从前面的章节也知道,ARP是动态处理的,现在总结一下:ARP表项的生存时间是5分钟,而ARP请求的等待时间是5秒钟,当这些时间到达后,就会更新ARP表项,如果在物理链路层无法连通则会删除表项。这就需要ARP层有一个超时处理函数对ARP进行管理,这些操作都是根据ARP表项的ctime字段进行的,它记录着对应表项的生存时间,而超时处理函数是etharp\_tmr(),它是一个周期性的超时处理函数,每隔1秒就调用一次,当ctime的值大于指定的时间,就会删除对应的表项,具体见代码清单 10‑5。
```
1 void
2 etharp_tmr(void)
3 {
4 int i;
5
6 LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer\n"));
7 /* 遍历ARP表,从ARP表中删除过期的表项 */
8 for (i = 0; i < ARP_TABLE_SIZE; ++i) (1)
9 {
10 u8_t state = arp_table[i].state;
11 if (state != ETHARP_STATE_EMPTY
12 #if ETHARP_SUPPORT_STATIC_ENTRIES
13 && (state != ETHARP_STATE_STATIC)
14 #endif /* ETHARP_SUPPORT_STATIC_ENTRIES */
15 )
16 {
17 arp_table[i].ctime++; (2)
18 if ((arp_table[i].ctime >= ARP_MAXAGE) ||
19 ((arp_table[i].state == ETHARP_STATE_PENDING) &&
20 (arp_table[i].ctime >= ARP_MAXPENDING))) (3)
21 {
22 /* 等待表项稳定或者表项已经过期*/
23 LWIP_DEBUGF(ETHARP_DEBUG,("etharp_timer: expired %s entry %d.\n",
24 arp_table[i].state >= ETHARP_STATE_STABLE ? "stable" : "pending", i));
25 /*从ARP表中删除过期的表项 */
26 etharp_free_entry(i); (4)
27 }
28 else if (arp_table[i].state == ETHARP_STATE_STABLE_REREQUESTING_1)
29 {
30 /* 过渡 */
31 arp_table[i].state = ETHARP_STATE_STABLE_REREQUESTING_2;
32 }
33 else if (arp_table[i].state == ETHARP_STATE_STABLE_REREQUESTING_2)
34 {
35 /* 进入ETHARP_STATE_STABLE状态 */
36
37 arp_table[i].state = ETHARP_STATE_STABLE;
38 }
39 else if (arp_table[i].state == ETHARP_STATE_PENDING)
40 {
41 /*仍然挂起,重新发送ARP请求 */
42 etharp_request(arp_table[i].netif, &arp_table[i].ipaddr);
43 }
44 }
45 }
46 }
```
(1):由于LwIP的ARP表是比较小的,直接遍历表即可,更新ARP表的内容。
(2):如果ARP表项不是空的,那么就记录表项的时间。
(3)(4):当表项的时间大于表项的生存时间(5分钟),或者表项状态是ETHARP_STATE_PENDING处于等待目标主机回应ARP请求包,并且等待的时间超过ARP_MAXPENDING(5秒),那么LwIP就认为这些表项是无效了,就调用etharp_free_entry()函数删除表项。
- 说明
- 第1章:网络协议简介
- 1.1:常用网络协议
- 1.2:网络协议的分层模型
- 1.3:协议层报文间的封装与拆封
- 第2章:LwIP简介
- 2.1:LwIP的优缺点
- 2.2:LwIP的文件说明
- 2.2.1:如何获取LwIP源码文件
- 2.2.2:LwIP文件说明
- 2.3:查看LwIP的说明文档
- 2.4:使用vscode查看源码
- 2.4.1:查看文件中的符号列表(函数列表)
- 2.4.2:函数定义跳转
- 2.5:LwIP源码里的example
- 2.6:LwIP的三种编程接口
- 2.6.1:RAW/Callback API
