- PgSQL · 特性分析 · 备库激活过程分析
- MySQL · TokuDB · 让Hot Backup更完美
- PgSQL · 答疑解惑 · 表膨胀
- MySQL · 特性分析 · Index Condition Pushdown (ICP)
- MariaDB · 社区动态 · MariaDB on Power8
- MySQL · 特性分析 · 企业版特性一览
- 数据库内核月报 - 2015/11
- MySQL · 社区见闻 · OOW 2015 总结 MySQL 篇
- MySQL · 特性分析 · Statement Digest
- PgSQL · 答疑解惑 · PostgreSQL 用户组权限管理
- MySQL · 特性分析 · MDL 实现分析
- PgSQL · 特性分析 · full page write 机制
- MySQL · 捉虫动态 · MySQL 外键异常分析
- MySQL · 答疑解惑 · MySQL 优化器 range 的代价计算
- MySQL · 捉虫动态 · ORDER/GROUP BY 导致 mysqld crash
- MySQL · TokuDB · TokuDB 中的行锁
- MySQL · 捉虫动态 · order by limit 造成优化器选择索引错误
- 数据库内核月报 - 2015/10
- MySQL · 引擎特性 · InnoDB 全文索引简介
- MySQL · 特性分析 · 跟踪Metadata lock
- MySQL · 答疑解惑 · 索引过滤性太差引起CPU飙高分析
- PgSQL · 特性分析 · PG主备流复制机制
- MySQL · 捉虫动态 · start slave crash 诊断分析
- MySQL · 捉虫动态 · 删除索引导致表无法打开
- PgSQL · 特性分析 · PostgreSQL Aurora方案与DEMO
- TokuDB · 捉虫动态 · CREATE DATABASE 导致crash问题
- PgSQL · 特性分析 · pg_receivexlog工具解析
- MySQL · 特性分析 · MySQL权限存储与管理
- 数据库内核月报 - 2015/09
- MySQL · 引擎特性 · InnoDB Adaptive hash index介绍
- PgSQL · 特性分析 · clog异步提交一致性、原子操作与fsync
- MySQL · 捉虫动态 · BUG 几例
- PgSQL · 答疑解惑 · 诡异的函数返回值
- MySQL · 捉虫动态 · 建表过程中crash造成重建表失败
- PgSQL · 特性分析 · 谈谈checkpoint的调度
- MySQL · 特性分析 · 5.6 并行复制恢复实现
- MySQL · 备库优化 · relay fetch 备库优化
- MySQL · 特性分析 · 5.6并行复制事件分发机制
- MySQL · TokuDB · 文件目录谈
- 数据库内核月报 - 2015/08
- MySQL · 社区动态 · InnoDB Page Compression
- PgSQL · 答疑解惑 · RDS中的PostgreSQL备库延迟原因分析
- MySQL · 社区动态 · MySQL5.6.26 Release Note解读
- PgSQL · 捉虫动态 · 执行大SQL语句提示无效的内存申请大小
- MySQL · 社区动态 · MariaDB InnoDB表空间碎片整理
- PgSQL · 答疑解惑 · 归档进程cp命令的core文件追查
- MySQL · 答疑解惑 · open file limits
- MySQL · TokuDB · 疯狂的 filenum++
- MySQL · 功能分析 · 5.6 并行复制实现分析
- MySQL · 功能分析 · MySQL表定义缓存
- 数据库内核月报 - 2015/07
- MySQL · 引擎特性 · Innodb change buffer介绍
- MySQL · TokuDB · TokuDB Checkpoint机制
- PgSQL · 特性分析 · 时间线解析
- PgSQL · 功能分析 · PostGIS 在 O2O应用中的优势
- MySQL · 引擎特性 · InnoDB index lock前世今生
- MySQL · 社区动态 · MySQL内存分配支持NUMA
- MySQL · 答疑解惑 · 外键删除bug分析
- MySQL · 引擎特性 · MySQL logical read-ahead
