在内核初始化的时候,会调用mem_init()函数进行内存堆的初始化,内存堆初始化主要的过程就是对上述所属的内存堆组织结构进行初始化,主要设置内存堆的起始地址,以及初始化空闲列表。根据用户配置的宏定义进行相关处室,配置不同其实现也不同(可能为空),该函数源码具体见代码清单 5-10。
```
1 void
2 mem_init(void)
3 {
4 struct mem *mem;
5
6 LWIP_ASSERT("Sanity check alignment",
7 (SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT - 1)) == 0);
8
9 /* align the heap */
10 ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER); (1)
11 /* initialize the start of the heap */
12 mem = (struct mem *)(void *)ram; (2)
13 mem->next = MEM_SIZE_ALIGNED; (3)
14 mem->prev = 0; (4)
15 mem->used = 0; (5)
16 /* initialize the end of the heap */
17 ram_end = ptr_to_mem(MEM_SIZE_ALIGNED); (6)
18 ram_end->used = 1; (7)
19 ram_end->next = MEM_SIZE_ALIGNED;
20 ram_end->prev = MEM_SIZE_ALIGNED;
21 MEM_SANITY();
22
23 /* initialize the lowest-free pointer to the start of the heap */
24 lfree = (struct mem *)(void *)ram; (8)
25
26 MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED);
27
28 if (sys_mutex_new(&mem_mutex) != ERR_OK) (9)
29 {
30 LWIP_ASSERT("failed to create mem_mutex", 0);
31 }
32 }
```
* (1):内存堆空间对齐,LWIP_RAM_HEAP_POINTER宏定义就是ram_mem,内存堆对齐后的起始地址被记录在ram中。
* (2):在内存堆起始位置放置一个mem类型的结构体,因为初始化后的内存堆就是一个大的空闲内存块,每个空闲内存块的前面都需要放置一个mem结构体。
* (3):下一个内存块的偏移量为MEM_SIZE_ALIGNED,这相对于直接到内存堆的结束地址了。
* (4):上一个内存块为空。
* (5):标记未被使用。
* (6):指针移动到内存堆末尾的位置,并且在那里放置一个mem类型的结构体,并初始化表示内存堆结束的内存块。
* (7):标记已经使用了该内存块,因为结束的地方是没有内存块的,不能被分配出去,只能表示已经使用。同时mem结构体的next与prev字段都指向自身,此处仅表示已经到了内存堆的结束的地方,并无内存可以分配。
* (8):空闲内存块链表指针指向内存堆的起始地址,因为当前只有一个内存块。
* (9):创建一个内存堆分配时候使用的互斥量,如果是无操作系统的情况,该语句等效于空。
经过mem_init()函数后,内存堆会被初始化为两个内存块,第一个内存块的大小就是整个内存堆的大小,而第二个内存块就是介绍内存块,其大小为0,并且被标记为已使用状态,无法进行分配。值得注意的是,系统在运行的时候,随着内存的分配与释放,lfree指针的指向地址不断改变,都指向内存堆中低地址空闲内存块,而ram_end则不会改变,它指向系统中最后一个内存块,也就是内存堆的结束地址。初始化完成的示意图具体见图 5-4。
![](https://box.kancloud.cn/c2c4cee9fa1ad91cef8386f3f67705a9_509x634.png)
- 说明
- 第1章:网络协议简介
- 1.1:常用网络协议
- 1.2:网络协议的分层模型
- 1.3:协议层报文间的封装与拆封
- 第2章:LwIP简介
- 2.1:LwIP的优缺点
- 2.2:LwIP的文件说明
- 2.2.1:如何获取LwIP源码文件
- 2.2.2:LwIP文件说明
- 2.3:查看LwIP的说明文档
- 2.4:使用vscode查看源码
- 2.4.1:查看文件中的符号列表(函数列表)
- 2.4.2:函数定义跳转
- 2.5:LwIP源码里的example
