# unique_ptr
unique_ptr(定义在中)提供了一种严格的语义上的所有权
* 拥有它所指向的对象
* 无法进行复制构造,也无法进行复制赋值操作(译注:也就是对其无法进行复制,我们无法得到指向同一个对象的两个unique_ptr),但是可以进行移动构造和移动赋值操作
* 保存指向某个对象的指针,当它本身被删除释放的时候(例如,离开某个作用域),会使用给定的删除器(deleter)删除释放它指向的对象,
unique_ptr的使用能够包括:
* 为动态申请的内存提供异常安全
* 将动态申请内存的所有权传递给某个函数
* 从某个函数返回动态申请内存的所有权
* 在容器中保存指针
“所有auto_ptr应该已经具有的(但是我们无法在C++98中实现的)功能”
unique_ptr十分依赖于右值引用和移动语义。
下面是一段传统的会产生不安全的异常的代码:
```
X* f()
{
X* p = new X;
// 做一些事情 – 可能会抛出某个异常
return p;
}
```
解决方法是,用一个unique_ptr 来管理这个对象的所有权,由其进行这个对象的删除释放工作:
```
X* f()
{
unique_ptr p(new X); // 或者使用{new X},但是不能 = new X
// 做一些事情 – 可能会抛出异常
return p.release();
}
```
现在,如果程序执行过程中抛出了异常,unique_ptr就会(毫无疑问地)删除释放它所指向的对象,这是最基本的RAII。但是,除非我们真的需要返回一个内建的指针,我们可以返回一个unique_ptr,让事情变得更好。
```
unique_ptr f()
{
unique_ptr p(new X); // 或者使用{new X},但是不能 = new X
//做一些事情 – 可能会抛出异常
return p; // 对象的所有权被传递出f()
}
```
现在我们可以这样使用函数f():
```
void g()
{
unique_ptr q = f(); // 使用移动构造函数(move constructor)
q->memfct(2); // 使用q
X x = *q; // 复制指针q所指向的对象
// …
} // 在函数退出的时候,q以及它所指向的对象都被删除释放
```
unique_ptr拥有“移动意义(move semantics)”,所以我们可以使用函数f() 返回的右值对q进行初始化,这样就简单地将所有权传递给了q。
在那些要不是为了避免不安全的异常问题(以及为了保证指针所指向的对象都被正确地删除释放),我们不可以使用内建指针的情况下,我们可以在容器中保存unique_ptr以代替内建指针:
```
vector<unique_ptr<string>> vs { new string{“Doug”},
new string{“Adams”} };
```
unique_ptr可以通过一个简单的内建指针构造完成,并且与内建指针相比,两者在使用上的差别很小。特殊情况下,unique_ptr并不提供任何形式的动态检查(?)。
参考:
+ the C++ draft section 20.7.10
+ Howard E. Hinnant: unique_ptr Emulation for C++03 Compilers
+ final proposal.
- C++11 FAQ中文版 - C++11 FAQ
- Stroustrup先生关于中文版的授权许可邮件
- Stroustrup先生关于C++11 FAQ的一些说明
- 关于C++11的一般性的问题
- 您是如何看待C++11的?
- 什么时候C++0x会成为一部正式的标准呢?
- 编译器何时将会实现C++11标准呢?
- 我们何时可以用到新的标准库文件?
- C++0x将提供何种新的语言特性呢?
- C++11会提供哪些新的标准库文件呢?
- C++0x努力要达到的目标有哪些?
- 指导标准委员会的具体设计目标是什么?
- 在哪里可以找到标准委员会的报告?
- 从哪里可以获得有关C++11的学术性和技术性的参考资料?
- 还有哪些地方我可以读到关于 C++0x的资料?
- 有关于C++11的视频吗?
- C++0x难学吗?
- 标准委员会是如何运行的?
- 谁在标准委员会里?
- 实现者应以什么顺序提供C++11特性?
- 将会是C++1x吗?
- 标准中的"concepts"怎么了?
- 有你不喜欢的C++特性吗?
- 关于独立的语言特性的问题
- __cplusplus宏
- alignment(对齐方式)
- 属性(Attributes)
- atomic_operations
- auto – 从初始化中推断数据类型
- C99功能特性
- 枚举类——具有类域和强类型的枚举
- carries_dependency
- 复制和重新抛出异常
- 常量表达式(constexpr)
- decltype – 推断表达式的数据类型
- 控制默认函数——默认或者禁用
- 控制默认函数——移动(move)或者复制(copy)
- 委托构造函数(Delegating constructors)
- 并发性动态初始化和析构
- noexcept – 阻止异常的传播与扩散
- 显式转换操作符
- 扩展整型
- 外部模板声明
- 序列for循环语句
- 返回值类型后置语法
- 类成员的内部初始化
- 继承的构造函数
- 初始化列表
- 内联命名空间
- Lambda表达式
- 用作模板参数的局部类型
- long long(长长整数类型)
- 内存模型
- 预防窄转换
- nullptr——空指针标识
- 对重载(override)的控制: override
- 对重载(override)的控制:final
- POD
- 原生字符串标识
- 右角括号
- 右值引用
- Simple SFINAE rule
- 静态(编译期)断言 — static_assert
- 模板别名(正式的名称为"template typedef")
- 线程本地化存储 (thread_local)
- unicode字符
- 统一初始化的语法和语义
- (广义的)联合体
- 用户定义数据标识(User-defined literals)
- 可变参数模板(Variadic Templates)
- 关于标准库的问题
- abandoning_a_process
- 算法方面的改进
- array
- async()
- atomic_operations
- 条件变量(Condition variables)
- 标准库中容器方面的改进
- std::function 和 std::bind
- std::forward_list
- std::future和std::promise
- 垃圾回收(应用程序二进制接口)
- 无序容器(unordered containers)
- 锁(locks)
- metaprogramming(元编程)and type traits
- 互斥
- 随机数的产生
- 正则表达式(regular expressions)
- 具有作用域的内存分配器
- 共享资源的智能指针——shared_ptr
- smart pointers
- 线程(thread)
- 时间工具程序
- 标准库中的元组(std::tuple)
- unique_ptr
- weak_ptr
- system error