在标准的TCP/IP协议栈中,各层之间都是一个独立的模块,它有着很清晰的层次结构,每一层只负责完成该层的处理,不会越界到其他层次去读写数据。而LwIP只是一个轻量级TCP/IP协议栈,它只是一个较完整的TCP/IP协议,多应用在嵌入式领域中,由于处理器的性能有限,LwIP并没有采用很明确的分层结构,它假设各层之间的部分数据和结构体和实现原理在其他层是可见的,简单来说就传输层知道IP层是如何封装数据、传递数据的,IP层知道链路层是怎么封装数据的等等。
为什么要模糊分层的处理?简单来说就是为了提高效率,例如链路层完成数据包在物理线路上传输的封装;IP层完成数据包的选择和路由,负责将数据包发送到目标主机;传输层负责根据IP地址将数据包传输到指定主机,端口号识别一台主机的线程,向不同的应用层递交数据;但是,如果按照标准的TCP/IP协议栈这种严格的分层思想,在数据传输的时候就需要层层拷贝,因为各层之间的内存都不是共用的,在链路层递交到IP层需要拷贝,在IP层递交到传输层需要拷贝,反之亦然,这样子每当收到或者发送一个数据的时候都要CPU去拷贝数据,这个效率就太慢了,所以LwIP假设各层之间的资源都是共用的,各层之间的实现方式也是已知的,那么在IP层往传输层递交数据的时候,链路层往IP层递交数据的时候就无需再次拷贝,直接操作协议栈中属于其他层次的字段,得到相应的信息,然后直接读取传递的数据即可,这样子处理的方式就无需拷贝,各个层次之间存在交叉存取数据的现象,既节省系统的空间也节省处理的时间,而且更加灵活。例如在传输层,在计算TCP报文段的校验以及TCP在重装无需报文时,TCP层必须知道该报文的源IP地址和目的IP地址,为了得到这些信息,传输层并不是调用IP层的接口,而是直接访问数据包中的IP数据报首部,因为传输层已经知道IP层的数据报的格式及作用,直接访问读取这些信息即可。
在小型嵌入式设备中,LwIP与用户程序之间通常没有太严格的分层结构,这种方式允许用户处理数据与内核之间变得更加宽松。LwIP假设用户完全了解协议栈内部的数据处理机制,用户程序可以直接访问协议栈内部各层的数据包,可以让协议栈与用户使用同样的内存区域,允许用户直接对这片区域进行读写操作,这样子就很好地避免了拷贝的现象,当然这样子的做法也有缺陷,取决于用户对协议栈处理过程的了解程度,因为数据是公共的,如果处理不正确那就让协议栈也没法正常工作。
当然,除了标准的TCP/IP协议,还存在很多其他的TCP/IP协议,即使这些协议栈内部存在着模糊分层、交叉存取现象,但是对协议栈外部的应用层则保持着明显的分层结构,在操作系统中,TCP/IP协议栈往往被设计为内核代码的一部分,用户可以的函数仅仅是协议栈为用户提供的那些,或者直接完全封装起来,用户的操作类似于读写文件的方式进行(如BSD Socket),这样子用户就无法避免数据的拷贝,在数据发送的时候,用户数据必须从用户区域拷贝到协议栈内部,在数据接收的时候,协议栈内部数据也将被拷贝到用户区域。
严格按照TCP协议的分层思想会导致数据包在各层递交产生内存拷贝问题,影响性能。为了节省时间和空间的开销,LwIP没有遵循严格的分层机制,各层次之间存在交叉存取的现象,提高效率。
由于LwIP的内存共享机制,使得应用程序能直接对协议栈内核的内存区域直接操作,减少时间和空间的损耗。
- 说明
- 第1章:网络协议简介
- 1.1:常用网络协议
- 1.2:网络协议的分层模型
- 1.3:协议层报文间的封装与拆封
- 第2章:LwIP简介
- 2.1:LwIP的优缺点
- 2.2:LwIP的文件说明
- 2.2.1:如何获取LwIP源码文件
- 2.2.2:LwIP文件说明
- 2.3:查看LwIP的说明文档
- 2.4:使用vscode查看源码
- 2.4.1:查看文件中的符号列表(函数列表)
- 2.4.2:函数定义跳转
- 2.5:LwIP源码里的example
- 2.6:LwIP的三种编程接口
- 2.6.1:RAW/Callback API
- 2.6.2:NETCONN API
- 2.6.3:SOCKET API
- 第3章:开发平台介绍
- 3.1:以太网简介
- 3.1.1:PHY层
- 3.1.2:MAC子层
- 3.2:STM32的ETH外设
- 3.3:MII 和 RMII 接口
- 3.4:PHY:LAN8720A
- 3.5:硬件设计
- 3.6:软件设计
