# 18.4. 优化字典查找
Soundex 算法的第二步是依照特定规则将字符转换为数字。做到这点最好的方法是什么?
最明显的解决方案是定义一个以单字符为键并以所对应数字为值的字典,以字典查找每个字符。这便是 `soundex/stage1/soundex1e.py` 中使用的方法 (目前最好的结果):
```
charToSoundex = {"A": "9",
"B": "1",
"C": "2",
"D": "3",
"E": "9",
"F": "1",
"G": "2",
"H": "9",
"I": "9",
"J": "2",
"K": "2",
"L": "4",
"M": "5",
"N": "5",
"O": "9",
"P": "1",
"Q": "2",
"R": "6",
"S": "2",
"T": "3",
"U": "9",
"V": "1",
"W": "9",
"X": "2",
"Y": "9",
"Z": "2"}
def soundex(source):
# ... input check omitted for brevity ...
source = source[0].upper() + source[1:]
digits = source[0]
for s in source[1:]:
s = s.upper()
digits += charToSoundex[s]
```
你已经为 `soundex1e.py` 计时,这便是其表现:
```
C:\samples\soundex\stage1>python soundex1c.py
Woo W000 13.5069504644
Pilgrim P426 18.2199394057
Flingjingwaller F452 28.9975225902
```
这段代码很直接,但它是最佳解决方案吗?为每个字符分别调用 `upper()` 看起来不是很有效率,为整个字符串调用 `upper()` 一次可能会好些。
然后是一砖一瓦地建立 `digits` 字符串。一砖一瓦的建造好像非常欠缺效率。在 Python 内部,解释器需要在循环的每一轮创建一个新的字符串,然后丢弃旧的。
但是,Python 擅长于列表。可以自动地将字符串作为列表来对待。而且使用 `join()` 方法可以很容易地将列表合并成字符串。
这便是 `soundex/stage2/soundex2a.py`,通过 `map` 和 `lambda` 把所有字母转换为数字:
```
def soundex(source):
# ...
source = source.upper()
digits = source[0] + "".join(map(lambda c: charToSoundex[c], source[1:]))
```
太震惊了,`soundex2a.py` 并不快:
```
C:\samples\soundex\stage2>python soundex2a.py
Woo W000 15.0097526362
Pilgrim P426 19.254806407
Flingjingwaller F452 29.3790847719
```
匿名 `lambda` 函数的使用耗费掉了从以字符列表替代字符串争取来的时间。
`soundex/stage2/soundex2b.py` 使用了一个列表遍历来替代 `map` 和 `lambda`:
```
source = source.upper()
digits = source[0] + "".join([charToSoundex[c] for c in source[1:]])
```
在 `soundex2b.py` 中使用列表遍历比 `soundex2a.py` 中使用 `map` 和 `lambda` 快,但还没有最初的代码快 (`soundex1e.py` 中一砖一瓦的构建字符串\[15\]):
```
C:\samples\soundex\stage2>python soundex2b.py
Woo W000 13.4221324219
Pilgrim P426 16.4901234654
Flingjingwaller F452 25.8186157738
```
是时候从本质不同的方法来思考了。字典查找是一个普通目的实现工具。字典的键可以是任意长度的字符串 (或者很多其他数据类型) 但这里我们只和单字符键_和_ 单字符值打交道。恰巧 Python 有处理这种情况的特别函数:`string.maketrans` 函数。
这便是 `soundex/stage2/soundex2c.py`:
```
allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
def soundex(source):
# ...
digits = source[0].upper() + source[1:].translate(charToSoundex)
```
这儿在干什么?`string.maketrans` 创建一个两个字符串间的翻译矩阵:第一参数和第二参数。就此而言,第一个参数是字符串 `ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz`,第二个参数是字符串 `9123912992245591262391929291239129922455912623919292`。看到其模式了?恰好与我们用冗长的字典构建的模式相同。A 映射到 9,B 映射到 1,C 映射到 2 等等。但它不是一个字典。而是一个你可以通过字符串方法 `translate` 使用的特别数据结构。它根据 `string.maketrans` 定义的矩阵将每个字符翻译为对应的数字。
`timeit` 显示 `soundex2c.py` 比定义字典并对输入进行循环一砖一瓦地构建输出快很多:
```
C:\samples\soundex\stage2>python soundex2c.py
Woo W000 11.437645008
Pilgrim P426 13.2825062962
Flingjingwaller F452 18.5570110168
```
你不可能做得更多了。Python 有一个特殊函数,通过使用它做到了一个和你的工作差不多的事情。就用它并继续吧!
