## 前言
想写这边文章,是因为之前想写一个解析innodb ibd文件的工具,在写这个工具的过程中,发现逻辑记录转物理记录的转换中,最难的有两部分,一是每行每字段null值占用的字节和存储,二是变长字段占用的字节和存储的格式。本文中重点针对第一种情况。
之前看有关介绍compact行记录格式:
> 变长字段之后的第二个部分是NULL标志位,该位指示了该行数据中是否有NULL值,有则用1表示。该部分所占字节为1字节
> —–《InnoDB存储引擎》
之后便思考是否不管有多少个列都是NULL,该部分都只占1个字节呢?
便有了如下测试
## 本文约定
逻辑记录:record (元组)
物理记录:row(行)
只讨论compact行格式
## 所用工具
自己python写的工具innodb_extract
## 测试数据
### 表结构
~~~
localhost.test>desc null_test;
+------------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------------+--------------+------+-----+---------+----------------+
| id | bigint(20) | NO | PRI | NULL | auto_increment |
| name | varchar(20) | YES | | NULL | |
| legalname | varchar(25) | YES | | NULL | |
| industry | varchar(10) | YES | | NULL | |
| province | varchar(10) | YES | | NULL | |
| city | varchar(15) | YES | | NULL | |
| size | varchar(15) | YES | | NULL | |
| admin_department | varchar(128) | YES | | NULL | |
+------------------+--------------+------+-----+---------+----------------+
8 rows in set (0.00 sec)
~~~
### 表内数据
~~~
+----+------+-----------+----------+----------+------+------+------------------+
| id | name | legalname | industry | province | city | size | admin_department |
+----+------+-----------+----------+----------+------+------+------------------+
| 1 | NULL | NULL | NULL | NULL | NULL | NULL | NULL |
| 2 | TOM | NULL | NULL | NULL | NULL | NULL | NULL |
| 3 | ALEX | NULL | NULL | NULL | NULL | NULL | HR |
+----+------+-----------+----------+----------+------+------+------------------+
3 rows in set (0.00 sec)
~~~
## 分析数据
通过工具看三行数据
~~~
# python innodb_extract.py null_test.ibd
infimum
7f 000010001c 8000000000000001 0000f1e27b17 b5000001680084
1
7e 0000180020 8000000000000002 0000f1e27b17 b5000001680094 544f4d
2 TOM
3e 000020ffb6 8000000000000003 0000f1e27b17 b50000016800a4 414c4558 4852
3 ALEX HR
~~~
第一行:
null标志位:0x7f (01111111)
说明:从右向左方向写,一共7个null值
record header:000010001c
Transaction Id:0000f1e27b17
Roll Pointer:b5000001680084
数据:
第二行:
null标志位:0x7e (01111110)
说明:除第二列,其余均是null值
record header:0000180020
Transaction Id:0000f1e27b17
Roll Pointer:b5000001680084
数据:
第二列:544f4d => TOM
第三行:
null标志位:0x3e (00111110)
说明:除了第2列和第8列,其余均是null值
record header:000020ffb6
Transaction Id:0000f1e27b17
Roll Pointer:b5000001680084
数据:
第二列:414c4558 => ALEX
第八列:4852 => HR
## 假设
继续上面,如果包含Null值的字段是8个,或者9个会是怎样?
