合规国际互联网加速 OSASE为企业客户提供高速稳定SD-WAN国际加速解决方案。 广告
### 导航 - [索引](../genindex.xhtml "总目录") - [模块](../py-modindex.xhtml "Python 模块索引") | - [下一页](operator.xhtml "operator --- 标准运算符替代函数") | - [上一页](itertools.xhtml "itertools --- 为高效循环而创建迭代器的函数") | - ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png) - [Python](https://www.python.org/) » - zh\_CN 3.7.3 [文档](../index.xhtml) » - [Python 标准库](index.xhtml) » - [函数式编程模块](functional.xhtml) » - $('.inline-search').show(0); | # [`functools`](#module-functools "functools: Higher-order functions and operations on callable objects.") --- 高阶函数和可调用对象上的操作 **源代码:** [Lib/functools.py](https://github.com/python/cpython/tree/3.7/Lib/functools.py) \[https://github.com/python/cpython/tree/3.7/Lib/functools.py\] - - - - - - [`functools`](#module-functools "functools: Higher-order functions and operations on callable objects.") 模块应用于高阶函数,即——参数或(和)返回值为其他函数的函数。通常来说,此模块的功能适用于所有可调用对象。 [`functools`](#module-functools "functools: Higher-order functions and operations on callable objects.") 模块定义了以下函数: `functools.``cmp_to_key`(*func*)将(旧式的)比较函数转换为新式的 [key function](../glossary.xhtml#term-key-function) . 在类似于 [`sorted()`](functions.xhtml#sorted "sorted") , [`min()`](functions.xhtml#min "min") , [`max()`](functions.xhtml#max "max") , [`heapq.nlargest()`](heapq.xhtml#heapq.nlargest "heapq.nlargest") , [`heapq.nsmallest()`](heapq.xhtml#heapq.nsmallest "heapq.nsmallest") , [`itertools.groupby()`](itertools.xhtml#itertools.groupby "itertools.groupby") 等函数的 key 参数中使用。此函数主要用作将 Python 2 程序转换至新版的转换工具,以保持对比较函数的兼容。 比较函数意为一个可调用对象,该对象接受两个参数并比较它们,结果为小于则返回一个负数,相等则返回零,大于则返回一个正数。key function则是一个接受一个参数,并返回另一个用以排序的值的可调用对象。 示例: ``` sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order ``` 有关排序示例和简要排序教程,请参阅 [排序指南](../howto/sorting.xhtml#sortinghowto) 。 3\.2 新版功能. `@``functools.``lru_cache`(*maxsize=128*, *typed=False*)一个提供缓存功能的装饰器,包装一个函数,缓存其\*maxsize\*组传入参数,在下次以相同参数调用时直接返回上一次的结果。用以节约高开销或I/O函数的调用时间。 由于使用了字典存储缓存,所以该函数的固定参数和关键字参数必须是可哈希的。 不同模式的参数可能被视为不同从而产生多个缓存项,例如, f(a=1, b=2) 和 f(b=2, a=1) 因其参数顺序不同,可能会被缓存两次。 如果 *maxsize* 设置为 `None` ,LRU功能将被禁用且缓存数量无上限。 *maxsize* 设置为2的幂时可获得最佳性能。 如果 *typed* 设置为true,不同类型的函数参数将被分别缓存。例如, `f(3)` 和 `f(3.0)` 将被视为不同而分别缓存。 To help measure the effectiveness of the cache and tune the *maxsize*parameter, the wrapped function is instrumented with a `cache_info()`function that returns a [named tuple](../glossary.xhtml#term-named-tuple) showing *hits*, *misses*, *maxsize* and *currsize*. In a multi-threaded environment, the hits and misses are approximate. 该装饰器也提供了一个用于清理/使缓存失效的函数 `cache_clear()` 。 The original underlying function is accessible through the `__wrapped__` attribute. This is useful for introspection, for bypassing the cache, or for rewrapping the function with a different cache. “最久未使用算法”(LRU) 缓存 算法链接:<[https://en.wikipedia.org/wiki/Cache\_algorithms#Examples](https://en.wikipedia.org/wiki/Cache_algorithms#Examples)> 这个缓存在“最近的调用是即将到来的调用的最佳预测因子”时性能最好,(比如,新闻服务器上最受欢迎的文章倾向于每天更改)。“缓存大小限制”参数保证缓存不会在长时间运行的进程比如说网站服务器上无限制的增加自身的大小。 一般来说,LRU缓存只在当你想要重用之前计算的结果时使用。因此,用它缓存具有副作用的函数、需要在每次调用时创建不同、易变的对象的函数或者诸如time()或random()之类的不纯函数是没有意义的。 静态 Web 内容的 LRU 缓存示例: ``` @lru_cache(maxsize=32) def get_pep(num): 'Retrieve text of a Python Enhancement Proposal' resource = 'http://www.python.org/dev/peps/pep-%04d/' % num try: with urllib.request.urlopen(resource) as s: return s.read() except urllib.error.HTTPError: return 'Not Found' >>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991: ... pep = get_pep(n) ... print(n, len(pep)) >>> get_pep.cache_info() CacheInfo(hits=3, misses=8, maxsize=32, currsize=8) ``` Example of efficiently computing [Fibonacci numbers](https://en.wikipedia.org/wiki/Fibonacci_number) \[https://en.wikipedia.org/wiki/Fibonacci\_number\]using a cache to implement a [dynamic programming](https://en.wikipedia.org/wiki/Dynamic_programming) \[https://en.wikipedia.org/wiki/Dynamic\_programming\]technique: ``` @lru_cache(maxsize=None) def fib(n): if n < 2: return n return fib(n-1) + fib(n-2) >>> [fib(n) for n in range(16)] [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] >>> fib.cache_info() CacheInfo(hits=28, misses=16, maxsize=None, currsize=16) ``` 3\.2 新版功能. 