RAW/Callback API是指内核回调型的API,这在许多通信协议的C语言实现中都有所应用。对于从来没有接触过回调式编程的人来说,可能理解起来会比较困难,我们在后面的章节中会详细介绍它。
RAW/Callback API是LwIP的一大特色,在没有操作系统支持的裸奔环境中,只能使用这种API进行开发,同时这种API也可以用在操作系统环境中。这里先简要说明一下“回调”的概念。你新建了一个TCP或者UDP的连接,你想等它接收到数据以后去处理它们,这时你需要把处理该数据的操作封装成一个函数,然后将这个函数的指针注册到LwIP内核中。LwIP内核会在需要的时候去检测该连接是否收到数据,如果收到了数据,内核会在第一时间调用注册的函数,这个过程被称为“回调”,这个注册函数被称为“回调函数”。这个回调函数中装着你想要的业务逻辑,在这个函数中,你可以自由地处理接收到的数据,也可以发送任何数据,也就是说,这个回调函数就是你的应用程序。到这里,我们可以发现,在回调编程中,LwIP内核把数据交给应用程序的过程就只是一次简单的函数调用,这是非常节省时间和空间资源的。每一个回调函数实际上只是一个普通的C函数,这个函数在TCP/IP内核中被调用。每一个回调函数都作为一个参数传递给当前TCP或UDP连接。而且,为了能够保存程序的特定状态,可以向回调函数传递一个指定的状态,并且这个指定的状态是独立于TCP/IP协议栈的。。
在有操作系统的环境中,如果使用RAW/Callback API,用户的应用程序就以回调函数的形式成为了内核代码的一部分,用户应用程序和内核程序会处于同一个线程之中,这就省去了任务间通信和切换任务的开销了。
简单来说,RAW/Callback API的优点有两个:
1. 可以在没有操作系统的环境中使用。
2. 在有操作系统的环境中使用它,对比另外两种API,可以提高应用程序的效率、节省内存开销。
RAW/Callback API的优点是显著的,但缺点也是显著的:
1. 基于回调函数开发应用程序时的思维过程比较复杂。在后面与RAW/Callback API相关的章节中可以看到,利用回调函数去实现复杂的业务逻辑时,会很麻烦,而且代码的可读性较差。
2. 应用程序代码与内核代码处于同一个线程,虽然能够节省任务间通信和切换任务的开销,但是相应地,应用程序的执行会制约内核程序的执行,不同的应用程序之间也会互相制约。在应用程序执行的过程中,内核程序将不可能得到运行,这会影响网络数据包的处理效率。如果应用程序占用的时间过长,而且碰巧这时又有大量的数据包到达,由于内核代码长期得不到执行,网卡接收缓存里的数据包就持续积累,到最后很可能因为满载而丢弃一些数据包,从而造成丢包的现象。
- 说明
- 第1章:网络协议简介
- 1.1:常用网络协议
- 1.2:网络协议的分层模型
- 1.3:协议层报文间的封装与拆封
- 第2章:LwIP简介
- 2.1:LwIP的优缺点
- 2.2:LwIP的文件说明
- 2.2.1:如何获取LwIP源码文件
- 2.2.2:LwIP文件说明
- 2.3:查看LwIP的说明文档
- 2.4:使用vscode查看源码
- 2.4.1:查看文件中的符号列表(函数列表)
- 2.4.2:函数定义跳转
- 2.5:LwIP源码里的example
- 2.6:LwIP的三种编程接口
- 2.6.1:RAW/Callback API
- 2.6.2:NETCONN API
- 2.6.3:SOCKET API
- 第3章:开发平台介绍
- 3.1:以太网简介
- 3.1.1:PHY层
- 3.1.2:MAC子层
- 3.2:STM32的ETH外设
- 3.3:MII 和 RMII 接口
- 3.4:PHY:LAN8720A
- 3.5:硬件设计
- 3.6:软件设计
- 3.6.1:获取STM32的裸机工程模板
- 3.6.2:添加bsp_eth.c与bsp_eth.h
- 3.6.3:修改stm32f4xx_hal_conf.h文件
- 第4章:LwIP的网络接口管理
- 4.1:netif结构体
- 4.2:netif使用