- 3.6.1:获取STM32的裸机工程模板
- 3.6.2:添加bsp_eth.c与bsp_eth.h
- 3.6.3:修改stm32f4xx_hal_conf.h文件
- 第4章:LwIP的网络接口管理
- 4.1:netif结构体
- 4.2:netif使用
- 4.3:与netif相关的底层函数
- 4.4:ethernetif.c文件内容
- 4.4.1:ethernetif数据结构
- 4.4.2:ethernetif_init()
- 4.4.3:low_level_init()
- 第5章:LwIP的内存管理
- 5.1:几种内存分配策略
- 5.1.1:固定大小的内存块
- 5.1.2:可变长度分配
- 5.2:动态内存池(POOL)
- 5.2.1:内存池的预处理
- 5.2.2:内存池的初始化
- 5.2.3:内存分配
- 5.2.4:内存释放
- 5.3:动态内存堆
- 5.3.1:内存堆的组织结构
- 5.3.2:内存堆初始化
- 5.3.3:内存分配
- 5.3.4:内存释放
- 5.4:使用C库的malloc和free来管理内存
- 5.5:LwIP中的配置
- 第6章:网络数据包
- 6.1:TCP/IP协议的分层思想
- 6.2:LwIP的线程模型
- 6.3:pbuf结构体说明
- 6.4:pbuf的类型
- 6.4.1:PBUF_RAM类型的pbuf
- 6.4.2:PBUF_POOL类型的pbuf
- 6.4.3:PBUF_ROM和PBUF_REF类型pbuf
- 6.5:pbuf_alloc()
- 6.6:pbuf_free()
- 6.7:其它pbuf操作函数
- 6.7.1:pbuf_realloc()
- 6.7.2:pbuf_header()
- 6.7.3:pbuf_take()
- 6.8:网卡中使用的pbuf
- 6.8.1:low_level_output()
- 6.8.2:low_level_input()
- 6.8.3:ethernetif_input()
- 第7章:无操作系统移植LwIP
- 7.1:将LwIP添加到裸机工程
- 7.2:移植头文件
- 7.3:移植网卡驱动
- 7.4:LwIP时基
- 7.5:协议栈初始化
- 7.6:获取数据包
- 7.6.1:查询方式
- 7.6.2:ping命令详解
- 7.6.3:中断方式
- 第8章:有操作系统移植LwIP
- 8.1:LwIP中添加操作系统
- 8.1.1:拷贝FreeRTOS源码到工程文件夹
- 8.1.2:添加FreeRTOS源码到工程组文件夹
- 8.1.3:指定FreeRTOS头文件的路径
- 8.1.4:修改stm32f10x_it.c
- 8.2:lwipopts.h文件需要加入的配置
- 8.3:sys_arch.c/h文件的编写
- 8.4:网卡底层的编写
- 8.5:协议栈初始化
- 8.6:移植后使用ping测试基本响应
- 第9章:LwIP一探究竟
- 9.1:网卡接收数据的流程
- 9.2:内核超时处理
- 9.2.1:sys_timeo结构体与超时链表
- 9.2.2:注册超时事件
- 9.2.3:超时检查
- 9.3:tcpip_thread线程
- 9.4:LwIP中的消息
- 9.4.1:消息结构
- 9.4.2:数据包消息
- 9.4.3:API消息
- 9.5:揭开LwIP神秘的面纱
- 第10章:ARP协议
- 10.1:链路层概述
- 10.2:MAC地址的基本概念
- 10.3:初识ARP
- 10.4:以太网帧结构
- 10.5:IP地址映射为物理地址
- 10.6:ARP缓存表
- 10.7:ARP缓存表的超时处理
- 10.8:ARP报文
- 10.9:发送ARP请求包
- 10.10:数据包接收流程
- 10.10.1:以太网之数据包接收
- 10.10.2:ARP数据包处理
- 10.10.3:更新ARP缓存表
- 10.11:数据包发送流程
- 10.11.1:etharp_output()函数
- 10.11.2:etharp_output_to_arp_index()函数
- 10.11.3:etharp_query()函数
- 第11章:IP协议
- 11.1:IP地址.md
- 11.1.1:概述
- 11.1.2:IP地址编址
- 11.1.3:特殊IP地址