在 3.3 版更改: 添加 *typed* 选项。 `@``functools.``total_ordering`Given a class defining one or more rich comparison ordering methods, this class decorator supplies the rest. This simplifies the effort involved in specifying all of the possible rich comparison operations: The class must define one of [`__lt__()`](../reference/datamodel.xhtml#object.__lt__ "object.__lt__"), [`__le__()`](../reference/datamodel.xhtml#object.__le__ "object.__le__"), [`__gt__()`](../reference/datamodel.xhtml#object.__gt__ "object.__gt__"), or [`__ge__()`](../reference/datamodel.xhtml#object.__ge__ "object.__ge__"). In addition, the class should supply an [`__eq__()`](../reference/datamodel.xhtml#object.__eq__ "object.__eq__") method. 例如: ``` @total_ordering class Student: def _is_valid_operand(self, other): return (hasattr(other, "lastname") and hasattr(other, "firstname")) def __eq__(self, other): if not self._is_valid_operand(other): return NotImplemented return ((self.lastname.lower(), self.firstname.lower()) == (other.lastname.lower(), other.firstname.lower())) def __lt__(self, other): if not self._is_valid_operand(other): return NotImplemented return ((self.lastname.lower(), self.firstname.lower()) < (other.lastname.lower(), other.firstname.lower())) ``` 注解 While this decorator makes it easy to create well behaved totally ordered types, it *does* come at the cost of slower execution and more complex stack traces for the derived comparison methods. If performance benchmarking indicates this is a bottleneck for a given application, implementing all six rich comparison methods instead is likely to provide an easy speed boost. 3\.2 新版功能. 在 3.4 版更改: Returning NotImplemented from the underlying comparison function for unrecognised types is now supported. `functools.``partial`(*func*, *\*args*, *\*\*keywords*)Return a new [partial object](#partial-objects) which when called will behave like *func* called with the positional arguments *args*and keyword arguments *keywords*. If more arguments are supplied to the call, they are appended to *args*. If additional keyword arguments are supplied, they extend and override *keywords*. Roughly equivalent to: ``` def partial(func, *args, **keywords): def newfunc(*fargs, **fkeywords): newkeywords = keywords.copy() newkeywords.update(fkeywords) return func(*args, *fargs, **newkeywords) newfunc.func = func newfunc.args = args newfunc.keywords = keywords return newfunc ``` The [`partial()`](#functools.partial "functools.partial") is used for partial function application which "freezes" some portion of a function's arguments and/or keywords resulting in a new object with a simplified signature. For example, [`partial()`](#functools.partial "functools.partial") can be used to create a callable that behaves like the [`int()`](functions.xhtml#int "int") function where the *base* argument defaults to two: ``` >>> from functools import partial >>> basetwo = partial(int, base=2) >>> basetwo.__doc__ = 'Convert base 2 string to an int.' >>> basetwo('10010') 18 ``` *class* `functools.