- 2.6.2:NETCONN API
- 2.6.3:SOCKET API
- 第3章:开发平台介绍
- 3.1:以太网简介
- 3.1.1:PHY层
- 3.1.2:MAC子层
- 3.2:STM32的ETH外设
- 3.3:MII 和 RMII 接口
- 3.4:PHY:LAN8720A
- 3.5:硬件设计
- 3.6:软件设计
- 3.6.1:获取STM32的裸机工程模板
- 3.6.2:添加bsp_eth.c与bsp_eth.h
- 3.6.3:修改stm32f4xx_hal_conf.h文件
- 第4章:LwIP的网络接口管理
- 4.1:netif结构体
- 4.2:netif使用
- 4.3:与netif相关的底层函数
- 4.4:ethernetif.c文件内容
- 4.4.1:ethernetif数据结构
- 4.4.2:ethernetif_init()
- 4.4.3:low_level_init()
- 第5章:LwIP的内存管理
- 5.1:几种内存分配策略
- 5.1.1:固定大小的内存块
- 5.1.2:可变长度分配
- 5.2:动态内存池(POOL)
- 5.2.1:内存池的预处理
- 5.2.2:内存池的初始化
- 5.2.3:内存分配
- 5.2.4:内存释放
- 5.3:动态内存堆
- 5.3.1:内存堆的组织结构
- 5.3.2:内存堆初始化
- 5.3.3:内存分配
- 5.3.4:内存释放
- 5.4:使用C库的malloc和free来管理内存
- 5.5:LwIP中的配置
- 第6章:网络数据包
- 6.1:TCP/IP协议的分层思想
- 6.2:LwIP的线程模型
- 6.3:pbuf结构体说明
- 6.4:pbuf的类型
- 6.4.1:PBUF_RAM类型的pbuf
- 6.4.2:PBUF_POOL类型的pbuf
- 6.4.3:PBUF_ROM和PBUF_REF类型pbuf
- 6.5:pbuf_alloc()
- 6.6:pbuf_free()
- 6.7:其它pbuf操作函数
- 6.7.1:pbuf_realloc()
- 6.7.2:pbuf_header()
- 6.7.3:pbuf_take()
- 6.8:网卡中使用的pbuf
- 6.8.1:low_level_output()
- 6.8.2:low_level_input()
- 6.8.3:ethernetif_input()
- 第7章:无操作系统移植LwIP
- 7.1:将LwIP添加到裸机工程
- 7.2:移植头文件
- 7.3:移植网卡驱动
- 7.4:LwIP时基
- 7.5:协议栈初始化
- 7.6:获取数据包
- 7.6.1:查询方式
- 7.6.2:ping命令详解
- 7.6.3:中断方式
- 第8章:有操作系统移植LwIP
- 8.1:LwIP中添加操作系统
- 8.1.1:拷贝FreeRTOS源码到工程文件夹
- 8.1.2:添加FreeRTOS源码到工程组文件夹
- 8.1.3:指定FreeRTOS头文件的路径
- 8.1.4:修改stm32f10x_it.c
- 8.2:lwipopts.h文件需要加入的配置
- 8.3:sys_arch.c/h文件的编写
- 8.4:网卡底层的编写
- 8.5:协议栈初始化
- 8.6:移植后使用ping测试基本响应
- 第9章:LwIP一探究竟
- 9.1:网卡接收数据的流程
- 9.2:内核超时处理
- 9.2.1:sys_timeo结构体与超时链表
- 9.2.2:注册超时事件
- 9.2.3:超时检查
- 9.3:tcpip_thread线程
- 9.4:LwIP中的消息
- 9.4.1:消息结构
- 9.4.2:数据包消息
- 9.4.3:API消息
- 9.5:揭开LwIP神秘的面纱
- 第10章:ARP协议
- 10.1:链路层概述
- 10.2:MAC地址的基本概念
- 10.3:初识ARP
- 10.4:以太网帧结构
- 10.5:IP地址映射为物理地址
- 10.6:ARP缓存表
- 10.7:ARP缓存表的超时处理
- 10.8:ARP报文
- 10.9:发送ARP请求包
- 10.10:数据包接收流程
- 10.10.1:以太网之数据包接收
- 10.10.2:ARP数据包处理
- 10.10.3:更新ARP缓存表
- 10.11:数据包发送流程
- 10.11.1:etharp_output()函数
- 10.11.2:etharp_output_to_arp_index()函数
- 10.11.3:etharp_query()函数
- 第11章:IP协议
- 11.1:IP地址.md
- 11.1.1:概述
- 11.1.2:IP地址编址
- 11.1.3:特殊IP地址