对于每种类型的消息,LwIP内核都必须有一个产生与之对应的消息函数,在产生该类型的消息后就将其投递到系统邮箱tcpip\_mbox中,这样子tcpip\_thread线程就会从邮箱中得到消息并且处理,从而能使内核完美运作,从图 9‑1中我们可以很直观看到对应数据包的消息,是通过tcpip\_input()函数对消息进行构造并且投递的,但是真正执行这些操作的函数是tcpip\_inpkt(),其源码具体见代码清单 9‑10。
```
1 err_t
2 tcpip_input(struct pbuf *p, struct netif *inp)
3 {
4 if (inp->flags & (NETIF_FLAG_ETHARP | NETIF_FLAG_ETHERNET))
5 {
6 return tcpip_inpkt(p, inp, ethernet_input); (1)
7 }
8 }
9
10 err_t
11 tcpip_inpkt(struct pbuf *p, struct netif *inp, netif_input_fn input_fn)
12 {
13 struct tcpip_msg *msg;
14
15 LWIP_ASSERT("Invalid mbox", sys_mbox_valid_val(tcpip_mbox));
16
17 msg = (struct tcpip_msg *)memp_malloc(MEMP_TCPIP_MSG_INPKT); (2)
18 if (msg == NULL)
19 {
20 return ERR_MEM;
21 }
22
23 msg->type = TCPIP_MSG_INPKT;
24 msg->msg.inp.p = p;
25 msg->msg.inp.netif = inp;
26 msg->msg.inp.input_fn = input_fn; (3)
27 if (sys_mbox_trypost(&tcpip_mbox, msg) != ERR_OK) (4)
28 {
29 memp_free(MEMP_TCPIP_MSG_INPKT, msg); (5)
30 return ERR_MEM;
31 }
32 return ERR_OK;
33 }
```
(1):调用tcpip_inpkt()函数将ethernet_input()函数作为结构体的一部分传递给内核,然后内核接收到这个数据包就调用该函数。
(2):申请存放消息的内存空间。
(3):构造消息,消息的类型是数据包消息,初始化消息结构中msg共用体的inp字段,p指向数据包,网卡就是对应的网卡,处理的函数就是我们熟悉的ethernet_input()函数。
(4):构造消息完成,就调用sys_mbox_trypost进行投递消息,这其实就是对操作系统的API简单封装,如果投递成功则返回ERR_OK。
(5):如果投递失败,就释放对应的消息结构空间。
总的来说,万变不离其宗,无论是裸机编程还是操作系统,都是通过ethernet_input()函数去处理接收到的数据包,只不过操作系统通过线程与线程间数据通信,使用了消息进行传递,这样子能使接收线程与内核线程互不干扰,相互独立开,在操作系统环境下,接收线程只负责接收数据包、构造消息并且完成投递消息即可,这样子处理完又能接收下一个数据包,这样子的效率更加高效,而内核根据这些消息做对应处理即可。
其运作示意图具体见图 9 3。
![](https://box.kancloud.cn/42fbfd501317c205a9d0de7efd2c6bbf_758x391.png)
- 说明
- 第1章:网络协议简介
- 1.1:常用网络协议
- 1.2:网络协议的分层模型
- 1.3:协议层报文间的封装与拆封
- 第2章:LwIP简介
- 2.1:LwIP的优缺点
- 2.2:LwIP的文件说明
- 2.2.1:如何获取LwIP源码文件
- 2.2.2:LwIP文件说明
- 2.3:查看LwIP的说明文档
- 2.4:使用vscode查看源码
- 2.4.1:查看文件中的符号列表(函数列表)
- 2.4.2:函数定义跳转
- 2.5:LwIP源码里的example
- 2.6:LwIP的三种编程接口
- 2.6.1:RAW/Callback API
- 2.6.2:NETCONN API
- 2.6.3:SOCKET API
- 第3章:开发平台介绍
- 3.1:以太网简介
- 3.1.1:PHY层
- 3.1.2:MAC子层