## 深度剖析
代码片段,该函数将物理记录转化为逻辑记录,版本5.5.31,源文件rem0rec.c,
~~~
rec_convert_dtuple_to_rec_comp(
/*===========================*/
rec_t* rec, /*!< in: origin of record */
const dict_index_t* index, /*!< in: record descriptor */
const dfield_t* fields, /*!< in: array of data fields */
ulint n_fields,/*!< in: number of data fields */
ulint status, /*!< in: status bits of the record */
ibool temp) /*!< in: whether to use the
format for temporary files in
index creation */
{
const dfield_t* field;
const dtype_t* type;
byte* end;
byte* nulls;
byte* lens;
ulint len;
ulint i;
ulint n_node_ptr_field;
ulint fixed_len;
ulint null_mask = 1;
ut_ad(temp || dict_table_is_comp(index->table));
ut_ad(n_fields > 0);
if (temp) {
ut_ad(status == REC_STATUS_ORDINARY);
ut_ad(n_fields <= dict_index_get_n_fields(index));
n_node_ptr_field = ULINT_UNDEFINED;
nulls = rec - 1;
if (dict_table_is_comp(index->table)) {
/* No need to do adjust fixed_len=0\. We only
need to adjust it for ROW_FORMAT=REDUNDANT. */
temp = FALSE;
}
} else {
nulls = rec - (REC_N_NEW_EXTRA_BYTES + 1);
switch (UNIV_EXPECT(status, REC_STATUS_ORDINARY)) {
case REC_STATUS_ORDINARY:
ut_ad(n_fields <= dict_index_get_n_fields(index));
n_node_ptr_field = ULINT_UNDEFINED;
break;
case REC_STATUS_NODE_PTR:
ut_ad(n_fields
== dict_index_get_n_unique_in_tree(index) + 1);
n_node_ptr_field = n_fields - 1;
break;
case REC_STATUS_INFIMUM:
case REC_STATUS_SUPREMUM:
ut_ad(n_fields == 1);
n_node_ptr_field = ULINT_UNDEFINED;
break;
default:
ut_error;
return;
}
}
end = rec;
lens = nulls - UT_BITS_IN_BYTES(index->n_nullable);
/* clear the SQL-null flags */
memset(lens + 1, 0, nulls - lens);
~~~
结合COMPACT row格式来看:
~~~
row记录格式如下:
|---------------------extra_size-----------------------------------------|---------fields_data------------|
|--columns_lens---|---null lens----|------fixed_extrasize(5)-------------|--col1---|---col2---|---col2----|
|end<--------begin|end<-------beign|-------------------------------------|orgin---------------------------|
~~~
* 先看nulls = rec - (REC_N_NEW_EXTRA_BYTES + 1)
rec为记录开始的offset,也就是,extrasize也就是固定长度的record header的长度。注意null标志位和变长字段长度列表是从右->左的方向写的(原因可参见下部分代码)。所以nulls指向的是`null lens`后一字节开始的位置。
* 再看lens = nulls - UT_BITS_IN_BYTES(index->n_nullable)
index->n_nullable指的是表结构中定义can be null的字段的个数,一个字段用一个bit来标记,UT_BITS_IN_BYTES将占用bit数转为占用的字节数。所以lens指向的是column_lens后面一个字节的位置,即跳过了Null标志的占用的空间,同样在写入值的时候也是从后面向前面写。
* memset(lens + 1, 0, nulls - lens) 将nulls空间清零。
之后就是遍历每一个字段,先对定义了can be null字段进行处理
~~~
/* Store the data and the offsets */
for (i = 0, field = fields; i < n_fields; i++, field++) {