- MySQL · 功能介绍 · binlog拉取速度的控制
- MySQL · 答疑解惑 · 浮点型的显示问题
- 数据库内核月报 - 2015/06
- MySQL · 引擎特性 · InnoDB 崩溃恢复过程
- MySQL · 捉虫动态 · 唯一键约束失效
- MySQL · 捉虫动态 · ALTER IGNORE TABLE导致主备不一致
- MySQL · 答疑解惑 · MySQL Sort 分页
- MySQL · 答疑解惑 · binlog event 中的 error code
- PgSQL · 功能分析 · Listen/Notify 功能
- MySQL · 捉虫动态 · 任性的 normal shutdown
- PgSQL · 追根究底 · WAL日志空间的意外增长
- MySQL · 社区动态 · MariaDB Role 体系
- MySQL · TokuDB · TokuDB数据文件大小计算
- 数据库内核月报 - 2015/05
- MySQL · 引擎特性 · InnoDB redo log漫游
- MySQL · 专家投稿 · MySQL数据库SYS CPU高的可能性分析
- MySQL · 捉虫动态 · 5.6 与 5.5 InnoDB 不兼容导致 crash
- MySQL · 答疑解惑 · InnoDB 预读 VS Oracle 多块读
- PgSQL · 社区动态 · 9.5 新功能BRIN索引
- MySQL · 捉虫动态 · MySQL DDL BUG
- MySQL · 答疑解惑 · set names 都做了什么
- MySQL · 捉虫动态 · 临时表操作导致主备不一致
- TokuDB · 引擎特性 · zstd压缩算法
- MySQL · 答疑解惑 · binlog 位点刷新策略
- 数据库内核月报 - 2015/04
- MySQL · 引擎特性 · InnoDB undo log 漫游
- TokuDB · 产品新闻 · RDS TokuDB小手册
- PgSQL · 社区动态 · 说一说PgSQL 9.4.1中的那些安全补丁
- MySQL · 捉虫动态 · 连接断开导致XA事务丢失
- MySQL · 捉虫动态 · GTID下slave_net_timeout值太小问题
- MySQL · 捉虫动态 · Relay log 中 GTID group 完整性检测
- MySQL · 答疑释惑 · UPDATE交换列单表和多表的区别
- MySQL · 捉虫动态 · 删被引用索引导致crash
- MySQL · 答疑释惑 · GTID下auto_position=0时数据不一致
- 数据库内核月报 - 2015/03
- MySQL · 答疑释惑· 并发Replace into导致的死锁分析
- MySQL · 性能优化· 5.7.6 InnoDB page flush 优化
- MySQL · 捉虫动态· pid file丢失问题分析
- MySQL · 答疑释惑· using filesort VS using temporary
- MySQL · 优化限制· MySQL index_condition_pushdown
- MySQL · 捉虫动态·DROP DATABASE外键约束的GTID BUG
- MySQL · 答疑释惑· lower_case_table_names 使用问题
- PgSQL · 特性分析· Logical Decoding探索
- PgSQL · 特性分析· jsonb类型解析
- TokuDB ·引擎机制· TokuDB线程池
- 数据库内核月报 - 2015/02
- MySQL · 性能优化· InnoDB buffer pool flush策略漫谈
- MySQL · 社区动态· 5.6.23 InnoDB相关Bugfix
- PgSQL · 特性分析· Replication Slot
- PgSQL · 特性分析· pg_prewarm
- MySQL · 答疑释惑· InnoDB丢失自增值
- MySQL · 答疑释惑· 5.5 和 5.6 时间类型兼容问题
- MySQL · 捉虫动态· 变量修改导致binlog错误
- MariaDB · 特性分析· 表/表空间加密
- MariaDB · 特性分析· Per-query variables
- TokuDB · 特性分析· 日志详解
- 数据库内核月报 - 2015/01
- MySQL · 性能优化· Group Commit优化
- MySQL · 新增特性· DDL fast fail