``partialmethod`(*func*, *\*args*, *\*\*keywords*)Return a new [`partialmethod`](#functools.partialmethod "functools.partialmethod") descriptor which behaves like [`partial`](#functools.partial "functools.partial") except that it is designed to be used as a method definition rather than being directly callable. *func* must be a [descriptor](../glossary.xhtml#term-descriptor) or a callable (objects which are both, like normal functions, are handled as descriptors). When *func* is a descriptor (such as a normal Python function, [`classmethod()`](functions.xhtml#classmethod "classmethod"), [`staticmethod()`](functions.xhtml#staticmethod "staticmethod"), `abstractmethod()` or another instance of [`partialmethod`](#functools.partialmethod "functools.partialmethod")), calls to `__get__` are delegated to the underlying descriptor, and an appropriate [partial object](#partial-objects) returned as the result. When *func* is a non-descriptor callable, an appropriate bound method is created dynamically. This behaves like a normal Python function when used as a method: the *self* argument will be inserted as the first positional argument, even before the *args* and *keywords* supplied to the [`partialmethod`](#functools.partialmethod "functools.partialmethod") constructor. 示例: ``` >>> class Cell(object): ... def __init__(self): ... self._alive = False ... @property ... def alive(self): ... return self._alive ... def set_state(self, state): ... self._alive = bool(state) ... set_alive = partialmethod(set_state, True) ... set_dead = partialmethod(set_state, False) ... >>> c = Cell() >>> c.alive False >>> c.set_alive() >>> c.alive True ``` 3\.4 新版功能. `functools.``reduce`(*function*, *iterable*\[, *initializer*\])Apply *function* of two arguments cumulatively to the items of *sequence*, from left to right, so as to reduce the sequence to a single value. For example, `reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])` calculates `((((1+2)+3)+4)+5)`. The left argument, *x*, is the accumulated value and the right argument, *y*, is the update value from the *sequence*. If the optional *initializer* is present, it is placed before the items of the sequence in the calculation, and serves as a default when the sequence is empty. If *initializer* is not given and *sequence* contains only one item, the first item is returned. 大致相当于: ``` def reduce(function, iterable, initializer=None): it = iter(iterable) if initializer is None: value = next(it) else: value = initializer for element in it: value = function(value, element) return value ``` `@``functools.``singledispatch`Transform a function into a [single-dispatch](../glossary.xhtml#term-single-dispatch) [generic function](../glossary.xhtml#term-generic-function). To define a generic function, decorate it with the `@singledispatch`decorator. Note that the dispatch happens on the type of the first argument, create your function accordingly: ``` >>> from functools import singledispatch >>> @singledispatch ... def fun(arg, verbose=False): ... if verbose: ... print("Let me just say,", end=" ") ... print(arg) ``` To add overloaded implementations to the function, use the `register()`attribute of the generic function. It is a decorator. For functions annotated with types, the decorator will infer the type of the first argument automatically: ``` >>> @fun.register ... def _(arg: int, verbose=False): ... if verbose: ... print("Strength in numbers, eh?", end=" ") ... print(arg) ... >>> @fun.register ... def _(arg: list, verbose=False): ... if verbose: ... print("Enumerate this:") ... for i, elem in enumerate(arg): ... print(i, elem) ``` For code which doesn't use type annotations, the appropriate type argument can be passed explicitly to the decorator itself: ``` >>> @fun.register(complex) ... def _(arg, verbose=False): ... if verbose: ... print("Better than