### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](site.xhtml "site --- Site-specific configuration hook") |
- [上一页](gc.xhtml "gc --- 垃圾回收器接口") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 标准库](index.xhtml) »
- [Python运行时服务](python.xhtml) »
- $('.inline-search').show(0); |
# [`inspect`](#module-inspect "inspect: Extract information and source code from live objects.") --- 检查对象
**源代码:** [Lib/inspect.py](https://github.com/python/cpython/tree/3.7/Lib/inspect.py) \[https://github.com/python/cpython/tree/3.7/Lib/inspect.py\]
- - - - - -
[`inspect`](#module-inspect "inspect: Extract information and source code from live objects.") 模块提供了一些有用的函数帮助获取对象的信息,例如模块、类、方法、函数、回溯、帧对象以及代码对象。例如它可以帮助你检查类的内容,获取某个方法的源代码,取得并格式化某个函数的参数列表,或者获取你需要显示的回溯的详细信息。
该模块提供了4种主要的功能:类型检查、获取源代码、检查类与函数、检查解释器的调用堆栈。
## 类型和成员
[`getmembers()`](#inspect.getmembers "inspect.getmembers") 函数获取对象的成员,例如类或模块。函数名以"is"开始的函数主要作为 [`getmembers()`](#inspect.getmembers "inspect.getmembers") 的第2个参数使用。它们也可用于判定某对象是否有如下的特殊属性:
类型
属性
描述
module 模块
\_\_doc\_\_
文档字符串
\_\_file\_\_
文件名(内置模块没有文件名)
class 类
\_\_doc\_\_
文档字符串
\_\_name\_\_
类定义时所使用的名称
\_\_qualname\_\_
qualified name -- 限定名称
\_\_module\_\_
该类型被定义时所在的模块的名称
method 方法
\_\_doc\_\_
文档字符串
\_\_name\_\_
该方法定义时所使用的名称
\_\_qualname\_\_
qualified name -- 限定名称
\_\_func\_\_
实现该方法的函数对象
\_\_self\_\_
该方法被绑定的实例,若没有绑定则为 `None`
函数
\_\_doc\_\_
文档字符串
\_\_name\_\_
用于定义此函数的名称
\_\_qualname\_\_
qualified name -- 限定名称
\_\_code\_\_
包含已编译函数的代码对象 [bytecode](../glossary.xhtml#term-bytecode)
\_\_defaults\_\_
tuple of any default values for positional or keyword parameters
\_\_kwdefaults\_\_
mapping of any default values for keyword-only parameters
\_\_globals\_\_
global namespace in which this function was defined
\_\_annotations\_\_
mapping of parameters names to annotations; `"return"` key is reserved for return annotations.
回溯
tb\_frame
此级别的框架对象
tb\_lasti
index of last attempted instruction in bytecode
tb\_lineno
current line number in Python source code
tb\_next
next inner traceback object (called by this level)
框架
f\_back
next outer frame object (this frame's caller)
f\_builtins
builtins namespace seen by this frame
f\_code
code object being executed in this frame
f\_globals
global namespace seen by this frame
f\_lasti
index of last attempted instruction in bytecode
f\_lineno
current line number in Python source code
f\_locals
local namespace seen by this frame
f\_trace
tracing function for this frame, or `None`
code
co\_argcount
number of arguments (not including keyword only arguments, \* or \*\* args)
co\_code
原始编译字节码的字符串
co\_cellvars
单元变量名称的元组(通过包含作用域引用)
co\_consts
字节码中使用的常量元组
co\_filename
创建此代码对象的文件的名称
co\_firstlineno
number of first line in Python source code
co\_flags
bitmap of `CO_*` flags, read more [here](#inspect-module-co-flags)
co\_lnotab
编码的行号到字节码索引的映射
co\_freevars
tuple of names of free variables (referenced via a function's closure)
co\_kwonlyargcount
number of keyword only arguments (not including \*\* arg)
co\_name
定义此代码对象的名称
co\_names
局部变量名称的元组
co\_nlocals
局部变量的数量
co\_stacksize
需要虚拟机堆栈空间
co\_varnames
参数名和局部变量的元组
生成器
\_\_name\_\_
名称
\_\_qualname\_\_
qualified name -- 限定名称
gi\_frame
框架
gi\_running
生成器在运行吗?
gi\_code
code
gi\_yieldfrom
object being iterated by `yield from`, or `None`
协程
\_\_name\_\_
名称
\_\_qualname\_\_
qualified name -- 限定名称
cr\_await
object being awaited on, or `None`
cr\_frame
框架
cr\_running
is the coroutine running?
cr\_code
code
cr\_origin
where coroutine was created, or `None`. See [`sys.set_coroutine_origin_tracking_depth()`](sys.xhtml#sys.set_coroutine_origin_tracking_depth "sys.set_coroutine_origin_tracking_depth")
builtin
\_\_doc\_\_
文档字符串
\_\_name\_\_
此函数或方法的原始名称
\_\_qualname\_\_
qualified name -- 限定名称
\_\_self\_\_
instance to which a method is bound, or `None`
在 3.5 版更改: Add `__qualname__` and `gi_yieldfrom` attributes to generators.
The `__name__` attribute of generators is now set from the function name, instead of the code name, and it can now be modified.
在 3.7 版更改: Add `cr_origin` attribute to coroutines.
`inspect.``getmembers`(*object*\[, *predicate*\])Return all the members of an object in a list of (name, value) pairs sorted by name. If the optional *predicate* argument is supplied, only members for which the predicate returns a true value are included.
注解
[`getmembers()`](#inspect.getmembers "inspect.getmembers") will only return class attributes defined in the metaclass when the argument is a class and those attributes have been listed in the metaclass' custom [`__dir__()`](../reference/datamodel.xhtml#object.__dir__ "object.__dir__").
`inspect.``getmodulename`(*path*)Return the name of the module named by the file *path*, without including the names of enclosing packages. The file extension is checked against all of the entries in [`importlib.machinery.all_suffixes()`](importlib.xhtml#importlib.machinery.all_suffixes "importlib.machinery.all_suffixes"). If it matches, the final path component is returned with the extension removed. Otherwise, `None` is returned.
Note that this function *only* returns a meaningful name for actual Python modules - paths that potentially refer to Python packages will still return `None`.
在 3.3 版更改: The function is based directly on [`importlib`](importlib.xhtml#module-importlib "importlib: The implementation of the import machinery.").
`inspect.``ismodule`(*object*)Return true if the object is a module.
`inspect.``isclass`(*object*)Return true if the object is a class, whether built-in or created in Python code.
`inspect.``ismethod`(*object*)Return true if the object is a bound method written in Python.
`inspect.``isfunction`(*object*)Return true if the object is a Python function, which includes functions created by a [lambda](../glossary.xhtml#term-lambda) expression.
`inspect.``isgeneratorfunction`(*object*)Return true if the object is a Python generator function.
`inspect.``isgenerator`(*object*)Return true if the object is a generator.
`inspect.``iscoroutinefunction`(*object*)Return true if the object is a [coroutine function](../glossary.xhtml#term-coroutine-function)(a function defined with an [`async def`](../reference/compound_stmts.xhtml#async-def) syntax).
3\.5 新版功能.
`inspect.``iscoroutine`(*object*)Return true if the object is a [coroutine](../glossary.xhtml#term-coroutine) created by an [`async def`](../reference/compound_stmts.xhtml#async-def) function.
3\.5 新版功能.
`inspect.``isawaitable`(*object*)Return true if the object can be used in [`await`](../reference/expressions.xhtml#await) expression.
Can also be used to distinguish generator-based coroutines from regular generators:
```
def gen():
yield
@types.coroutine
def gen_coro():
yield
assert not isawaitable(gen())
assert isawaitable(gen_coro())
```
3\.5 新版功能.
`inspect.``isasyncgenfunction`(*object*)Return true if the object is an [asynchronous generator](../glossary.xhtml#term-asynchronous-generator) function, for example:
```
>>> async def agen():
... yield 1
...
