在学习内存堆之前,我们先看看内存堆的的组织结构,它包括了内存数据结构与某些重要的全局变量,具体见代码清单 5-9。
```
1 struct mem
2 {
3 /** index (-> ram[next]) of the next struct */
4 mem_size_t next; (1)
5 /** index (-> ram[prev]) of the previous struct */
6 mem_size_t prev; (2)
7 /** 1: this area is used; 0: this area is unused */
8 u8_t used; (3)
9 #if MEM_OVERFLOW_CHECK
10 /** this keeps track of the user allocation size for guard checks */
11 mem_size_t user_size;
12 #endif
13 };
14
15 #define MIN_SIZE 12 (4)
16
17 LWIP_DECLARE_MEMORY_ALIGNED(ram_heap, MEM_SIZE_ALIGNED+(2U*SIZEOF_STRUCT_MEM)); (5)
18
19 #define LWIP_RAM_HEAP_POINTER ram_heap (6)
20
21
22 /** pointer to the heap (ram_heap):
23 for alignment, ram is now a pointer instead of an array */
24 static u8_t *ram; (7)
25
26 /** the last entry, always unused! */
27 static struct mem *ram_end; (8)
28
29 #if !NO_SYS
30 static sys_mutex_t mem_mutex; (9)
31 #endif
32
33 static struct mem * LWIP_MEM_LFREE_VOLATILE lfree; (10)
```
* (1)(2):可能很多人都会认为next与prev是一个指针,分别指向下一个内存块与上一个内存块,但是其实这两个字段表示的是目的地址的偏移量,基地址是整个内存堆的起始地址。
* (3):used字段用于标记该内存是否已经被使用。
* (4):申请的内存最小为12字节,因为一个内存块最起码需要保持mem结构体的信息,以便于对内存块进行操作,而该结构体在对齐后的内存大小就是12字节。
* (5):内存堆的大小是由这个宏定义的,该语句在编译器处理之后就是u8_t ram_heap[(((MEM_SIZE_ALIGNED + (2U * SIZEOF_STRUCT_MEM)) + MEM_ALIGNMENT - 1U))];,其中MEM_SIZE_ALIGNED宏是内存堆大小MEM_SIZE经过内存对齐后的大小;而SIZEOF_STRUCT_MEM则是结构体mem经过内存对其后的大小,MEM_ALIGNMENT则是CPU按多少字节对其的宏定义,一般为4。
* (6):ram_heap[]就是内核的内存堆空间,LWIP_RAM_HEAP_POINTER这个宏定义相对于重新命名ram_heap。
* (7):ram是一个全局指针变量,指向内存堆对齐后的起始地址,因为真正的内存堆起始地址不一定是按照CPU的对齐方式对齐的,而此处就要确保内存堆的起始地址是对齐的。
* (8):mem类型指针,指向内存堆中最后一个内存块。
* (9):互斥量,用户保护内存堆的互斥量,暂时未用。
* (10):mem类型指针,指向内存堆中低地址的空闲内存块,简单来说就是空闲内存块链表指针。
- 说明
- 第1章:网络协议简介
- 1.1:常用网络协议
- 1.2:网络协议的分层模型
- 1.3:协议层报文间的封装与拆封
- 第2章:LwIP简介
- 2.1:LwIP的优缺点
- 2.2:LwIP的文件说明
- 2.2.1:如何获取LwIP源码文件
- 2.2.2:LwIP文件说明
- 2.3:查看LwIP的说明文档
- 2.4:使用vscode查看源码
- 2.4.1:查看文件中的符号列表(函数列表)
- 2.4.2:函数定义跳转
- 2.5:LwIP源码里的example
- 2.6:LwIP的三种编程接口
- 2.6.1:RAW/Callback API
- 2.6.2:NETCONN API
- 2.6.3:SOCKET API
- 第3章:开发平台介绍