## 例 18.4. 目前的最佳结果:`soundex/stage2/soundex2c.py`
```
import string, re
allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
def soundex(source):
if (not source) or (not source.isalpha()):
return "0000"
digits = source[0].upper() + source[1:].translate(charToSoundex)
digits2 = digits[0]
for d in digits[1:]:
if digits2[-1] != d:
digits2 += d
digits3 = re.sub('9', '', digits2)
while len(digits3) < 4:
digits3 += "0"
return digits3[:4]
if __name__ == '__main__':
from timeit import Timer
names = ('Woo', 'Pilgrim', 'Flingjingwaller')
for name in names:
statement = "soundex('%s')" % name
t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())
```
## Footnotes
\[15\] 事实恰好相反,`soundex2b.py` 在每个点上都快于 `soundex1e.py`。――译注
- 版权信息
- 第 1 章 安装 Python
- 1.1. 哪一种 Python 适合您?
- 1.2. Windows 上的 Python
- 1.3. Mac OS X 上的 Python
- 1.4. Mac OS 9 上的 Python
- 1.5. RedHat Linux 上的 Python
- 1.6. Debian GNU/Linux 上的 Python
- 1.7. 从源代码安装 Python
- 1.8. 使用 Python 的交互 Shell
- 1.9. 小结
- 第 2 章 第一个 Python 程序
- 2.1. 概览
- 2.2. 函数声明
- 2.3. 文档化函数
- 2.4. 万物皆对象
- 2.5. 代码缩进
- 2.6. 测试模块
- 第 3 章 内置数据类型
- 3.1. Dictionary 介绍
- 3.2. List 介绍
- 3.3. Tuple 介绍
- 3.4. 变量声明
- 3.5. 格式化字符串
- 3.6. 映射 list
- 3.7. 连接 list 与分割字符串
- 3.8. 小结
- 第 4 章 自省的威力
- 4.1. 概览
- 4.2. 使用可选参数和命名参数
- 4.3. 使用 type、str、dir 和其它内置函数
- 4.4. 通过 getattr 获取对象引用
- 4.5. 过滤列表
- 4.6. and 和 or 的特殊性质
- 4.7. 使用 lambda 函数
- 4.8. 全部放在一起
- 4.9. 小结
- 第 5 章 对象和面向对象
- 5.1. 概览
- 5.2. 使用 from _module_ import 导入模块
- 5.3. 类的定义
- 5.4. 类的实例化
- 5.5. 探索 UserDict:一个封装类
- 5.6. 专用类方法
- 5.7. 高级专用类方法
- 5.8. 类属性介绍
- 5.9. 私有函数
- 5.10. 小结
- 第 6 章 异常和文件处理
- 6.1. 异常处理
- 6.2. 与文件对象共事
- 6.3. for 循环
- 6.4. 使用 `sys.modules`
- 6.5. 与目录共事
- 6.6. 全部放在一起
- 6.7. 小结
- 第 7 章 正则表达式
- 7.1. 概览
- 7.2. 个案研究:街道地址
- 7.3. 个案研究:罗马字母
- 7.4. 使用 {n,m} 语法
- 7.5. 松散正则表达式
- 7.6. 个案研究:解析电话号码
- 7.7. 小结
- 第 8 章 HTML 处理
- 8.1. 概览
- 8.2. sgmllib.py 介绍
- 8.3. 从 HTML 文档中提取数据
- 8.4. BaseHTMLProcessor.py 介绍
- 8.5. locals 和 globals
- 8.6. 基于 dictionary 的字符串格式化
- 8.7. 给属性值加引号
- 8.8. dialect.py 介绍
- 8.9. 全部放在一起
- 8.10. 小结
- 第 9 章 XML 处理
- 9.1. 概览
- 9.2. 包
- 9.3. XML 解析
- 9.4. Unicode
- 9.5. 搜索元素
- 9.6. 访问元素属性
- 9.7. Segue [9]
- 第 10 章 脚本和流
- 10.1. 抽象输入源
- 10.2. 标准输入、输出和错误