const dict_field_t* ifield;
type = dfield_get_type(field);
len = dfield_get_len(field);
if (UNIV_UNLIKELY(i == n_node_ptr_field)) {
ut_ad(dtype_get_prtype(type) & DATA_NOT_NULL);
ut_ad(len == REC_NODE_PTR_SIZE);
memcpy(end, dfield_get_data(field), len);
end += REC_NODE_PTR_SIZE;
break;
}
if (!(dtype_get_prtype(type) & DATA_NOT_NULL)) {
/* nullable field */
ut_ad(index->n_nullable > 0);
if (UNIV_UNLIKELY(!(byte) null_mask)) {
nulls--;
null_mask = 1;
}
~~~
因为方向是从右向左写,也就是从后往前写,如果该字段为null,则将null标志位设为1并向前移1位,如果满了8个,也就是有8个字段都为null则offset向左移1位,并将null_mask置为1
从这段代码看出之前的猜想,也就是并不是Null标志位只固定占用1个字节==,而是以8为单位,满8个null字段就多1个字节,不满8个也占用1个字节,高位用0补齐
~~~
ut_ad(*nulls < null_mask);
/* set the null flag if necessary */
if (dfield_is_null(field)) {
*nulls |= null_mask;
null_mask <<= 1;
continue;
}
null_mask <<= 1;
}
~~~
这段代码是就是设置null字段与null标志位的映射关系,如果字段为null,则设置标志位为1。
## 栗子验证
翻过来再看之前的例子,我们逐步的添加字段并设置default null看下null标志位的变化
* step 1,添加两个并设置default null
~~~
localhost.test>alter table null_test add column `kind` varchar(15) DEFAULT NULL after `size`;
Query OK, 3 rows affected (0.09 sec)
Records: 3 Duplicates: 0 Warnings: 0
localhost.test>alter table null_test add column licenseno varchar(15) DEFAULT NULL after `kind`;
Query OK, 3 rows affected (0.11 sec)
Records: 3 Duplicates: 0 Warnings: 0.11
~~~
那么理论来讲,第一行数据有9个null列了。满8个null列之后,继续向左写移,写1个bit之后开始占据两个字节。我们通过工具解析之后看下
~~~
# python innodb_extract.py null_test.ibd
01ff 000010001d 8000000000000001 0000f1e27c81 980000028c0084
1
01fe 0000180021 8000000000000002 0000f1e27c81 980000028c0094 544f4d
2 TOM
00fe 000020ffb3 8000000000000003 0000f1e27c81 980000028c00a4 414c455848
3 ALEX HR
~~~
第一行null标志位变为0x01ff,即`00000001 11111111`一共有9个null字段,满了8位之后,继续向前占1个字节从右往左继续写
同理,第二行0x01fe,即`00000001 11111110`
第三行0x00fe,`00000000 11111110`
再继续添加8个字段并设置default null
~~~
localhost.test>desc null_test;
+------------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------------+--------------+------+-----+---------+----------------+
| id | bigint(20) | NO | PRI | NULL | auto_increment |
| name | varchar(20) | YES | | NULL | |
| legalname | varchar(25) | YES | | NULL | |
| industry | varchar(10) | YES | | NULL | |
| province | varchar(10) | YES | | NULL | |
| city | varchar(15) | YES | | NULL | |
| size | varchar(15) | YES | | NULL | |
| kind | varchar(15) | YES | | NULL | |
| licenseno | varchar(15) | YES | | NULL | |
| admin_department | varchar(128) | YES | | NULL | |
| null_col1 | varchar(15) | YES | | NULL | |
| null_col2 | varchar(15) | YES | | NULL | |