- MySQL · 性能优化· 启用GTID场景的性能问题及优化
- MySQL · 捉虫动态· InnoDB自增列重复值问题
- MySQL · 优化改进· 复制性能改进过程
- MySQL · 谈古论今· key分区算法演变分析
- MySQL · 捉虫动态· mysql client crash一例
- MySQL · 捉虫动态· 设置 gtid_purged 破坏AUTO_POSITION复制协议
- MySQL · 捉虫动态· replicate filter 和 GTID 一起使用的问题
- TokuDB·特性分析· Optimize Table
- 数据库内核月报 - 2014/12
- MySQL· 性能优化·5.7 Innodb事务系统
- MySQL· 踩过的坑·5.6 GTID 和存储引擎那会事
- MySQL· 性能优化·thread pool 原理分析
- MySQL· 性能优化·并行复制外建约束问题
- MySQL· 答疑释惑·binlog event有序性
- MySQL· 答疑释惑·server_id为0的Rotate
- MySQL· 性能优化·Bulk Load for CREATE INDEX
- MySQL· 捉虫动态·Opened tables block read only
- MySQL· 优化改进· GTID启动优化
- TokuDB· Binary Log Group Commit with TokuDB
- 数据库内核月报 - 2014/11
- MySQL· 捉虫动态·OPTIMIZE 不存在的表
- MySQL· 捉虫动态·SIGHUP 导致 binlog 写错
- MySQL· 5.7改进·Recovery改进
- MySQL· 5.7特性·高可用支持
- MySQL· 5.7优化·Metadata Lock子系统的优化
- MySQL· 5.7特性·在线Truncate undo log 表空间
- MySQL· 性能优化·hash_scan 算法的实现解析
- TokuDB· 版本优化· 7.5.0
- TokuDB· 引擎特性· FAST UPDATES
- MariaDB· 性能优化·filesort with small LIMIT optimization
- 数据库内核月报 - 2014/10
- MySQL· 5.7重构·Optimizer Cost Model
- MySQL· 系统限制·text字段数
- MySQL· 捉虫动态·binlog重放失败
- MySQL· 捉虫动态·从库OOM
- MySQL· 捉虫动态·崩溃恢复失败
- MySQL· 功能改进·InnoDB Warmup特性
- MySQL· 文件结构·告别frm文件
- MariaDB· 新鲜特性·ANALYZE statement 语法
- TokuDB· 主备复制·Read Free Replication
- TokuDB· 引擎特性·压缩
- 数据库内核月报 - 2014/09
- MySQL· 捉虫动态·GTID 和 DELAYED
- MySQL· 限制改进·GTID和升级
- MySQL· 捉虫动态·GTID 和 binlog_checksum
- MySQL· 引擎差异·create_time in status
- MySQL· 参数故事·thread_concurrency
- MySQL· 捉虫动态·auto_increment
- MariaDB· 性能优化·Extended Keys
- MariaDB·主备复制·CREATE OR REPLACE
- TokuDB· 参数故事·数据安全和性能
- TokuDB· HA方案·TokuDB热备
- 数据库内核月报 - 2014/08
- MySQL· 参数故事·timed_mutexes
- MySQL· 参数故事·innodb_flush_log_at_trx_commit
- MySQL· 捉虫动态·Count(Distinct) ERROR
- MySQL· 捉虫动态·mysqldump BUFFER OVERFLOW
- MySQL· 捉虫动态·long semaphore waits
- MariaDB·分支特性·支持大于16K的InnoDB Page Size
- MariaDB·分支特性·FusionIO特性支持
- TokuDB· 性能优化·Bulk Fetch
- TokuDB· 数据结构·Fractal-Trees与LSM-Trees对比
- TokuDB·社区八卦·TokuDB团队