>>> inspect.isasyncgenfunction(agen)
True
```
3\.6 新版功能.
`inspect.``isasyncgen`(*object*)Return true if the object is an [asynchronous generator iterator](../glossary.xhtml#term-asynchronous-generator-iterator)created by an [asynchronous generator](../glossary.xhtml#term-asynchronous-generator) function.
3\.6 新版功能.
`inspect.``istraceback`(*object*)Return true if the object is a traceback.
`inspect.``isframe`(*object*)Return true if the object is a frame.
`inspect.``iscode`(*object*)Return true if the object is a code.
`inspect.``isbuiltin`(*object*)Return true if the object is a built-in function or a bound built-in method.
`inspect.``isroutine`(*object*)Return true if the object is a user-defined or built-in function or method.
`inspect.``isabstract`(*object*)Return true if the object is an abstract base class.
`inspect.``ismethoddescriptor`(*object*)Return true if the object is a method descriptor, but not if [`ismethod()`](#inspect.ismethod "inspect.ismethod"), [`isclass()`](#inspect.isclass "inspect.isclass"), [`isfunction()`](#inspect.isfunction "inspect.isfunction") or [`isbuiltin()`](#inspect.isbuiltin "inspect.isbuiltin")are true.
This, for example, is true of `int.__add__`. An object passing this test has a [`__get__()`](../reference/datamodel.xhtml#object.__get__ "object.__get__") method but not a [`__set__()`](../reference/datamodel.xhtml#object.__set__ "object.__set__")method, but beyond that the set of attributes varies. A [`__name__`](stdtypes.xhtml#definition.__name__ "definition.__name__") attribute is usually sensible, and `__doc__` often is.
Methods implemented via descriptors that also pass one of the other tests return false from the [`ismethoddescriptor()`](#inspect.ismethoddescriptor "inspect.ismethoddescriptor") test, simply because the other tests promise more -- you can, e.g., count on having the `__func__` attribute (etc) when an object passes [`ismethod()`](#inspect.ismethod "inspect.ismethod").
`inspect.``isdatadescriptor`(*object*)Return true if the object is a data descriptor.
Data descriptors have both a [`__get__`](../reference/datamodel.xhtml#object.__get__ "object.__get__") and a [`__set__`](../reference/datamodel.xhtml#object.__set__ "object.__set__") method. Examples are properties (defined in Python), getsets, and members. The latter two are defined in C and there are more specific tests available for those types, which is robust across Python implementations. Typically, data descriptors will also have [`__name__`](stdtypes.xhtml#definition.__name__ "definition.__name__") and `__doc__` attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed.
`inspect.``isgetsetdescriptor`(*object*)Return true if the object is a getset descriptor.
**CPython implementation detail:** getsets are attributes defined in extension modules via [`PyGetSetDef`](../c-api/structures.xhtml#c.PyGetSetDef "PyGetSetDef") structures. For Python implementations without such types, this method will always return `False`.
`inspect.``ismemberdescriptor`(*object*)Return true if the object is a member descriptor.
**CPython implementation detail:** Member descriptors are attributes defined in extension modules via [`PyMemberDef`](../c-api/structures.xhtml#c.PyMemberDef "PyMemberDef") structures. For Python implementations without such types, this method will always return `False`.
## Retrieving source code
`inspect.``getdoc`(*object*)Get the documentation string for an object, cleaned up with [`cleandoc()`](#inspect.cleandoc "inspect.cleandoc"). If the documentation string for an object is not provided and the object is a class, a method, a property or a descriptor, retrieve the documentation string from the inheritance hierarchy.
在 3.5 版更改: Documentation strings are now inherited if not overridden.
`inspect.``getcomments`(*object*)Return in a single string any lines of comments immediately preceding the object's source code (for a class, function, or method), or at the top of the Python source file (if the object is a module). If the object's source code is unavailable, return `None`. This could happen if the object has been defined in C or the interactive shell.
`inspect.``getfile`(*object*)Return the name of the (text or binary) file in which an object was defined. This will fail with a [`TypeError`](exceptions.xhtml#TypeError "TypeError") if the object is a built-in module, class, or function.
`inspect.``getmodule`(*object*)Try to guess which module an object was defined in.
`inspect.``getsourcefile`(*object*)Return the name of the Python source file in which an object was defined. This will fail with a [`TypeError`](exceptions.xhtml#TypeError "TypeError") if the object is a built-in module, class, or function.
`inspect.``getsourcelines`(*object*)Return a list of source lines and starting line number for an object. The argument may be a module, class, method, function, traceback, frame, or code object. The source code is returned as a list of the lines corresponding to the object and the line number indicates where in the original source file the first line of code was found. An [`OSError`](exceptions.xhtml#OSError "OSError") is raised if the source code cannot be retrieved.
在 3.3 版更改: [`OSError`](exceptions.xhtml#OSError "OSError") is raised instead of [`IOError`](exceptions.xhtml#IOError "IOError"), now an alias of the former.
`inspect.``getsource`(*object*)Return the text of the source code for an object. The argument may be a module, class, method, function, traceback, frame, or code object. The source code is returned as a single string. An [`OSError`](exceptions.xhtml#OSError "OSError") is raised if the source code cannot be retrieved.
在 3.3 版更改: [`OSError`](exceptions.xhtml#OSError "OSError") is raised instead of [`IOError`](exceptions.xhtml#IOError "IOError"), now an alias of the former.
`inspect.``cleandoc`(*doc*)Clean up indentation from docstrings that are indented to line up with blocks of code.
All leading whitespace is removed from the first line. Any leading whitespace that can be uniformly removed from the second line onwards is removed. Empty lines at the beginning and end are subsequently removed. Also, all tabs are expanded to spaces.
## Introspecting callables with the Signature object
3\.3 新版功能.
The Signature object represents the call signature of a callable object and its return annotation. To retrieve a Signature object, use the [`signature()`](#inspect.signature "inspect.signature")function.
`inspect.``signature`(*callable*, *\**, *follow\_wrapped=True*)Return a [`Signature`](#inspect.Signature "inspect.Signature") object for the given `callable`:
```
>>> from inspect import signature
>>> def foo(a, *, b:int, **kwargs):
... pass
>>> sig = signature(foo)
>>> str(sig)
'(a, *, b:int, **kwargs)'
>>> str(sig.parameters['b'])
'b:int'
>>> sig.parameters['b'].annotation
<class 'int'>
```
Accepts a wide range of Python callables, from plain functions and classes to [`functools.partial()`](functools.xhtml#functools.partial "functools.partial") objects.
Raises [`ValueError`](exceptions.xhtml#ValueError "ValueError") if no signature can be provided, and [`TypeError`](exceptions.xhtml#TypeError "TypeError") if that type of object is not supported.
A slash(/) in the signature of a function denotes that the parameters prior to it are positional-only. For more info, see [the FAQ entry on positional-only parameters](../faq/programming.xhtml#faq-positional-only-arguments).
3\.5 新版功能: `follow_wrapped` parameter. Pass `False` to get a signature of `callable` specifically (`callable.__wrapped__` will not be used to unwrap decorated callables.)
注解
Some callables may not be introspectable in certain implementations of Python. For example, in CPython, some built-in functions defined in C provide no metadata about their arguments.
*class* `inspect.``Signature`(*parameters=None*, *\**, *return\_annotation=Signature.empty*)A Signature object represents the call signature of a function and its return annotation. For each parameter accepted by the function it stores a [`Parameter`](#inspect.Parameter "inspect.Parameter") object in its [`parameters`](#inspect.Signature.parameters "inspect.Signature.parameters") collection.
The optional *parameters* argument is a sequence of [`Parameter`](#inspect.Parameter "inspect.Parameter")objects, which is validated to check that there are no parameters with duplicate names, and that the parameters are in the right order, i.e. positional-only first, then positional-or-keyword, and that parameters with defaults follow parameters without defaults.