| null_col3 | varchar(15) | YES | | NULL | |
| null_col4 | varchar(15) | YES | | NULL | |
| null_col5 | varchar(15) | YES | | NULL | |
| null_col6 | varchar(15) | YES | | NULL | |
| null_col7 | varchar(15) | YES | | NULL | |
| null_col8 | varchar(15) | YES | | NULL | |
+------------------+--------------+------+-----+---------+----------------+
18 rows in set (0.00 sec)
~~~
最多Null字段的第一行目前有个17个null字段,对应17个Null bit
~~~
root@hebe211 ibd]# python innodb_extract.py null_test.ibd
01ffff 000010001e 8000000000000001 0000f1e27cce c60000017600840301fffe0000
1
01fffe 0000180022 8000000000000002 0000f1e27cce c6000001760094 544f4d
2 TOM
01fefe 000020ffb0 8000000000000003 0000f1e27cce c60000017600a4 414c45 5848
3 ALEX HR
~~~
第一行null标志位变为0x01ff,即`00000001 11111111 11111111` 一共有17个null字段,满了两个8位之后,继续向前占1个字节从右往左继续写
同理,第二行0x01fe,即`00000001 11111111 11111110`
第三行0x00fe,`00000001 11111110 11111110`
## 结论
允许null的字段需要额外的空间来保存字段Null到null标志位映射的对应关系,所以保存这个映射关系的null标志位长度并不是固定的。也就是null字段越多并不是越省空间。实际生产环境中应尽量减少can be null的字段。
- 数据库内核月报目录
- 数据库内核月报 - 2016/09
- MySQL · 社区贡献 · AliSQL那些事儿
- PetaData · 架构体系 · PetaData第二代低成本存储体系
- MySQL · 社区动态 · MariaDB 10.2 前瞻
- MySQL · 特性分析 · 执行计划缓存设计与实现
- PgSQL · 最佳实践 · pg_rman源码浅析与使用
- MySQL · 捉虫状态 · bug分析两例
- PgSQL · 源码分析 · PG优化器浅析
- MongoDB · 特性分析· Sharding原理与应用
- PgSQL · 源码分析 · PG中的无锁算法和原子操作应用一则
- SQLServer · 最佳实践 · TEMPDB的设计
- 数据库内核月报 - 2016/08
- MySQL · 特性分析 ·MySQL 5.7新特性系列四
- PgSQL · PostgreSQL 逻辑流复制技术的秘密
- MySQL · 特性分析 · MyRocks简介
- GPDB · 特性分析· Greenplum 备份架构
- SQLServer · 最佳实践 · RDS for SQLServer 2012权限限制提升与改善
- TokuDB · 引擎特性 · REPLACE 语句优化
- MySQL · 专家投稿 · InnoDB物理行中null值的存储的推断与验证
- PgSQL · 实战经验 · 旋转门压缩算法在PostgreSQL中的实现
- MySQL · 源码分析 · Query Cache并发处理
- PgSQL · 源码分析· pg_dump分析
- 数据库内核月报 - 2016/07
- MySQL · 特性分析 ·MySQL 5.7新特性系列三
- MySQL · 特性分析 · 5.7 代价模型浅析
- PgSQL · 实战经验 · 分组TOP性能提升44倍
- MySQL · 源码分析 · 网络通信模块浅析
- MongoDB · 特性分析 · 索引原理
- SQLServer · 特性分析 · XML与JSON应用比较
- MySQL · 最佳实战 · 审计日志实用案例分析
- MySQL · 性能优化 · 条件下推到物化表
- MySQL · 源码分析 · Query Cache内部剖析
- MySQL · 捉虫动态 · 备库1206错误问题说明
- 数据库内核月报 - 2016/06
- MySQL · 特性分析 · innodb 锁分裂继承与迁移
- MySQL · 特性分析 ·MySQL 5.7新特性系列二
- PgSQL · 实战经验 · 如何预测Freeze IO风暴
- GPDB · 特性分析· Filespace和Tablespace
- MariaDB · 新特性 · 窗口函数
- MySQL · TokuDB · checkpoint过程
- MySQL · 特性分析 · 内部临时表
- MySQL · 最佳实践 · 空间优化
- SQLServer · 最佳实践 · 数据库实现大容量插入的几种方式
- 数据库内核月报 - 2016/05
- MySQL · 引擎特性 · 基于InnoDB的物理复制实现
- MySQL · 特性分析 · MySQL 5.7新特性系列一
- PostgreSQL · 特性分析 · 逻辑结构和权限体系
- MySQL · 特性分析 · innodb buffer pool相关特性
- PG&GP · 特性分析 · 外部数据导入接口实现分析
- SQLServer · 最佳实践 · 透明数据加密在SQLServer的应用