- 10.3. 查询缓冲节点
- 10.4. 查找节点的直接子节点
- 10.5. 根据节点类型创建不同的处理器
- 10.6. 处理命令行参数
- 10.7. 全部放在一起
- 10.8. 小结
- 第 11 章 HTTP Web 服务
- 11.1. 概览
- 11.2. 避免通过 HTTP 重复地获取数据
- 11.3. HTTP 的特性
- 11.4. 调试 HTTP web 服务
- 11.5. 设置 User-Agent
- 11.6. 处理 Last-Modified 和 ETag
- 11.7. 处理重定向
- 11.8. 处理压缩数据
- 11.9. 全部放在一起
- 11.10. 小结
- 第 12 章 SOAP Web 服务
- 12.1. 概览
- 12.2. 安装 SOAP 库
- 12.3. 步入 SOAP
- 12.4. SOAP 网络服务查错
- 12.5. WSDL 介绍
- 12.6. 以 WSDL 进行 SOAP 内省
- 12.7. 搜索 Google
- 12.8. SOAP 网络服务故障排除
- 12.9. 小结
- 第 13 章 单元测试
- 13.1. 罗马数字程序介绍 II
- 13.2. 深入
- 13.3. romantest.py 介绍
- 13.4. 正面测试 (Testing for success)
- 13.5. 负面测试 (Testing for failure)
- 13.6. 完备性检测 (Testing for sanity)
- 第 14 章 测试优先编程
- 14.1. roman.py, 第 1 阶段
- 14.2. roman.py, 第 2 阶段
- 14.3. roman.py, 第 3 阶段
- 14.4. roman.py, 第 4 阶段
- 14.5. roman.py, 第 5 阶段
- 第 15 章 重构
- 15.1. 处理 bugs
- 15.2. 应对需求变化
- 15.3. 重构
- 15.4. 后记
- 15.5. 小结
- 第 16 章 函数编程
- 16.1. 概览
- 16.2. 找到路径
- 16.3. 重识列表过滤
- 16.4. 重识列表映射
- 16.5. 数据中心思想编程
- 16.6. 动态导入模块
- 16.7. 全部放在一起
- 16.8. 小结
- 第 17 章 动态函数
- 17.1. 概览
- 17.2. plural.py, 第 1 阶段
- 17.3. plural.py, 第 2 阶段
- 17.4. plural.py, 第 3 阶段
- 17.5. plural.py, 第 4 阶段
- 17.6. plural.py, 第 5 阶段
- 17.7. plural.py, 第 6 阶段
- 17.8. 小结
- 第 18 章 性能优化
- 18.1. 概览
- 18.2. 使用 timeit 模块
- 18.3. 优化正则表达式
- 18.4. 优化字典查找
- 18.5. 优化列表操作
- 18.6. 优化字符串操作
- 18.7. 小结
- 附录 A. 进一步阅读
- 附录 B. 五分钟回顾
- 附录 C. 技巧和窍门
- 附录 D. 示例清单
- 附录 E. 修订历史
- 附录 F. 关于本书
- 附录 G. GNU Free Documentation License
- G.0. Preamble
- G.1. Applicability and definitions
- G.2. Verbatim copying
- G.3. Copying in quantity
- G.4. Modifications
- G.5. Combining documents
- G.6. Collections of documents
- G.7. Aggregation with independent works
- G.8. Translation
- G.9. Termination
- G.10. Future revisions of this license
- G.11. How to use this License for your documents
- 附录 H. GNU 自由文档协议
- H.0. 序
- H.1. 适用范围和定义
- H.2. 原样复制
- H.3. 大量复制
- H.4. 修改
- H.5. 合并文档
- H.6. 文档合集
- H.7. 独立著作聚集
- H.8. 翻译
- H.9. 终止协议
- H.10. 协议将来的修订
- H.11. 如何为你的文档使用本协议
- 附录 I. Python license
- I.A. History of the software
- I.B. Terms and conditions for accessing or otherwise using Python
- 附录 J. Python 协议
- J.0. 关于译文的声明
- J.A. 软件的历史
- J.B. 使用 Python 的条款和条件