The optional *return\_annotation* argument, can be an arbitrary Python object, is the "return" annotation of the callable.
Signature objects are *immutable*. Use [`Signature.replace()`](#inspect.Signature.replace "inspect.Signature.replace") to make a modified copy.
在 3.5 版更改: Signature objects are picklable and hashable.
`empty`A special class-level marker to specify absence of a return annotation.
`parameters`An ordered mapping of parameters' names to the corresponding [`Parameter`](#inspect.Parameter "inspect.Parameter") objects. Parameters appear in strict definition order, including keyword-only parameters.
在 3.7 版更改: Python only explicitly guaranteed that it preserved the declaration order of keyword-only parameters as of version 3.7, although in practice this order had always been preserved in Python 3.
`return_annotation`The "return" annotation for the callable. If the callable has no "return" annotation, this attribute is set to [`Signature.empty`](#inspect.Signature.empty "inspect.Signature.empty").
`bind`(*\*args*, *\*\*kwargs*)Create a mapping from positional and keyword arguments to parameters. Returns [`BoundArguments`](#inspect.BoundArguments "inspect.BoundArguments") if `*args` and `**kwargs` match the signature, or raises a [`TypeError`](exceptions.xhtml#TypeError "TypeError").
`bind_partial`(*\*args*, *\*\*kwargs*)Works the same way as [`Signature.bind()`](#inspect.Signature.bind "inspect.Signature.bind"), but allows the omission of some required arguments (mimics [`functools.partial()`](functools.xhtml#functools.partial "functools.partial") behavior.) Returns [`BoundArguments`](#inspect.BoundArguments "inspect.BoundArguments"), or raises a [`TypeError`](exceptions.xhtml#TypeError "TypeError") if the passed arguments do not match the signature.
`replace`(*\*\[, parameters\]\[, return\_annotation\]*)Create a new Signature instance based on the instance replace was invoked on. It is possible to pass different `parameters` and/or `return_annotation` to override the corresponding properties of the base signature. To remove return\_annotation from the copied Signature, pass in [`Signature.empty`](#inspect.Signature.empty "inspect.Signature.empty").
```
>>> def test(a, b):
... pass
>>> sig = signature(test)
>>> new_sig = sig.replace(return_annotation="new return anno")
>>> str(new_sig)
"(a, b) -> 'new return anno'"
```
*classmethod* `from_callable`(*obj*, *\**, *follow\_wrapped=True*)Return a [`Signature`](#inspect.Signature "inspect.Signature") (or its subclass) object for a given callable `obj`. Pass `follow_wrapped=False` to get a signature of `obj`without unwrapping its `__wrapped__` chain.
This method simplifies subclassing of [`Signature`](#inspect.Signature "inspect.Signature"):
```
class MySignature(Signature):
pass
sig = MySignature.from_callable(min)
assert isinstance(sig, MySignature)
```
3\.5 新版功能.
*class* `inspect.``Parameter`(*name*, *kind*, *\**, *default=Parameter.empty*, *annotation=Parameter.empty*)Parameter objects are *immutable*. Instead of modifying a Parameter object, you can use [`Parameter.replace()`](#inspect.Parameter.replace "inspect.Parameter.replace") to create a modified copy.
在 3.5 版更改: Parameter objects are picklable and hashable.
`empty`A special class-level marker to specify absence of default values and annotations.
`name`The name of the parameter as a string. The name must be a valid Python identifier.
**CPython implementation detail:** CPython generates implicit parameter names of the form `.0` on the code objects used to implement comprehensions and generator expressions.
在 3.6 版更改: These parameter names are exposed by this module as names like `implicit0`.
`default`The default value for the parameter. If the parameter has no default value, this attribute is set to [`Parameter.empty`](#inspect.Parameter.empty "inspect.Parameter.empty").
`annotation`The annotation for the parameter. If the parameter has no annotation, this attribute is set to [`Parameter.empty`](#inspect.Parameter.empty "inspect.Parameter.empty").
`kind`Describes how argument values are bound to the parameter. Possible values (accessible via [`Parameter`](#inspect.Parameter "inspect.Parameter"), like `Parameter.KEYWORD_ONLY`):
名称
意义
*POSITIONAL\_ONLY*
Value must be supplied as a positional argument.
Python has no explicit syntax for defining positional-only parameters, but many built-in and extension module functions (especially those that accept only one or two parameters) accept them.
*POSITIONAL\_OR\_KEYWORD*
Value may be supplied as either a keyword or positional argument (this is the standard binding behaviour for functions implemented in Python.)
*VAR\_POSITIONAL*
A tuple of positional arguments that aren't bound to any other parameter. This corresponds to a `*args` parameter in a Python function definition.
*KEYWORD\_ONLY*
Value must be supplied as a keyword argument. Keyword only parameters are those which appear after a `*` or `*args` entry in a Python function definition.
*VAR\_KEYWORD*
A dict of keyword arguments that aren't bound to any other parameter. This corresponds to a `**kwargs` parameter in a Python function definition.
Example: print all keyword-only arguments without default values:
```
>>> def foo(a, b, *, c, d=10):
... pass
>>> sig = signature(foo)
>>> for param in sig.parameters.values():
... if (param.kind == param.KEYWORD_ONLY and
... param.default is param.empty):
... print('Parameter:', param)
Parameter: c
```
`replace`(*\*\[, name\]\[, kind\]\[, default\]\[, annotation\]*)> Create a new Parameter instance based on the instance replaced was invoked on. To override a [`Parameter`](#inspect.Parameter "inspect.Parameter") attribute, pass the corresponding argument. To remove a default value or/and an annotation from a Parameter, pass [`Parameter.empty`](#inspect.Parameter.empty "inspect.Parameter.empty").
>
>
> ```
> >>> from inspect import Parameter
> >>> param = Parameter('foo', Parameter.KEYWORD_ONLY, default=42)
> >>> str(param)
> 'foo=42'
>
> >>> str(param.replace()) # Will create a shallow copy of 'param'
> 'foo=42'
>
> >>> str(param.replace(default=Parameter.empty, annotation='spam'))
> "foo:'spam'"
>
> ```
在 3.4 版更改: In Python 3.3 Parameter objects were allowed to have `name` set to `None` if their `kind` was set to `POSITIONAL_ONLY`. This is no longer permitted.
*class* `inspect.``BoundArguments`Result of a [`Signature.bind()`](#inspect.Signature.bind "inspect.Signature.bind") or [`Signature.bind_partial()`](#inspect.Signature.bind_partial "inspect.Signature.bind_partial") call. Holds the mapping of arguments to the function's parameters.
`arguments`An ordered, mutable mapping ([`collections.OrderedDict`](collections.xhtml#collections.OrderedDict "collections.OrderedDict")) of parameters' names to arguments' values. Contains only explicitly bound arguments. Changes in [`arguments`](#inspect.BoundArguments.arguments "inspect.BoundArguments.arguments") will reflect in [`args`](#inspect.BoundArguments.args "inspect.BoundArguments.args") and [`kwargs`](#inspect.BoundArguments.kwargs "inspect.BoundArguments.kwargs").
Should be used in conjunction with [`Signature.parameters`](#inspect.Signature.parameters "inspect.Signature.parameters") for any argument processing purposes.
注解
Arguments for which [`Signature.bind()`](#inspect.Signature.bind "inspect.Signature.bind") or [`Signature.bind_partial()`](#inspect.Signature.bind_partial "inspect.Signature.bind_partial") relied on a default value are skipped. However, if needed, use [`BoundArguments.apply_defaults()`](#inspect.BoundArguments.apply_defaults "inspect.BoundArguments.apply_defaults") to add them.
`args`A tuple of positional arguments values. Dynamically computed from the [`arguments`](#inspect.BoundArguments.arguments "inspect.BoundArguments.arguments") attribute.
`kwargs`A dict of keyword arguments values. Dynamically computed from the [`arguments`](#inspect.BoundArguments.arguments "inspect.BoundArguments.arguments") attribute.