- MySQL · TokuDB · 日志子系统和崩溃恢复过程
- MongoDB · 特性分析 · Sharded cluster架构原理
- PostgreSQL · 特性分析 · 统计信息计算方法
- MySQL · 捉虫动态 · left-join多表导致crash
- 数据库内核月报 - 2016/04
- MySQL · 参数故事 · innodb_additional_mem_pool_size
- GPDB · 特性分析 · Segment事务一致性与异常处理
- GPDB · 特性分析 · Segment 修复指南
- MySQL · 捉虫动态 · 并行复制外键约束问题二
- PgSQL · 性能优化 · 如何潇洒的处理每天上百TB的数据增量
- Memcached · 最佳实践 · 热点 Key 问题解决方案
- MongoDB · 最佳实践 · 短连接Auth性能优化
- MySQL · 最佳实践 · RDS 只读实例延迟分析
- MySQL · TokuDB · TokuDB索引结构--Fractal Tree
- MySQL · TokuDB · Savepoint漫谈
- 数据库内核月报 - 2016/03
- MySQL · TokuDB · 事务子系统和 MVCC 实现
- MongoDB · 特性分析 · MMAPv1 存储引擎原理
- PgSQL · 源码分析 · 优化器逻辑推理
- SQLServer · BUG分析 · Agent 链接泄露分析
- Redis · 特性分析 · AOF Rewrite 分析
- MySQL · BUG分析 · Rename table 死锁分析
- MySQL · 物理备份 · Percona XtraBackup 备份原理
- GPDB · 特性分析· GreenPlum FTS 机制
- MySQL · 答疑解惑 · 备库Seconds_Behind_Master计算
- MySQL · 答疑解惑 · MySQL 锁问题最佳实践
- 数据库内核月报 - 2016/02
- MySQL · 引擎特性 · InnoDB 文件系统之文件物理结构
- MySQL · 引擎特性 · InnoDB 文件系统之IO系统和内存管理
- MySQL · 特性分析 · InnoDB transaction history
- PgSQL · 会议见闻 · PgConf.Russia 2016 大会总结
- PgSQL · 答疑解惑 · PostgreSQL 9.6 并行查询实现分析
- MySQL · TokuDB · TokuDB之黑科技工具
- PgSQL · 性能优化 · PostgreSQL TPC-C极限优化玩法
- MariaDB · 版本特性 · MariaDB 的 GTID 介绍
- MySQL · 特性分析 · 线程池
- MySQL · 答疑解惑 · mysqldump tips 两则
- 数据库内核月报 - 2016/01
- MySQL · 引擎特性 · InnoDB 事务锁系统简介
- GPDB · 特性分析· GreenPlum Primary/Mirror 同步机制
- MySQL · 专家投稿 · MySQL5.7 的 JSON 实现
- MySQL · 特性分析 · 优化器 MRR & BKA
- MySQL · 答疑解惑 · 物理备份死锁分析
- MySQL · TokuDB · Cachetable 的工作线程和线程池
- MySQL · 特性分析 · drop table的优化
- MySQL · 答疑解惑 · GTID不一致分析
- PgSQL · 特性分析 · Plan Hint
- MariaDB · 社区动态 · MariaDB on Power8 (下)
- 数据库内核月报 - 2015/12
- MySQL · 引擎特性 · InnoDB 事务子系统介绍
- PgSQL · 特性介绍 · 全文搜索介绍
- MongoDB · 捉虫动态 · Kill Hang问题排查记录
- MySQL · 参数优化 ·RDS MySQL参数调优最佳实践
- PgSQL · 特性分析 · 备库激活过程分析
- MySQL · TokuDB · 让Hot Backup更完美
- PgSQL · 答疑解惑 · 表膨胀
- MySQL · 特性分析 · Index Condition Pushdown (ICP)
- MariaDB · 社区动态 · MariaDB on Power8
- MySQL · 特性分析 · 企业版特性一览
- 数据库内核月报 - 2015/11
- MySQL · 社区见闻 · OOW 2015 总结 MySQL 篇
- MySQL · 特性分析 · Statement Digest
- PgSQL · 答疑解惑 · PostgreSQL 用户组权限管理
- MySQL · 特性分析 · MDL 实现分析
- PgSQL · 特性分析 · full page write 机制
- MySQL · 捉虫动态 · MySQL 外键异常分析
- MySQL · 答疑解惑 · MySQL 优化器 range 的代价计算
- MySQL · 捉虫动态 · ORDER/GROUP BY 导致 mysqld crash
- MySQL · TokuDB · TokuDB 中的行锁
- MySQL · 捉虫动态 · order by limit 造成优化器选择索引错误
- 数据库内核月报 - 2015/10
- MySQL · 引擎特性 · InnoDB 全文索引简介
- MySQL · 特性分析 · 跟踪Metadata lock
- MySQL · 答疑解惑 · 索引过滤性太差引起CPU飙高分析
- PgSQL · 特性分析 · PG主备流复制机制
- MySQL · 捉虫动态 · start slave crash 诊断分析
- MySQL · 捉虫动态 · 删除索引导致表无法打开
