# async()
async()函数是一个简单任务的”启动”(launcher)函数,它是本FAQ中唯一一个尚未在标准草案中投票通过的特性。我希望它能在调和两个略微不同的意见之后最终于10月份获得通过(记得随时骚扰你那边的投票委员,一定要为它投票啊?)。
下边是一种优于传统的线程+锁的并发编程方法示例(译注:山寨map-reduce哦):
```
template<class T,class V> struct Accum { // 简单的积函数对象
T* b;
T* e;
V val;
Accum(T* bb, T* ee, const V& v) : b{bb}, e{ee}, val{vv} {}
V operator() ()
{ return std::accumulate(b,e,val); }
};
void comp(vector<double>& v)
// 如果v够大,则产生很多任务 {
if (v.size()<10000)
return std::accumulate(v.begin(),v.end(),0.0);
auto f0 {async(Accum{&v[0],&v[v.size()/4],0.0})};
auto f1 {async(Accum{&v[v.size()/4],&v[v.size()/2],0.0})};
auto f2 {async(Accum{&v[v.size()/2],&v[v.size()*3/4],0.0})};
auto f3 {async(Accum{&v[v.size()*3/4],&v[v.size()],0.0})};
return f0.get()+f1.get()+f2.get()+f3.get();
}
```
尽管这只是一个简单的并发编程示例(留意其中的”magic number“),不过我们可没有使用线程,锁,缓冲区等概念。f*变量的类型(即async()的返回值)是”std::future”类型。future.get()表示如果有必要的话则等待相应的线程(std::thread)运行结束。async的工作是根据需要来启动新线程,而future的工作则是等待新线程运行结束。”简单性”是async/future设计中最重视的一个方面;future一般也可以和线程一起使用,不过不要使用async()来启动类似I/O操作,操作互斥体(mutex),多任务交互操作等复杂任务。async()背后的理念和range-for statement很类似:简单事儿简单做,把复杂的事情留给一般的通用机制来搞定吧。
async()可以启动一个新线程或者复用一个它认为合适的已有线程(非调用线程即可)(译注:语义上并发即可,不关心具体的调度策略。和go语义中的goroutines有点像)。后者从用户视角看更有效一些(只对简单任务而言)。
参考:
* Standard: ???
* Lawrence Crowl:
[An Asynchronous Call for C++](http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2889.html).
N2889 = 09-0079.
* Herb Sutter :
[A simple async()](http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2901.pdf)
N2901 = 09-0091 .
(翻译:interma)
- C++11 FAQ中文版 - C++11 FAQ
- Stroustrup先生关于中文版的授权许可邮件
- Stroustrup先生关于C++11 FAQ的一些说明
- 关于C++11的一般性的问题
- 您是如何看待C++11的?
- 什么时候C++0x会成为一部正式的标准呢?
- 编译器何时将会实现C++11标准呢?
- 我们何时可以用到新的标准库文件?
- C++0x将提供何种新的语言特性呢?
- C++11会提供哪些新的标准库文件呢?
- C++0x努力要达到的目标有哪些?
- 指导标准委员会的具体设计目标是什么?
- 在哪里可以找到标准委员会的报告?
- 从哪里可以获得有关C++11的学术性和技术性的参考资料?
- 还有哪些地方我可以读到关于 C++0x的资料?
- 有关于C++11的视频吗?
- C++0x难学吗?
- 标准委员会是如何运行的?
- 谁在标准委员会里?
- 实现者应以什么顺序提供C++11特性?
- 将会是C++1x吗?
- 标准中的"concepts"怎么了?
- 有你不喜欢的C++特性吗?
- 关于独立的语言特性的问题
- __cplusplus宏
- alignment(对齐方式)
- 属性(Attributes)
- atomic_operations
- auto – 从初始化中推断数据类型
- C99功能特性
- 枚举类——具有类域和强类型的枚举
- carries_dependency
- 复制和重新抛出异常
- 常量表达式(constexpr)
- decltype – 推断表达式的数据类型
- 控制默认函数——默认或者禁用
- 控制默认函数——移动(move)或者复制(copy)
- 委托构造函数(Delegating constructors)
- 并发性动态初始化和析构
- noexcept – 阻止异常的传播与扩散
- 显式转换操作符
- 扩展整型
- 外部模板声明
- 序列for循环语句
- 返回值类型后置语法
- 类成员的内部初始化
- 继承的构造函数
- 初始化列表
- 内联命名空间
- Lambda表达式
- 用作模板参数的局部类型
- long long(长长整数类型)
- 内存模型
- 预防窄转换
- nullptr——空指针标识
- 对重载(override)的控制: override
- 对重载(override)的控制:final
- POD
- 原生字符串标识
- 右角括号
- 右值引用
- Simple SFINAE rule
- 静态(编译期)断言 — static_assert
- 模板别名(正式的名称为"template typedef")
- 线程本地化存储 (thread_local)
- unicode字符
- 统一初始化的语法和语义
- (广义的)联合体
- 用户定义数据标识(User-defined literals)
- 可变参数模板(Variadic Templates)
- 关于标准库的问题
- abandoning_a_process
- 算法方面的改进
- array
- async()
- atomic_operations
- 条件变量(Condition variables)
- 标准库中容器方面的改进
- std::function 和 std::bind
- std::forward_list
- std::future和std::promise
- 垃圾回收(应用程序二进制接口)
- 无序容器(unordered containers)
- 锁(locks)
- metaprogramming(元编程)and type traits
- 互斥
- 随机数的产生
- 正则表达式(regular expressions)
- 具有作用域的内存分配器
- 共享资源的智能指针——shared_ptr
- smart pointers
- 线程(thread)
- 时间工具程序
- 标准库中的元组(std::tuple)
- unique_ptr
- weak_ptr
- system error