`signature`A reference to the parent [`Signature`](#inspect.Signature "inspect.Signature") object.
`apply_defaults`()Set default values for missing arguments.
For variable-positional arguments (`*args`) the default is an empty tuple.
For variable-keyword arguments (`**kwargs`) the default is an empty dict.
```
>>> def foo(a, b='ham', *args): pass
>>> ba = inspect.signature(foo).bind('spam')
>>> ba.apply_defaults()
>>> ba.arguments
OrderedDict([('a', 'spam'), ('b', 'ham'), ('args', ())])
```
3\.5 新版功能.
The [`args`](#inspect.BoundArguments.args "inspect.BoundArguments.args") and [`kwargs`](#inspect.BoundArguments.kwargs "inspect.BoundArguments.kwargs") properties can be used to invoke functions:
```
def test(a, *, b):
...
sig = signature(test)
ba = sig.bind(10, b=20)
test(*ba.args, **ba.kwargs)
```
参见
[**PEP 362**](https://www.python.org/dev/peps/pep-0362) \[https://www.python.org/dev/peps/pep-0362\] - Function Signature Object.The detailed specification, implementation details and examples.
## Classes and functions
`inspect.``getclasstree`(*classes*, *unique=False*)Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and a tuple of its base classes. If the *unique* argument is true, exactly one entry appears in the returned structure for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear multiple times.
`inspect.``getargspec`(*func*)Get the names and default values of a Python function's parameters. A [named tuple](../glossary.xhtml#term-named-tuple)`ArgSpec(args, varargs, keywords, defaults)` is returned. *args* is a list of the parameter names. *varargs* and *keywords*are the names of the `*` and `**` parameters or `None`. *defaults* is a tuple of default argument values or `None` if there are no default arguments; if this tuple has *n* elements, they correspond to the last *n* elements listed in *args*.
3\.0 版后已移除: Use [`getfullargspec()`](#inspect.getfullargspec "inspect.getfullargspec") for an updated API that is usually a drop-in replacement, but also correctly handles function annotations and keyword-only parameters.
Alternatively, use [`signature()`](#inspect.signature "inspect.signature") and [Signature Object](#inspect-signature-object), which provide a more structured introspection API for callables.
`inspect.``getfullargspec`(*func*)Get the names and default values of a Python function's parameters. A [named tuple](../glossary.xhtml#term-named-tuple) is returned:
```
FullArgSpec(args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults,
annotations)
```
*args* is a list of the positional parameter names. *varargs* is the name of the `*` parameter or `None` if arbitrary positional arguments are not accepted. *varkw* is the name of the `**` parameter or `None` if arbitrary keyword arguments are not accepted. *defaults* is an *n*-tuple of default argument values corresponding to the last *n* positional parameters, or `None` if there are no such defaults defined. *kwonlyargs* is a list of keyword-only parameter names in declaration order. *kwonlydefaults* is a dictionary mapping parameter names from *kwonlyargs*to the default values used if no argument is supplied. *annotations* is a dictionary mapping parameter names to annotations. The special key `"return"` is used to report the function return value annotation (if any).
Note that [`signature()`](#inspect.signature "inspect.signature") and [Signature Object](#inspect-signature-object) provide the recommended API for callable introspection, and support additional behaviours (like positional-only arguments) that are sometimes encountered in extension module APIs. This function is retained primarily for use in code that needs to maintain compatibility with the Python 2 `inspect` module API.
在 3.4 版更改: This function is now based on [`signature()`](#inspect.signature "inspect.signature"), but still ignores `__wrapped__` attributes and includes the already bound first parameter in the signature output for bound methods.
在 3.6 版更改: This method was previously documented as deprecated in favour of [`signature()`](#inspect.signature "inspect.signature") in Python 3.5, but that decision has been reversed in order to restore a clearly supported standard interface for single-source Python 2/3 code migrating away from the legacy [`getargspec()`](#inspect.getargspec "inspect.getargspec") API.
在 3.7 版更改: Python only explicitly guaranteed that it preserved the declaration order of keyword-only parameters as of version 3.7, although in practice this order had always been preserved in Python 3.
`inspect.``getargvalues`(*frame*)Get information about arguments passed into a particular frame. A [named tuple](../glossary.xhtml#term-named-tuple)`ArgInfo(args, varargs, keywords, locals)` is returned. *args* is a list of the argument names. *varargs* and *keywords*are the names of the `*` and `**` arguments or `None`. *locals* is the locals dictionary of the given frame.
注解
This function was inadvertently marked as deprecated in Python 3.5.
`inspect.``formatargspec`(*args*\[, *varargs*, *varkw*, *defaults*, *kwonlyargs*, *kwonlydefaults*, *annotations*\[, *formatarg*, *formatvarargs*, *formatvarkw*, *formatvalue*, *formatreturns*, *formatannotations*\]\])Format a pretty argument spec from the values returned by [`getfullargspec()`](#inspect.getfullargspec "inspect.getfullargspec").
The first seven arguments are (`args`, `varargs`, `varkw`, `defaults`, `kwonlyargs`, `kwonlydefaults`, `annotations`).
The other six arguments are functions that are called to turn argument names, `*` argument name, `**` argument name, default values, return annotation and individual annotations into strings, respectively.
例如:
```
>>> from inspect import formatargspec, getfullargspec
>>> def f(a: int, b: float):
... pass
...
>>> formatargspec(*getfullargspec(f))
'(a: int, b: float)'
```
3\.5 版后已移除: Use [`signature()`](#inspect.signature "inspect.signature") and [Signature Object](#inspect-signature-object), which provide a better introspecting API for callables.
`inspect.``formatargvalues`(*args*\[, *varargs*, *varkw*, *locals*, *formatarg*, *formatvarargs*, *formatvarkw*, *formatvalue*\])Format a pretty argument spec from the four values returned by [`getargvalues()`](#inspect.getargvalues "inspect.getargvalues"). The format\* arguments are the corresponding optional formatting functions that are called to turn names and values into strings.
注解
This function was inadvertently marked as deprecated in Python 3.5.
`inspect.``getmro`(*cls*)Return a tuple of class cls's base classes, including cls, in method resolution order. No class appears more than once in this tuple. Note that the method resolution order depends on cls's type. Unless a very peculiar user-defined metatype is in use, cls will be the first element of the tuple.
`inspect.``getcallargs`(*func*, *\*args*, *\*\*kwds*)Bind the *args* and *kwds* to the argument names of the Python function or method *func*, as if it was called with them. For bound methods, bind also the first argument (typically named `self`) to the associated instance. A dict is returned, mapping the argument names (including the names of the `*` and `**` arguments, if any) to their values from *args* and *kwds*. In case of invoking *func* incorrectly, i.e. whenever `func(*args, **kwds)` would raise an exception because of incompatible signature, an exception of the same type and the same or similar message is raised. For example:
```
>>> from inspect import getcallargs
>>> def f(a, b=1, *pos, **named):
... pass
>>> getcallargs(f, 1, 2, 3) == {'a': 1, 'named': {}, 'b': 2, 'pos': (3,)}
True
>>> getcallargs(f, a=2, x=4) == {'a': 2, 'named': {'x': 4}, 'b': 1, 'pos': ()}
True
>>> getcallargs(f)
Traceback (most recent call last):
...
TypeError: f() missing 1 required positional argument: 'a'
```
3\.2 新版功能.
3\.5 版后已移除: Use [`Signature.bind()`](#inspect.Signature.bind "inspect.Signature.bind") and [`Signature.bind_partial()`](#inspect.Signature.bind_partial "inspect.Signature.bind_partial") instead.
`inspect.``getclosurevars`(*func*)Get the mapping of external name references in a Python function or method *func* to their current values. A [named tuple](../glossary.xhtml#term-named-tuple)`ClosureVars(nonlocals, globals, builtins, unbound)`is returned. *nonlocals* maps referenced names to lexical closure variables, *globals* to the function's module globals and *builtins* to the builtins visible from the function body. *unbound* is the set of names referenced in the function that could not be resolved at all given the current module globals and builtins.