complicated.", end=" ") ... print(arg.real, arg.imag) ... ``` To enable registering lambdas and pre-existing functions, the `register()` attribute can be used in a functional form: ``` >>> def nothing(arg, verbose=False): ... print("Nothing.") ... >>> fun.register(type(None), nothing) ``` The `register()` attribute returns the undecorated function which enables decorator stacking, pickling, as well as creating unit tests for each variant independently: ``` >>> @fun.register(float) ... @fun.register(Decimal) ... def fun_num(arg, verbose=False): ... if verbose: ... print("Half of your number:", end=" ") ... print(arg / 2) ... >>> fun_num is fun False ``` When called, the generic function dispatches on the type of the first argument: ``` >>> fun("Hello, world.") Hello, world. >>> fun("test.", verbose=True) Let me just say, test. >>> fun(42, verbose=True) Strength in numbers, eh? 42 >>> fun(['spam', 'spam', 'eggs', 'spam'], verbose=True) Enumerate this: 0 spam 1 spam 2 eggs 3 spam >>> fun(None) Nothing. >>> fun(1.23) 0.615 ``` Where there is no registered implementation for a specific type, its method resolution order is used to find a more generic implementation. The original function decorated with `@singledispatch` is registered for the base `object` type, which means it is used if no better implementation is found. To check which implementation will the generic function choose for a given type, use the `dispatch()` attribute: ``` >>> fun.dispatch(float) <function fun_num at 0x1035a2840> >>> fun.dispatch(dict) # note: default implementation <function fun at 0x103fe0000> ``` To access all registered implementations, use the read-only `registry`attribute: ``` >>> fun.registry.keys() dict_keys([<class 'NoneType'>, <class 'int'>, <class 'object'>, <class 'decimal.Decimal'>, <class 'list'>, <class 'float'>]) >>> fun.registry[float] <function fun_num at 0x1035a2840> >>> fun.registry[object] <function fun at 0x103fe0000> ``` 3\.4 新版功能. 在 3.7 版更改: The `register()` attribute supports using type annotations. `functools.``update_wrapper`(*wrapper*, *wrapped*, *assigned=WRAPPER\_ASSIGNMENTS*, *updated=WRAPPER\_UPDATES*)Update a *wrapper* function to look like the *wrapped* function. The optional arguments are tuples to specify which attributes of the original function are assigned directly to the matching attributes on the wrapper function and which attributes of the wrapper function are updated with the corresponding attributes from the original function. The default values for these arguments are the module level constants `WRAPPER_ASSIGNMENTS` (which assigns to the wrapper function's `__module__`, `__name__`, `__qualname__`, `__annotations__`and `__doc__`, the documentation string) and `WRAPPER_UPDATES` (which updates the wrapper function's `__dict__`, i.e. the instance dictionary). To allow access to the original function for introspection and other purposes (e.g. bypassing a caching decorator such as [`lru_cache()`](#functools.lru_cache "functools.lru_cache")), this function automatically adds a `__wrapped__` attribute to the wrapper that refers to the function being wrapped. The main intended use for this function is in [decorator](../glossary.xhtml#term-decorator) functions which wrap the decorated function and return the wrapper. If the wrapper function is not updated, the metadata of the returned function will reflect the wrapper definition rather than the original function definition, which is typically less than helpful. [`update_wrapper()`](#functools.update_wrapper "functools.update_wrapper") may be used with callables other than functions. Any attributes named in *assigned* or *updated* that are missing from the object being wrapped are ignored (i.e. this function will not attempt to set them on the wrapper function). [`AttributeError`](exceptions.xhtml#AttributeError "AttributeError") is still raised if the wrapper function itself is missing any attributes named in *updated*. 