- 3.2:STM32的ETH外设
- 3.3:MII 和 RMII 接口
- 3.4:PHY:LAN8720A
- 3.5:硬件设计
- 3.6:软件设计
- 3.6.1:获取STM32的裸机工程模板
- 3.6.2:添加bsp_eth.c与bsp_eth.h
- 3.6.3:修改stm32f4xx_hal_conf.h文件
- 第4章:LwIP的网络接口管理
- 4.1:netif结构体
- 4.2:netif使用
- 4.3:与netif相关的底层函数
- 4.4:ethernetif.c文件内容
- 4.4.1:ethernetif数据结构
- 4.4.2:ethernetif_init()
- 4.4.3:low_level_init()
- 第5章:LwIP的内存管理
- 5.1:几种内存分配策略
- 5.1.1:固定大小的内存块
- 5.1.2:可变长度分配
- 5.2:动态内存池(POOL)
- 5.2.1:内存池的预处理
- 5.2.2:内存池的初始化
- 5.2.3:内存分配
- 5.2.4:内存释放
- 5.3:动态内存堆
- 5.3.1:内存堆的组织结构
- 5.3.2:内存堆初始化
- 5.3.3:内存分配
- 5.3.4:内存释放
- 5.4:使用C库的malloc和free来管理内存
- 5.5:LwIP中的配置
- 第6章:网络数据包
- 6.1:TCP/IP协议的分层思想
- 6.2:LwIP的线程模型
- 6.3:pbuf结构体说明
- 6.4:pbuf的类型
- 6.4.1:PBUF_RAM类型的pbuf
- 6.4.2:PBUF_POOL类型的pbuf
- 6.4.3:PBUF_ROM和PBUF_REF类型pbuf
- 6.5:pbuf_alloc()
- 6.6:pbuf_free()
- 6.7:其它pbuf操作函数
- 6.7.1:pbuf_realloc()
- 6.7.2:pbuf_header()
- 6.7.3:pbuf_take()
- 6.8:网卡中使用的pbuf
- 6.8.1:low_level_output()
- 6.8.2:low_level_input()
- 6.8.3:ethernetif_input()
- 第7章:无操作系统移植LwIP
- 7.1:将LwIP添加到裸机工程
- 7.2:移植头文件
- 7.3:移植网卡驱动
- 7.4:LwIP时基
- 7.5:协议栈初始化
- 7.6:获取数据包
- 7.6.1:查询方式
- 7.6.2:ping命令详解
- 7.6.3:中断方式
- 第8章:有操作系统移植LwIP
- 8.1:LwIP中添加操作系统
- 8.1.1:拷贝FreeRTOS源码到工程文件夹
- 8.1.2:添加FreeRTOS源码到工程组文件夹
- 8.1.3:指定FreeRTOS头文件的路径
- 8.1.4:修改stm32f10x_it.c
- 8.2:lwipopts.h文件需要加入的配置
- 8.3:sys_arch.c/h文件的编写
- 8.4:网卡底层的编写
- 8.5:协议栈初始化
- 8.6:移植后使用ping测试基本响应
- 第9章:LwIP一探究竟
- 9.1:网卡接收数据的流程
- 9.2:内核超时处理
- 9.2.1:sys_timeo结构体与超时链表
- 9.2.2:注册超时事件
- 9.2.3:超时检查
- 9.3:tcpip_thread线程
- 9.4:LwIP中的消息
- 9.4.1:消息结构
- 9.4.2:数据包消息
- 9.4.3:API消息
- 9.5:揭开LwIP神秘的面纱
- 第10章:ARP协议
- 10.1:链路层概述
- 10.2:MAC地址的基本概念
- 10.3:初识ARP
- 10.4:以太网帧结构
- 10.5:IP地址映射为物理地址
- 10.6:ARP缓存表
- 10.7:ARP缓存表的超时处理
- 10.8:ARP报文
- 10.9:发送ARP请求包
- 10.10:数据包接收流程
- 10.10.1:以太网之数据包接收
- 10.10.2:ARP数据包处理
- 10.10.3:更新ARP缓存表
- 10.11:数据包发送流程
- 10.11.1:etharp_output()函数
- 10.11.2:etharp_output_to_arp_index()函数
- 10.11.3:etharp_query()函数
- 第11章:IP协议
- 11.1:IP地址.md
- 11.1.1:概述
- 11.1.2:IP地址编址
- 11.1.3:特殊IP地址