[`TypeError`](exceptions.xhtml#TypeError "TypeError") is raised if *func* is not a Python function or method.
3\.3 新版功能.
`inspect.``unwrap`(*func*, *\**, *stop=None*)Get the object wrapped by *func*. It follows the chain of `__wrapped__`attributes returning the last object in the chain.
*stop* is an optional callback accepting an object in the wrapper chain as its sole argument that allows the unwrapping to be terminated early if the callback returns a true value. If the callback never returns a true value, the last object in the chain is returned as usual. For example, [`signature()`](#inspect.signature "inspect.signature") uses this to stop unwrapping if any object in the chain has a `__signature__` attribute defined.
[`ValueError`](exceptions.xhtml#ValueError "ValueError") is raised if a cycle is encountered.
3\.4 新版功能.
## The interpreter stack
When the following functions return "frame records," each record is a [named tuple](../glossary.xhtml#term-named-tuple)`FrameInfo(frame, filename, lineno, function, code_context, index)`. The tuple contains the frame object, the filename, the line number of the current line, the function name, a list of lines of context from the source code, and the index of the current line within that list.
在 3.5 版更改: Return a named tuple instead of a tuple.
注解
Keeping references to frame objects, as found in the first element of the frame records these functions return, can cause your program to create reference cycles. Once a reference cycle has been created, the lifespan of all objects which can be accessed from the objects which form the cycle can become much longer even if Python's optional cycle detector is enabled. If such cycles must be created, it is important to ensure they are explicitly broken to avoid the delayed destruction of objects and increased memory consumption which occurs.
Though the cycle detector will catch these, destruction of the frames (and local variables) can be made deterministic by removing the cycle in a [`finally`](../reference/compound_stmts.xhtml#finally) clause. This is also important if the cycle detector was disabled when Python was compiled or using [`gc.disable()`](gc.xhtml#gc.disable "gc.disable"). For example:
```
def handle_stackframe_without_leak():
frame = inspect.currentframe()
try:
# do something with the frame
finally:
del frame
```
If you want to keep the frame around (for example to print a traceback later), you can also break reference cycles by using the [`frame.clear()`](../reference/datamodel.xhtml#frame.clear "frame.clear") method.
The optional *context* argument supported by most of these functions specifies the number of lines of context to return, which are centered around the current line.
`inspect.``getframeinfo`(*frame*, *context=1*)Get information about a frame or traceback object. A [named tuple](../glossary.xhtml#term-named-tuple)`Traceback(filename, lineno, function, code_context, index)` is returned.
`inspect.``getouterframes`(*frame*, *context=1*)Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the creation of *frame*. The first entry in the returned list represents *frame*; the last entry represents the outermost call on *frame*'s stack.
在 3.5 版更改: A list of [named tuples](../glossary.xhtml#term-named-tuple)`FrameInfo(frame, filename, lineno, function, code_context, index)`is returned.
`inspect.``getinnerframes`(*traceback*, *context=1*)Get a list of frame records for a traceback's frame and all inner frames. These frames represent calls made as a consequence of *frame*. The first entry in the list represents *traceback*; the last entry represents where the exception was raised.
在 3.5 版更改: A list of [named tuples](../glossary.xhtml#term-named-tuple)`FrameInfo(frame, filename, lineno, function, code_context, index)`is returned.
`inspect.``currentframe`()Return the frame object for the caller's stack frame.
**CPython implementation detail:** This function relies on Python stack frame support in the interpreter, which isn't guaranteed to exist in all implementations of Python. If running in an implementation without Python stack frame support this function returns `None`.
`inspect.``stack`(*context=1*)Return a list of frame records for the caller's stack. The first entry in the returned list represents the caller; the last entry represents the outermost call on the stack.
在 3.5 版更改: A list of [named tuples](../glossary.xhtml#term-named-tuple)`FrameInfo(frame, filename, lineno, function, code_context, index)`is returned.
`inspect.``trace`(*context=1*)Return a list of frame records for the stack between the current frame and the frame in which an exception currently being handled was raised in. The first entry in the list represents the caller; the last entry represents where the exception was raised.
在 3.5 版更改: A list of [named tuples](../glossary.xhtml#term-named-tuple)`FrameInfo(frame, filename, lineno, function, code_context, index)`is returned.
## Fetching attributes statically
Both [`getattr()`](functions.xhtml#getattr "getattr") and [`hasattr()`](functions.xhtml#hasattr "hasattr") can trigger code execution when fetching or checking for the existence of attributes. Descriptors, like properties, will be invoked and [`__getattr__()`](../reference/datamodel.xhtml#object.__getattr__ "object.__getattr__") and [`__getattribute__()`](../reference/datamodel.xhtml#object.__getattribute__ "object.__getattribute__")may be called.
For cases where you want passive introspection, like documentation tools, this can be inconvenient. [`getattr_static()`](#inspect.getattr_static "inspect.getattr_static") has the same signature as [`getattr()`](functions.xhtml#getattr "getattr")but avoids executing code when it fetches attributes.
`inspect.``getattr_static`(*obj*, *attr*, *default=None*)Retrieve attributes without triggering dynamic lookup via the descriptor protocol, [`__getattr__()`](../reference/datamodel.xhtml#object.__getattr__ "object.__getattr__") or [`__getattribute__()`](../reference/datamodel.xhtml#object.__getattribute__ "object.__getattribute__").
Note: this function may not be able to retrieve all attributes that getattr can fetch (like dynamically created attributes) and may find attributes that getattr can't (like descriptors that raise AttributeError). It can also return descriptors objects instead of instance members.
If the instance [`__dict__`](stdtypes.xhtml#object.__dict__ "object.__dict__") is shadowed by another member (for example a property) then this function will be unable to find instance members.
3\.2 新版功能.
[`getattr_static()`](#inspect.getattr_static "inspect.getattr_static") does not resolve descriptors, for example slot descriptors or getset descriptors on objects implemented in C. The descriptor object is returned instead of the underlying attribute.
You can handle these with code like the following. Note that for arbitrary getset descriptors invoking these may trigger code execution:
```
# example code for resolving the builtin descriptor types
class _foo:
__slots__ = ['foo']
slot_descriptor = type(_foo.foo)
getset_descriptor = type(type(open(__file__)).name)
wrapper_descriptor = type(str.__dict__['__add__'])
descriptor_types = (slot_descriptor, getset_descriptor, wrapper_descriptor)
result = getattr_static(some_object, 'foo')
if type(result) in descriptor_types:
try:
result = result.__get__()
except AttributeError:
# descriptors can raise AttributeError to
# indicate there is no underlying value
# in which case the descriptor itself will
# have to do
pass
```
## Current State of Generators and Coroutines
When implementing coroutine schedulers and for other advanced uses of generators, it is useful to determine whether a generator is currently executing, is waiting to start or resume or execution, or has already terminated. [`getgeneratorstate()`](#inspect.getgeneratorstate "inspect.getgeneratorstate") allows the current state of a generator to be determined easily.
`inspect.``getgeneratorstate`(*generator*)Get current state of a generator-iterator.
Possible states are:- GEN\_CREATED: Waiting to start execution.
- GEN\_RUNNING: Currently being executed by the interpreter.
- GEN\_SUSPENDED: Currently suspended at a yield expression.
- GEN\_CLOSED: Execution has completed.
3\.2 新版功能.
`inspect.``getcoroutinestate`(*coroutine*)Get current state of a coroutine object. The function is intended to be used with coroutine objects created by [`async def`](../reference/compound_stmts.xhtml#async-def) functions, but will accept any coroutine-like object that has `cr_running` and `cr_frame` attributes.
Possible states are:- CORO\_CREATED: Waiting to start execution.
- CORO\_RUNNING: Currently being executed by the interpreter.
- CORO\_SUSPENDED: Currently suspended at an await expression.