3\.2 新版功能: Automatic addition of the `__wrapped__` attribute. 3\.2 新版功能: Copying of the `__annotations__` attribute by default. 在 3.2 版更改: Missing attributes no longer trigger an [`AttributeError`](exceptions.xhtml#AttributeError "AttributeError"). 在 3.4 版更改: The `__wrapped__` attribute now always refers to the wrapped function, even if that function defined a `__wrapped__` attribute. (see [bpo-17482](https://bugs.python.org/issue17482) \[https://bugs.python.org/issue17482\]) `@``functools.``wraps`(*wrapped*, *assigned=WRAPPER\_ASSIGNMENTS*, *updated=WRAPPER\_UPDATES*)This is a convenience function for invoking [`update_wrapper()`](#functools.update_wrapper "functools.update_wrapper") as a function decorator when defining a wrapper function. It is equivalent to `partial(update_wrapper, wrapped=wrapped, assigned=assigned, updated=updated)`. For example: ``` >>> from functools import wraps >>> def my_decorator(f): ... @wraps(f) ... def wrapper(*args, **kwds): ... print('Calling decorated function') ... return f(*args, **kwds) ... return wrapper ... >>> @my_decorator ... def example(): ... """Docstring""" ... print('Called example function') ... >>> example() Calling decorated function Called example function >>> example.__name__ 'example' >>> example.__doc__ 'Docstring' ``` Without the use of this decorator factory, the name of the example function would have been `'wrapper'`, and the docstring of the original `example()`would have been lost. ## [`partial`](#functools.partial "functools.partial") Objects [`partial`](#functools.partial "functools.partial") objects are callable objects created by [`partial()`](#functools.partial "functools.partial"). They have three read-only attributes: `partial.``func`A callable object or function. Calls to the [`partial`](#functools.partial "functools.partial") object will be forwarded to [`func`](#functools.partial.func "functools.partial.func") with new arguments and keywords. `partial.``args`The leftmost positional arguments that will be prepended to the positional arguments provided to a [`partial`](#functools.partial "functools.partial") object call. `partial.``keywords`The keyword arguments that will be supplied when the [`partial`](#functools.partial "functools.partial") object is called. [`partial`](#functools.partial "functools.partial") objects are like `function` objects in that they are callable, weak referencable, and can have attributes. There are some important differences. For instance, the [`__name__`](stdtypes.xhtml#definition.__name__ "definition.__name__") and `__doc__` attributes are not created automatically. Also, [`partial`](#functools.partial "functools.partial") objects defined in classes behave like static methods and do not transform into bound methods during instance attribute look-up. ### 导航 - [索引](../genindex.xhtml "总目录") - [模块](../py-modindex.xhtml "Python 模块索引") | - [下一页](operator.xhtml "operator --- 标准运算符替代函数") | - [上一页](itertools.xhtml "itertools --- 为高效循环而创建迭代器的函数") | - ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png) - [Python](https://www.python.org/) » - zh\_CN 3.7.3 [文档](../index.xhtml) » - [Python 标准库](index.xhtml) » - [函数式编程模块](functional.xhtml) » - $('.inline-search').show(0); | © [版权所有](../copyright.xhtml) 2001-2019, Python Software Foundation. Python 软件基金会是一个非盈利组织。 [请捐助。](https://www.python.org/psf/donations/) 最后更新于 5月 21, 2019. [发现了问题](../bugs.xhtml)? 使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 创建。