- 4.3:与netif相关的底层函数
- 4.4:ethernetif.c文件内容
- 4.4.1:ethernetif数据结构
- 4.4.2:ethernetif_init()
- 4.4.3:low_level_init()
- 第5章:LwIP的内存管理
- 5.1:几种内存分配策略
- 5.1.1:固定大小的内存块
- 5.1.2:可变长度分配
- 5.2:动态内存池(POOL)
- 5.2.1:内存池的预处理
- 5.2.2:内存池的初始化
- 5.2.3:内存分配
- 5.2.4:内存释放
- 5.3:动态内存堆
- 5.3.1:内存堆的组织结构
- 5.3.2:内存堆初始化
- 5.3.3:内存分配
- 5.3.4:内存释放
- 5.4:使用C库的malloc和free来管理内存
- 5.5:LwIP中的配置
- 第6章:网络数据包
- 6.1:TCP/IP协议的分层思想
- 6.2:LwIP的线程模型
- 6.3:pbuf结构体说明
- 6.4:pbuf的类型
- 6.4.1:PBUF_RAM类型的pbuf
- 6.4.2:PBUF_POOL类型的pbuf
- 6.4.3:PBUF_ROM和PBUF_REF类型pbuf
- 6.5:pbuf_alloc()
- 6.6:pbuf_free()
- 6.7:其它pbuf操作函数
- 6.7.1:pbuf_realloc()
- 6.7.2:pbuf_header()
- 6.7.3:pbuf_take()
- 6.8:网卡中使用的pbuf
- 6.8.1:low_level_output()
- 6.8.2:low_level_input()
- 6.8.3:ethernetif_input()
- 第7章:无操作系统移植LwIP
- 7.1:将LwIP添加到裸机工程
- 7.2:移植头文件
- 7.3:移植网卡驱动
- 7.4:LwIP时基
- 7.5:协议栈初始化
- 7.6:获取数据包
- 7.6.1:查询方式
- 7.6.2:ping命令详解
- 7.6.3:中断方式
- 第8章:有操作系统移植LwIP
- 8.1:LwIP中添加操作系统
- 8.1.1:拷贝FreeRTOS源码到工程文件夹
- 8.1.2:添加FreeRTOS源码到工程组文件夹
- 8.1.3:指定FreeRTOS头文件的路径
- 8.1.4:修改stm32f10x_it.c
- 8.2:lwipopts.h文件需要加入的配置
- 8.3:sys_arch.c/h文件的编写
- 8.4:网卡底层的编写
- 8.5:协议栈初始化
- 8.6:移植后使用ping测试基本响应
- 第9章:LwIP一探究竟
- 9.1:网卡接收数据的流程
- 9.2:内核超时处理
- 9.2.1:sys_timeo结构体与超时链表
- 9.2.2:注册超时事件
- 9.2.3:超时检查
- 9.3:tcpip_thread线程
- 9.4:LwIP中的消息
- 9.4.1:消息结构
- 9.4.2:数据包消息
- 9.4.3:API消息
- 9.5:揭开LwIP神秘的面纱
- 第10章:ARP协议
- 10.1:链路层概述
- 10.2:MAC地址的基本概念
- 10.3:初识ARP
- 10.4:以太网帧结构
- 10.5:IP地址映射为物理地址
- 10.6:ARP缓存表
- 10.7:ARP缓存表的超时处理
- 10.8:ARP报文
- 10.9:发送ARP请求包
- 10.10:数据包接收流程
- 10.10.1:以太网之数据包接收
- 10.10.2:ARP数据包处理
- 10.10.3:更新ARP缓存表
- 10.11:数据包发送流程
- 10.11.1:etharp_output()函数
- 10.11.2:etharp_output_to_arp_index()函数
- 10.11.3:etharp_query()函数
- 第11章:IP协议
- 11.1:IP地址.md
- 11.1.1:概述
- 11.1.2:IP地址编址
- 11.1.3:特殊IP地址