- CORO\_CLOSED: Execution has completed.
3\.5 新版功能.
The current internal state of the generator can also be queried. This is mostly useful for testing purposes, to ensure that internal state is being updated as expected:
`inspect.``getgeneratorlocals`(*generator*)Get the mapping of live local variables in *generator* to their current values. A dictionary is returned that maps from variable names to values. This is the equivalent of calling [`locals()`](functions.xhtml#locals "locals") in the body of the generator, and all the same caveats apply.
If *generator* is a [generator](../glossary.xhtml#term-generator) with no currently associated frame, then an empty dictionary is returned. [`TypeError`](exceptions.xhtml#TypeError "TypeError") is raised if *generator* is not a Python generator object.
**CPython implementation detail:** This function relies on the generator exposing a Python stack frame for introspection, which isn't guaranteed to be the case in all implementations of Python. In such cases, this function will always return an empty dictionary.
3\.3 新版功能.
`inspect.``getcoroutinelocals`(*coroutine*)This function is analogous to [`getgeneratorlocals()`](#inspect.getgeneratorlocals "inspect.getgeneratorlocals"), but works for coroutine objects created by [`async def`](../reference/compound_stmts.xhtml#async-def) functions.
3\.5 新版功能.
## Code Objects Bit Flags
Python code objects have a `co_flags` attribute, which is a bitmap of the following flags:
`inspect.``CO_OPTIMIZED`The code object is optimized, using fast locals.
`inspect.``CO_NEWLOCALS`If set, a new dict will be created for the frame's `f_locals` when the code object is executed.
`inspect.``CO_VARARGS`The code object has a variable positional parameter (`*args`-like).
`inspect.``CO_VARKEYWORDS`The code object has a variable keyword parameter (`**kwargs`-like).
`inspect.``CO_NESTED`The flag is set when the code object is a nested function.
`inspect.``CO_GENERATOR`The flag is set when the code object is a generator function, i.e. a generator object is returned when the code object is executed.
`inspect.``CO_NOFREE`The flag is set if there are no free or cell variables.
`inspect.``CO_COROUTINE`The flag is set when the code object is a coroutine function. When the code object is executed it returns a coroutine object. See [**PEP 492**](https://www.python.org/dev/peps/pep-0492) \[https://www.python.org/dev/peps/pep-0492\] for more details.
3\.5 新版功能.
`inspect.``CO_ITERABLE_COROUTINE`The flag is used to transform generators into generator-based coroutines. Generator objects with this flag can be used in `await` expression, and can `yield from` coroutine objects. See [**PEP 492**](https://www.python.org/dev/peps/pep-0492) \[https://www.python.org/dev/peps/pep-0492\] for more details.
3\.5 新版功能.
`inspect.``CO_ASYNC_GENERATOR`The flag is set when the code object is an asynchronous generator function. When the code object is executed it returns an asynchronous generator object. See [**PEP 525**](https://www.python.org/dev/peps/pep-0525) \[https://www.python.org/dev/peps/pep-0525\] for more details.
3\.6 新版功能.
注解
The flags are specific to CPython, and may not be defined in other Python implementations. Furthermore, the flags are an implementation detail, and can be removed or deprecated in future Python releases. It's recommended to use public APIs from the [`inspect`](#module-inspect "inspect: Extract information and source code from live objects.") module for any introspection needs.
## Command Line Interface
The [`inspect`](#module-inspect "inspect: Extract information and source code from live objects.") module also provides a basic introspection capability from the command line.
By default, accepts the name of a module and prints the source of that module. A class or function within the module can be printed instead by appended a colon and the qualified name of the target object.
`--details```Print information about the specified object rather than the source code
### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](site.xhtml "site --- Site-specific configuration hook") |
- [上一页](gc.xhtml "gc --- 垃圾回收器接口") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 标准库](index.xhtml) »
- [Python运行时服务](python.xhtml) »
- $('.inline-search').show(0); |
© [版权所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 软件基金会是一个非盈利组织。 [请捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [发现了问题](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 创建。
- Python文档内容
- Python 有什么新变化?
- Python 3.7 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- C API 的改变
- 构建的改变
- 性能优化
- 其他 CPython 实现的改变
- 已弃用的 Python 行为
- 已弃用的 Python 模块、函数和方法
- 已弃用的 C API 函数和类型
- 平台支持的移除
- API 与特性的移除
- 移除的模块
- Windows 专属的改变
- 移植到 Python 3.7
- Python 3.7.1 中的重要变化
- Python 3.7.2 中的重要变化
- Python 3.6 有什么新变化A
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 其他改进
- 弃用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要变化
- Python 3.6.4 中的重要变化
- Python 3.6.5 中的重要变化
- Python 3.6.7 中的重要变化
- Python 3.5 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- Other module-level changes
- 性能优化
- Build and C API Changes
- 弃用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 发布重点
- 新的特性
- 新增模块
- 改进的模块
- CPython Implementation Changes
- 弃用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 发布重点
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他语言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 弃用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 多线程
- 性能优化
- Unicode
- Codecs
- 文档
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 性能优化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他语言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新变化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他语言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他语言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推导式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最终版
- Python 3.7.3 发布候选版 1
- Python 3.7.2 最终版
- Python 3.7.2 发布候选版 1
- Python 3.7.1 最终版
- Python 3.7.1 RC 2版本
- Python 3.7.1 发布候选版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 课前甜点
- 使用 Python 解释器
- 调用解释器
- 解释器的运行环境
- Python 的非正式介绍
- Python 作为计算器使用
- 走向编程的第一步
- 其他流程控制工具
- if 语句
- for 语句
- range() 函数
- break 和 continue 语句,以及循环中的 else 子句
- pass 语句
- 定义函数
- 函数定义的更多形式
- 小插曲:编码风格
- 数据结构
- 列表的更多特性
- del 语句
- 元组和序列
- 集合
- 字典
- 循环的技巧
- 深入条件控制
- 序列和其它类型的比较
- 模块
- 有关模块的更多信息
- 标准模块
- dir() 函数
- 包
- 输入输出
- 更漂亮的输出格式
- 读写文件
- 错误和异常
- 语法错误
- 异常
- 处理异常
- 抛出异常
- 用户自定义异常
- 定义清理操作
- 预定义的清理操作
- 类
- 名称和对象
- Python 作用域和命名空间
- 初探类
- 补充说明
- 继承
- 私有变量
- 杂项说明
- 迭代器
- 生成器
- 生成器表达式
- 标准库简介
- 操作系统接口
- 文件通配符
- 命令行参数
- 错误输出重定向和程序终止
- 字符串模式匹配
- 数学
- 互联网访问
- 日期和时间
- 数据压缩
- 性能测量
- 质量控制
- 自带电池
- 标准库简介 —— 第二部分
- 格式化输出
- 模板
- 使用二进制数据记录格式
- 多线程
- 日志
- 弱引用
- 用于操作列表的工具
- 十进制浮点运算
- 虚拟环境和包
- 概述
- 创建虚拟环境
- 使用pip管理包
- 接下来?