- PgSQL · 特性分析 · PostgreSQL Aurora方案与DEMO
- TokuDB · 捉虫动态 · CREATE DATABASE 导致crash问题
- PgSQL · 特性分析 · pg_receivexlog工具解析
- MySQL · 特性分析 · MySQL权限存储与管理
- 数据库内核月报 - 2015/09
- MySQL · 引擎特性 · InnoDB Adaptive hash index介绍
- PgSQL · 特性分析 · clog异步提交一致性、原子操作与fsync
- MySQL · 捉虫动态 · BUG 几例
- PgSQL · 答疑解惑 · 诡异的函数返回值
- MySQL · 捉虫动态 · 建表过程中crash造成重建表失败
- PgSQL · 特性分析 · 谈谈checkpoint的调度
- MySQL · 特性分析 · 5.6 并行复制恢复实现
- MySQL · 备库优化 · relay fetch 备库优化
- MySQL · 特性分析 · 5.6并行复制事件分发机制
- MySQL · TokuDB · 文件目录谈
- 数据库内核月报 - 2015/08
- MySQL · 社区动态 · InnoDB Page Compression
- PgSQL · 答疑解惑 · RDS中的PostgreSQL备库延迟原因分析
- MySQL · 社区动态 · MySQL5.6.26 Release Note解读
- PgSQL · 捉虫动态 · 执行大SQL语句提示无效的内存申请大小
- MySQL · 社区动态 · MariaDB InnoDB表空间碎片整理
- PgSQL · 答疑解惑 · 归档进程cp命令的core文件追查
- MySQL · 答疑解惑 · open file limits
- MySQL · TokuDB · 疯狂的 filenum++
- MySQL · 功能分析 · 5.6 并行复制实现分析
- MySQL · 功能分析 · MySQL表定义缓存
- 数据库内核月报 - 2015/07
- MySQL · 引擎特性 · Innodb change buffer介绍
- MySQL · TokuDB · TokuDB Checkpoint机制
- PgSQL · 特性分析 · 时间线解析
- PgSQL · 功能分析 · PostGIS 在 O2O应用中的优势
- MySQL · 引擎特性 · InnoDB index lock前世今生
- MySQL · 社区动态 · MySQL内存分配支持NUMA
- MySQL · 答疑解惑 · 外键删除bug分析
- MySQL · 引擎特性 · MySQL logical read-ahead
- MySQL · 功能介绍 · binlog拉取速度的控制
- MySQL · 答疑解惑 · 浮点型的显示问题
- 数据库内核月报 - 2015/06
- MySQL · 引擎特性 · InnoDB 崩溃恢复过程
- MySQL · 捉虫动态 · 唯一键约束失效
- MySQL · 捉虫动态 · ALTER IGNORE TABLE导致主备不一致
- MySQL · 答疑解惑 · MySQL Sort 分页
- MySQL · 答疑解惑 · binlog event 中的 error code
- PgSQL · 功能分析 · Listen/Notify 功能
- MySQL · 捉虫动态 · 任性的 normal shutdown
- PgSQL · 追根究底 · WAL日志空间的意外增长
- MySQL · 社区动态 · MariaDB Role 体系
- MySQL · TokuDB · TokuDB数据文件大小计算
- 数据库内核月报 - 2015/05
- MySQL · 引擎特性 · InnoDB redo log漫游
- MySQL · 专家投稿 · MySQL数据库SYS CPU高的可能性分析
- MySQL · 捉虫动态 · 5.6 与 5.5 InnoDB 不兼容导致 crash
- MySQL · 答疑解惑 · InnoDB 预读 VS Oracle 多块读
- PgSQL · 社区动态 · 9.5 新功能BRIN索引
- MySQL · 捉虫动态 · MySQL DDL BUG
- MySQL · 答疑解惑 · set names 都做了什么
- MySQL · 捉虫动态 · 临时表操作导致主备不一致
- TokuDB · 引擎特性 · zstd压缩算法
- MySQL · 答疑解惑 · binlog 位点刷新策略
- 数据库内核月报 - 2015/04
- MySQL · 引擎特性 · InnoDB undo log 漫游
- TokuDB · 产品新闻 · RDS TokuDB小手册
- PgSQL · 社区动态 · 说一说PgSQL 9.4.1中的那些安全补丁
- MySQL · 捉虫动态 · 连接断开导致XA事务丢失
- MySQL · 捉虫动态 · GTID下slave_net_timeout值太小问题
- MySQL · 捉虫动态 · Relay log 中 GTID group 完整性检测
- MySQL · 答疑释惑 · UPDATE交换列单表和多表的区别
- MySQL · 捉虫动态 · 删被引用索引导致crash
- MySQL · 答疑释惑 · GTID下auto_position=0时数据不一致
- 数据库内核月报 - 2015/03
- MySQL · 答疑释惑· 并发Replace into导致的死锁分析
- MySQL · 性能优化· 5.7.6 InnoDB page flush 优化
- MySQL · 捉虫动态· pid file丢失问题分析
- MySQL · 答疑释惑· using filesort VS using temporary
- MySQL · 优化限制· MySQL index_condition_pushdown