- 3.1:以太网简介
- 3.1.1:PHY层
- 3.1.2:MAC子层
- 3.2:STM32的ETH外设
- 3.3:MII 和 RMII 接口
- 3.4:PHY:LAN8720A
- 3.5:硬件设计
- 3.6:软件设计
- 3.6.1:获取STM32的裸机工程模板
- 3.6.2:添加bsp_eth.c与bsp_eth.h
- 3.6.3:修改stm32f4xx_hal_conf.h文件
- 第4章:LwIP的网络接口管理
- 4.1:netif结构体
- 4.2:netif使用
- 4.3:与netif相关的底层函数
- 4.4:ethernetif.c文件内容
- 4.4.1:ethernetif数据结构
- 4.4.2:ethernetif_init()
- 4.4.3:low_level_init()
- 第5章:LwIP的内存管理
- 5.1:几种内存分配策略
- 5.1.1:固定大小的内存块
- 5.1.2:可变长度分配
- 5.2:动态内存池(POOL)
- 5.2.1:内存池的预处理
- 5.2.2:内存池的初始化
- 5.2.3:内存分配
- 5.2.4:内存释放
- 5.3:动态内存堆
- 5.3.1:内存堆的组织结构
- 5.3.2:内存堆初始化
- 5.3.3:内存分配
- 5.3.4:内存释放
- 5.4:使用C库的malloc和free来管理内存
- 5.5:LwIP中的配置
- 第6章:网络数据包
- 6.1:TCP/IP协议的分层思想
- 6.2:LwIP的线程模型
- 6.3:pbuf结构体说明
- 6.4:pbuf的类型
- 6.4.1:PBUF_RAM类型的pbuf
- 6.4.2:PBUF_POOL类型的pbuf
- 6.4.3:PBUF_ROM和PBUF_REF类型pbuf
- 6.5:pbuf_alloc()
- 6.6:pbuf_free()
- 6.7:其它pbuf操作函数
- 6.7.1:pbuf_realloc()
- 6.7.2:pbuf_header()
- 6.7.3:pbuf_take()
- 6.8:网卡中使用的pbuf
- 6.8.1:low_level_output()
- 6.8.2:low_level_input()
- 6.8.3:ethernetif_input()
- 第7章:无操作系统移植LwIP
- 7.1:将LwIP添加到裸机工程
- 7.2:移植头文件
- 7.3:移植网卡驱动
- 7.4:LwIP时基
- 7.5:协议栈初始化
- 7.6:获取数据包
- 7.6.1:查询方式
- 7.6.2:ping命令详解
- 7.6.3:中断方式
- 第8章:有操作系统移植LwIP
- 8.1:LwIP中添加操作系统
- 8.1.1:拷贝FreeRTOS源码到工程文件夹
- 8.1.2:添加FreeRTOS源码到工程组文件夹
- 8.1.3:指定FreeRTOS头文件的路径
- 8.1.4:修改stm32f10x_it.c
- 8.2:lwipopts.h文件需要加入的配置
- 8.3:sys_arch.c/h文件的编写
- 8.4:网卡底层的编写
- 8.5:协议栈初始化
- 8.6:移植后使用ping测试基本响应
- 第9章:LwIP一探究竟
- 9.1:网卡接收数据的流程
- 9.2:内核超时处理
- 9.2.1:sys_timeo结构体与超时链表
- 9.2.2:注册超时事件
- 9.2.3:超时检查
- 9.3:tcpip_thread线程
- 9.4:LwIP中的消息
- 9.4.1:消息结构
- 9.4.2:数据包消息
- 9.4.3:API消息
- 9.5:揭开LwIP神秘的面纱
- 第10章:ARP协议
- 10.1:链路层概述
- 10.2:MAC地址的基本概念
- 10.3:初识ARP
- 10.4:以太网帧结构
- 10.5:IP地址映射为物理地址
- 10.6:ARP缓存表
- 10.7:ARP缓存表的超时处理
- 10.8:ARP报文
- 10.9:发送ARP请求包
- 10.10:数据包接收流程
- 10.10.1:以太网之数据包接收
- 10.10.2:ARP数据包处理
- 10.10.3:更新ARP缓存表
- 10.11:数据包发送流程
- 10.11.1:etharp_output()函数
- 10.11.2:etharp_output_to_arp_index()函数
- 10.11.3:etharp_query()函数
- 第11章:IP协议
- 11.1:IP地址.md
- 11.1.1:概述
- 11.1.2:IP地址编址
- 11.1.3:特殊IP地址