- 交互式编辑和编辑历史
- Tab 补全和编辑历史
- 默认交互式解释器的替代品
- 浮点算术:争议和限制
- 表示性错误
- 附录
- 交互模式
- 安装和使用 Python
- 命令行与环境
- 命令行
- 环境变量
- 在Unix平台中使用Python
- 获取最新版本的Python
- 构建Python
- 与Python相关的路径和文件
- 杂项
- 编辑器和集成开发环境
- 在Windows上使用 Python
- 完整安装程序
- Microsoft Store包
- nuget.org 安装包
- 可嵌入的包
- 替代捆绑包
- 配置Python
- 适用于Windows的Python启动器
- 查找模块
- 附加模块
- 在Windows上编译Python
- 其他平台
- 在苹果系统上使用 Python
- 获取和安装 MacPython
- IDE
- 安装额外的 Python 包
- Mac 上的图形界面编程
- 在 Mac 上分发 Python 应用程序
- 其他资源
- Python 语言参考
- 概述
- 其他实现
- 标注
- 词法分析
- 行结构
- 其他形符
- 标识符和关键字
- 字面值
- 运算符
- 分隔符
- 数据模型
- 对象、值与类型
- 标准类型层级结构
- 特殊方法名称
- 协程
- 执行模型
- 程序的结构
- 命名与绑定
- 异常
- 导入系统
- importlib
- 包
- 搜索
- 加载
- 基于路径的查找器
- 替换标准导入系统
- Package Relative Imports
- 有关 main 的特殊事项
- 开放问题项
- 参考文献
- 表达式
- 算术转换
- 原子
- 原型
- await 表达式
- 幂运算符
- 一元算术和位运算
- 二元算术运算符
- 移位运算
- 二元位运算
- 比较运算
- 布尔运算
- 条件表达式
- lambda 表达式
- 表达式列表
- 求值顺序
- 运算符优先级
- 简单语句
- 表达式语句
- 赋值语句
- assert 语句
- pass 语句
- del 语句
- return 语句
- yield 语句
- raise 语句
- break 语句
- continue 语句
- import 语句
- global 语句
- nonlocal 语句
- 复合语句
- if 语句
- while 语句
- for 语句
- try 语句
- with 语句
- 函数定义
- 类定义
- 协程
- 最高层级组件
- 完整的 Python 程序
- 文件输入
- 交互式输入
- 表达式输入
- 完整的语法规范
- Python 标准库
- 概述
- 可用性注释
- 内置函数
- 内置常量
- 由 site 模块添加的常量
- 内置类型
- 逻辑值检测
- 布尔运算 — and, or, not
- 比较
- 数字类型 — int, float, complex
- 迭代器类型
- 序列类型 — list, tuple, range
- 文本序列类型 — str
- 二进制序列类型 — bytes, bytearray, memoryview
- 集合类型 — set, frozenset
- 映射类型 — dict
- 上下文管理器类型
- 其他内置类型
- 特殊属性
- 内置异常
- 基类
- 具体异常
- 警告
- 异常层次结构
- 文本处理服务
- string — 常见的字符串操作
- re — 正则表达式操作
- 模块 difflib 是一个计算差异的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 数据库
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函数
- 二进制数据服务
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 数据类型
- datetime — 基础日期/时间数据类型
- calendar — General calendar-related functions
- collections — 容器数据类型
- collections.abc — 容器的抽象基类
- heapq — 堆队列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 浅层 (shallow) 和深层 (deep) 复制操作
- pprint — 数据美化输出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 数字和数学模块
- numbers — 数字的抽象基类
- math — 数学函数
- cmath — Mathematical functions for complex numbers
- decimal — 十进制定点和浮点运算
- fractions — 分数
- random — 生成伪随机数
- statistics — Mathematical statistics functions
- 函数式编程模块
- itertools — 为高效循环而创建迭代器的函数
- functools — 高阶函数和可调用对象上的操作
- operator — 标准运算符替代函数
- 文件和目录访问
- pathlib — 面向对象的文件系统路径
- os.path — 常见路径操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路径操作函数
- 数据持久化
- pickle —— Python 对象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 数据库 DB-API 2.0 接口模块
- 数据压缩和存档
- zlib — 与 gzip 兼容的压缩
- gzip — 对 gzip 格式的支持
- bz2 — 对 bzip2 压缩算法的支持
- lzma — 用 LZMA 算法压缩
- zipfile — 在 ZIP 归档中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件读写
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服务
- hashlib — 安全哈希与消息摘要
- hmac — 基于密钥的消息验证
- secrets — Generate secure random numbers for managing secrets
- 通用操作系统服务
- os — 操作系统接口模块
- io — 处理流的核心工具
- time — 时间的访问和转换
- argparse — 命令行选项、参数和子命令解析器
- getopt — C-style parser for command line options
- 模块 logging — Python 的日志记录工具
- logging.config — 日志记录配置
- logging.handlers — Logging handlers
- getpass — 便携式密码输入工具
- curses — 终端字符单元显示的处理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函数库
- 并发执行
- threading — 基于线程的并行
- multiprocessing — 基于进程的并行
- concurrent 包
- concurrent.futures — 启动并行任务
- subprocess — 子进程管理
- sched — 事件调度器
- queue — 一个同步的队列类
- _thread — 底层多线程 API
- _dummy_thread — _thread 的替代模块
- dummy_threading — 可直接替代 threading 模块。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 网络和进程间通信
- asyncio — 异步 I/O
- socket — 底层网络接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高级 I/O 复用库
- asyncore — 异步socket处理器
- asynchat — 异步 socket 指令/响应 处理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互联网数据处理
- email — 电子邮件与 MIME 处理包
- json — JSON 编码和解码器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 数据编码
- binhex — 对binhex4文件进行编码和解码
- binascii — 二进制和 ASCII 码互转
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 结构化标记处理工具
- html — 超文本标记语言支持
- html.parser — 简单的 HTML 和 XHTML 解析器
- html.entities — HTML 一般实体的定义
- XML处理模块
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互联网协议和支持
- webbrowser — 方便的Web浏览器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 处理模块
- urllib.request — 用于打开 URL 的可扩展库
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模块
- http.client — HTTP协议客户端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP协议客户端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服务器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服务端与客户端模块
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒体服务
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 读写 Sun AU 文件
- wave — 读写WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推测图像类型
- sndhdr — 推测声音文件的类型
- ossaudiodev — Access to OSS-compatible audio devices
- 国际化
- gettext — 多语种国际化服务
- locale — 国际化服务
- 程序框架
- turtle — 海龟绘图
- cmd — 支持面向行的命令解释器
- shlex — Simple lexical analysis
- Tk图形用户界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滚动文字控件
- IDLE
- 其他图形用户界面(GUI)包
- 开发工具
- typing — 类型标注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 单元测试框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自动将 Python 2 代码转为 Python 3 代码
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 调试和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 测量小代码片段的执行时间
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 软件打包和分发
- distutils — 构建和安装 Python 模块
- ensurepip — Bootstrapping the pip installer
- venv — 创建虚拟环境
- zipapp — Manage executable Python zip archives
- Python运行时服务
- sys — 系统相关的参数和函数
- sysconfig — Provide access to Python's configuration information
- builtins — 内建对象
- main — 顶层脚本环境
- warnings — Warning control
- dataclasses — 数据类
- contextlib — Utilities for with-statement contexts
- abc — 抽象基类
- atexit — 退出处理器
- traceback — Print or retrieve a stack traceback
- future — Future 语句定义
- gc — 垃圾回收器接口
- inspect — 检查对象
- site — Site-specific configuration hook
- 自定义 Python 解释器
- code — Interpreter base classes
- codeop — Compile Python code
- 导入模块
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找脚本使用的模块
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 语言服务
- parser — Access Python parse trees
- ast — 抽象语法树
- symtable — Access to the compiler's symbol tables
- symbol — 与 Python 解析树一起使用的常量
- token — 与Python解析树一起使用的常量
- keyword — 检验Python关键字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊缩进检测
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字节码反汇编器
- pickletools — Tools for pickle developers
- 杂项服务
- formatter — Generic output formatting
- Windows系统相关模块
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注册表访问
- winsound — Sound-playing interface for Windows
- Unix 专有服务
- posix — The most common POSIX system calls
- pwd — 用户密码数据库
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 终端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 库例程
- 被取代的模块
- optparse — Parser for command line options
- imp — Access the import internals
- 未创建文档的模块
- 平台特定模块
- 扩展和嵌入 Python 解释器
- 推荐的第三方工具
- 不使用第三方工具创建扩展
- 使用 C 或 C++ 扩展 Python
- 自定义扩展类型:教程
- 定义扩展类型:已分类主题
- 构建C/C++扩展
- 在Windows平台编译C和C++扩展
- 在更大的应用程序中嵌入 CPython 运行时
- Embedding Python in Another Application
- Python/C API 参考手册
- 概述
- 代码标准
- 包含文件
- 有用的宏
- 对象、类型和引用计数
- 异常
- 嵌入Python
- 调试构建
- 稳定的应用程序二进制接口
- The Very High Level Layer
- Reference Counting
- 异常处理
- Printing and clearing
- 抛出异常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 标准异常
- 标准警告类别
- 工具
- 操作系统实用程序
- 系统功能
- 过程控制
- 导入模块
- Data marshalling support
- 语句解释及变量编译
- 字符串转换与格式化
- 反射
- 编解码器注册与支持功能
- 抽象对象层
- Object Protocol
- 数字协议
- Sequence Protocol
- Mapping Protocol
- 迭代器协议
- 缓冲协议
- Old Buffer Protocol
- 具体的对象层
- 基本对象
- 数值对象
- 序列对象
- 容器对象
- 函数对象
- 其他对象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置变量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 内存管理
- 概述
- 原始内存接口
- Memory Interface
- 对象分配器
- 默认内存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 对象实现支持
- 在堆中分配对象
- Common Object Structures
- Type 对象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使对象类型支持循环垃圾回收
- API 和 ABI 版本管理
- 分发 Python 模块
- 关键术语
- 开源许可与协作
- 安装工具
- 阅读指南
- 我该如何...?