- MySQL · 捉虫动态·DROP DATABASE外键约束的GTID BUG
- MySQL · 答疑释惑· lower_case_table_names 使用问题
- PgSQL · 特性分析· Logical Decoding探索
- PgSQL · 特性分析· jsonb类型解析
- TokuDB ·引擎机制· TokuDB线程池
- 数据库内核月报 - 2015/02
- MySQL · 性能优化· InnoDB buffer pool flush策略漫谈
- MySQL · 社区动态· 5.6.23 InnoDB相关Bugfix
- PgSQL · 特性分析· Replication Slot
- PgSQL · 特性分析· pg_prewarm
- MySQL · 答疑释惑· InnoDB丢失自增值
- MySQL · 答疑释惑· 5.5 和 5.6 时间类型兼容问题
- MySQL · 捉虫动态· 变量修改导致binlog错误
- MariaDB · 特性分析· 表/表空间加密
- MariaDB · 特性分析· Per-query variables
- TokuDB · 特性分析· 日志详解
- 数据库内核月报 - 2015/01
- MySQL · 性能优化· Group Commit优化
- MySQL · 新增特性· DDL fast fail
- MySQL · 性能优化· 启用GTID场景的性能问题及优化
- MySQL · 捉虫动态· InnoDB自增列重复值问题
- MySQL · 优化改进· 复制性能改进过程
- MySQL · 谈古论今· key分区算法演变分析
- MySQL · 捉虫动态· mysql client crash一例
- MySQL · 捉虫动态· 设置 gtid_purged 破坏AUTO_POSITION复制协议
- MySQL · 捉虫动态· replicate filter 和 GTID 一起使用的问题
- TokuDB·特性分析· Optimize Table
- 数据库内核月报 - 2014/12
- MySQL· 性能优化·5.7 Innodb事务系统
- MySQL· 踩过的坑·5.6 GTID 和存储引擎那会事
- MySQL· 性能优化·thread pool 原理分析
- MySQL· 性能优化·并行复制外建约束问题
- MySQL· 答疑释惑·binlog event有序性
- MySQL· 答疑释惑·server_id为0的Rotate
- MySQL· 性能优化·Bulk Load for CREATE INDEX
- MySQL· 捉虫动态·Opened tables block read only
- MySQL· 优化改进· GTID启动优化
- TokuDB· Binary Log Group Commit with TokuDB
- 数据库内核月报 - 2014/11
- MySQL· 捉虫动态·OPTIMIZE 不存在的表
- MySQL· 捉虫动态·SIGHUP 导致 binlog 写错
- MySQL· 5.7改进·Recovery改进
- MySQL· 5.7特性·高可用支持
- MySQL· 5.7优化·Metadata Lock子系统的优化
- MySQL· 5.7特性·在线Truncate undo log 表空间
- MySQL· 性能优化·hash_scan 算法的实现解析
- TokuDB· 版本优化· 7.5.0
- TokuDB· 引擎特性· FAST UPDATES
- MariaDB· 性能优化·filesort with small LIMIT optimization
- 数据库内核月报 - 2014/10
- MySQL· 5.7重构·Optimizer Cost Model
- MySQL· 系统限制·text字段数
- MySQL· 捉虫动态·binlog重放失败
- MySQL· 捉虫动态·从库OOM
- MySQL· 捉虫动态·崩溃恢复失败
- MySQL· 功能改进·InnoDB Warmup特性
- MySQL· 文件结构·告别frm文件
- MariaDB· 新鲜特性·ANALYZE statement 语法
- TokuDB· 主备复制·Read Free Replication
- TokuDB· 引擎特性·压缩
- 数据库内核月报 - 2014/09
- MySQL· 捉虫动态·GTID 和 DELAYED
- MySQL· 限制改进·GTID和升级
- MySQL· 捉虫动态·GTID 和 binlog_checksum
- MySQL· 引擎差异·create_time in status
- MySQL· 参数故事·thread_concurrency
- MySQL· 捉虫动态·auto_increment
- MariaDB· 性能优化·Extended Keys
- MariaDB·主备复制·CREATE OR REPLACE
- TokuDB· 参数故事·数据安全和性能
- TokuDB· HA方案·TokuDB热备
- 数据库内核月报 - 2014/08
- MySQL· 参数故事·timed_mutexes
- MySQL· 参数故事·innodb_flush_log_at_trx_commit
- MySQL· 捉虫动态·Count(Distinct) ERROR
- MySQL· 捉虫动态·mysqldump BUFFER OVERFLOW
- MySQL· 捉虫动态·long semaphore waits
- MariaDB·分支特性·支持大于16K的InnoDB Page Size
- MariaDB·分支特性·FusionIO特性支持
- TokuDB· 性能优化·Bulk Fetch
- TokuDB· 数据结构·Fractal-Trees与LSM-Trees对比
- TokuDB·社区八卦·TokuDB团队