- 2.6:LwIP的三种编程接口
- 2.6.1:RAW/Callback API
- 2.6.2:NETCONN API
- 2.6.3:SOCKET API
- 第3章:开发平台介绍
- 3.1:以太网简介
- 3.1.1:PHY层
- 3.1.2:MAC子层
- 3.2:STM32的ETH外设
- 3.3:MII 和 RMII 接口
- 3.4:PHY:LAN8720A
- 3.5:硬件设计
- 3.6:软件设计
- 3.6.1:获取STM32的裸机工程模板
- 3.6.2:添加bsp_eth.c与bsp_eth.h
- 3.6.3:修改stm32f4xx_hal_conf.h文件
- 第4章:LwIP的网络接口管理
- 4.1:netif结构体
- 4.2:netif使用
- 4.3:与netif相关的底层函数
- 4.4:ethernetif.c文件内容
- 4.4.1:ethernetif数据结构
- 4.4.2:ethernetif_init()
- 4.4.3:low_level_init()
- 第5章:LwIP的内存管理
- 5.1:几种内存分配策略
- 5.1.1:固定大小的内存块
- 5.1.2:可变长度分配
- 5.2:动态内存池(POOL)
- 5.2.1:内存池的预处理
- 5.2.2:内存池的初始化
- 5.2.3:内存分配
- 5.2.4:内存释放
- 5.3:动态内存堆
- 5.3.1:内存堆的组织结构
- 5.3.2:内存堆初始化
- 5.3.3:内存分配
- 5.3.4:内存释放
- 5.4:使用C库的malloc和free来管理内存
- 5.5:LwIP中的配置
- 第6章:网络数据包
- 6.1:TCP/IP协议的分层思想
- 6.2:LwIP的线程模型
- 6.3:pbuf结构体说明
- 6.4:pbuf的类型
- 6.4.1:PBUF_RAM类型的pbuf
- 6.4.2:PBUF_POOL类型的pbuf
- 6.4.3:PBUF_ROM和PBUF_REF类型pbuf
- 6.5:pbuf_alloc()
- 6.6:pbuf_free()
- 6.7:其它pbuf操作函数
- 6.7.1:pbuf_realloc()
- 6.7.2:pbuf_header()
- 6.7.3:pbuf_take()
- 6.8:网卡中使用的pbuf
- 6.8.1:low_level_output()
- 6.8.2:low_level_input()
- 6.8.3:ethernetif_input()
- 第7章:无操作系统移植LwIP
- 7.1:将LwIP添加到裸机工程
- 7.2:移植头文件
- 7.3:移植网卡驱动
- 7.4:LwIP时基
- 7.5:协议栈初始化
- 7.6:获取数据包
- 7.6.1:查询方式
- 7.6.2:ping命令详解
- 7.6.3:中断方式
- 第8章:有操作系统移植LwIP
- 8.1:LwIP中添加操作系统
- 8.1.1:拷贝FreeRTOS源码到工程文件夹
- 8.1.2:添加FreeRTOS源码到工程组文件夹
- 8.1.3:指定FreeRTOS头文件的路径
- 8.1.4:修改stm32f10x_it.c
- 8.2:lwipopts.h文件需要加入的配置
- 8.3:sys_arch.c/h文件的编写
- 8.4:网卡底层的编写
- 8.5:协议栈初始化
- 8.6:移植后使用ping测试基本响应
- 第9章:LwIP一探究竟
- 9.1:网卡接收数据的流程
- 9.2:内核超时处理
- 9.2.1:sys_timeo结构体与超时链表
- 9.2.2:注册超时事件
- 9.2.3:超时检查
- 9.3:tcpip_thread线程
- 9.4:LwIP中的消息
- 9.4.1:消息结构
- 9.4.2:数据包消息
- 9.4.3:API消息
- 9.5:揭开LwIP神秘的面纱
- 第10章:ARP协议
- 10.1:链路层概述
- 10.2:MAC地址的基本概念
- 10.3:初识ARP
- 10.4:以太网帧结构
- 10.5:IP地址映射为物理地址
- 10.6:ARP缓存表
- 10.7:ARP缓存表的超时处理
- 10.8:ARP报文
- 10.9:发送ARP请求包
- 10.10:数据包接收流程
- 10.10.1:以太网之数据包接收
- 10.10.2:ARP数据包处理
- 10.10.3:更新ARP缓存表
- 10.11:数据包发送流程
- 10.11.1:etharp_output()函数
- 10.11.2:etharp_output_to_arp_index()函数
- 10.11.3:etharp_query()函数
- 第11章:IP协议
- 11.1:IP地址.md
- 11.1.1:概述
- 11.1.2:IP地址编址
- 11.1.3:特殊IP地址