- ...为我的项目选择一个名字?
- ...创建和分发二进制扩展?
- 安装 Python 模块
- 关键术语
- 基本使用
- 我应如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安装 pip ?
- ... 只为当前用户安装软件包?
- ... 安装科学计算类 Python 软件包?
- ... 使用并行安装的多个 Python 版本?
- 常见的安装问题
- 在 Linux 的系统 Python 版本上安装
- 未安装 pip
- 安装二进制编译扩展
- Python 常用指引
- 将 Python 2 代码迁移到 Python 3
- 简要说明
- 详情
- 将扩展模块移植到 Python 3
- 条件编译
- 对象API的更改
- 模块初始化和状态
- CObject 替换为 Capsule
- 其他选项
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 实现描述器
- 摘要
- 定义和简介
- 描述器协议
- 发起调用描述符
- 描述符示例
- Properties
- 函数和方法
- Static Methods and Class Methods
- 函数式编程指引
- 概述
- 迭代器
- 生成器表达式和列表推导式
- 生成器
- 内置函数
- itertools 模块
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文献
- 日志 HOWTO
- 日志基础教程
- 进阶日志教程
- 日志级别
- 有用的处理程序
- 记录日志中引发的异常
- 使用任意对象作为消息
- 优化
- 日志操作手册
- 在多个模块中使用日志
- 在多线程中使用日志
- 使用多个日志处理器和多种格式化
- 在多个地方记录日志
- 日志服务器配置示例
- 处理日志处理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正则表达式HOWTO
- 概述
- 简单模式
- 使用正则表达式
- 更多模式能力
- 修改字符串
- 常见问题
- 反馈
- 套接字编程指南
- 套接字
- 创建套接字
- 使用一个套接字
- 断开连接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 关键函数
- Operator 模块函数
- 升序和降序
- 排序稳定性和排序复杂度
- 使用装饰-排序-去装饰的旧方法
- 使用 cmp 参数的旧方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包获取网络资源
- 概述
- Fetching URLs
- 处理异常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 脚注
- Argparse 教程
- 概念
- 基础
- 位置参数介绍
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模块介绍
- 创建 Address/Network/Interface 对象
- 审查 Address/Network/Interface 对象
- Network 作为 Address 列表
- 比较
- 将IP地址与其他模块一起使用
- 实例创建失败时获取更多详细信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 检测CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常见问题
- Python常见问题
- 一般信息
- 现实世界中的 Python
- 编程常见问题
- 一般问题
- 核心语言
- 数字和字符串
- 性能
- 序列(元组/列表)
- 对象
- 模块
- 设计和历史常见问题
- 为什么Python使用缩进来分组语句?
- 为什么简单的算术运算得到奇怪的结果?
- 为什么浮点计算不准确?
- 为什么Python字符串是不可变的?
- 为什么必须在方法定义和调用中显式使用“self”?
- 为什么不能在表达式中赋值?
- 为什么Python对某些功能(例如list.index())使用方法来实现,而其他功能(例如len(List))使用函数实现?
- 为什么 join()是一个字符串方法而不是列表或元组方法?
- 异常有多快?
- 为什么Python中没有switch或case语句?
- 难道不能在解释器中模拟线程,而非得依赖特定于操作系统的线程实现吗?
- 为什么lambda表达式不能包含语句?
- 可以将Python编译为机器代码,C或其他语言吗?
- Python如何管理内存?
- 为什么CPython不使用更传统的垃圾回收方案?
- CPython退出时为什么不释放所有内存?
- 为什么有单独的元组和列表数据类型?
- 列表是如何在CPython中实现的?
- 字典是如何在CPython中实现的?
- 为什么字典key必须是不可变的?
- 为什么 list.sort() 没有返回排序列表?
- 如何在Python中指定和实施接口规范?
- 为什么没有goto?
- 为什么原始字符串(r-strings)不能以反斜杠结尾?
- 为什么Python没有属性赋值的“with”语句?
- 为什么 if/while/def/class语句需要冒号?
- 为什么Python在列表和元组的末尾允许使用逗号?
- 代码库和插件 FAQ
- 通用的代码库问题
- 通用任务
- 线程相关
- 输入输出
- 网络 / Internet 编程
- 数据库
- 数学和数字
- 扩展/嵌入常见问题
- 可以使用C语言中创建自己的函数吗?
- 可以使用C++语言中创建自己的函数吗?
- C很难写,有没有其他选择?
- 如何从C执行任意Python语句?
- 如何从C中评估任意Python表达式?
- 如何从Python对象中提取C的值?
- 如何使用Py_BuildValue()创建任意长度的元组?
- 如何从C调用对象的方法?
- 如何捕获PyErr_Print()(或打印到stdout / stderr的任何内容)的输出?
- 如何从C访问用Python编写的模块?
- 如何从Python接口到C ++对象?
- 我使用Setup文件添加了一个模块,为什么make失败了?
- 如何调试扩展?
- 我想在Linux系统上编译一个Python模块,但是缺少一些文件。为什么?
- 如何区分“输入不完整”和“输入无效”?
- 如何找到未定义的g++符号__builtin_new或__pure_virtual?
- 能否创建一个对象类,其中部分方法在C中实现,而其他方法在Python中实现(例如通过继承)?
- Python在Windows上的常见问题
- 我怎样在Windows下运行一个Python程序?
- 我怎么让 Python 脚本可执行?
- 为什么有时候 Python 程序会启动缓慢?
- 我怎样使用Python脚本制作可执行文件?
- *.pyd 文件和DLL文件相同吗?
- 我怎样将Python嵌入一个Windows程序?
- 如何让编辑器不要在我的 Python 源代码中插入 tab ?
- 如何在不阻塞的情况下检查按键?
- 图形用户界面(GUI)常见问题
- 图形界面常见问题
- Python 是否有平台无关的图形界面工具包?
- 有哪些Python的GUI工具是某个平台专用的?
- 有关Tkinter的问题
- “为什么我的电脑上安装了 Python ?”
- 什么是Python?
- 为什么我的电脑上安装了 Python ?
- 我能删除 Python 吗?
- 术语对照表
- 文档说明
- Python 文档贡献者
- 解决 Bug
- 文档错误
- 使用 Python 的错误追踪系统
- 开始为 Python 贡献您的知识
- 版权
- 历史和许可证
- 软件历史
- 访问Python或以其他方式使用Python的条款和条件
- Python 3.7.3 的 PSF 许可协议
- Python 2.0 的 BeOpen.com 许可协议
- Python 1.6.1 的 CNRI 许可协议
- Python 0.9.0 至 1.2 的 CWI 许可协议
- 集成软件的许可和认可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec