介质独立接口(MII)用于理解 MAC 控制器和 PHY 芯片,提供数据传输路径。 RMII 接口是 MII 接口的简化版本, MII 需要 16 根通信线, RMII 只需 7 根通信,在功能上是相同的。图 3‑4为 MII 接口连接示意图, 图 3‑5为 RMII 接口连接示意图。
![](https://box.kancloud.cn/d2cdaf348e01060b0fd3149126a3eb21_526x368.png)
![](https://box.kancloud.cn/d169aea3e4d8e9ef0723f87b9c7d9a25_480x306.png)
* TX\_CLK:数据发送时钟线。标称速率为 10Mbit/s 时为 2.5MHz;速率为 100Mbit/s 时为 25MHz。 RMII 接口没有该线。
* RX\_CLK:数据接收时钟线。标称速率为 10Mbit/s 时为 2.5MHz;速率为 100Mbit/s 时为 25MHz。 RMII 接口没有该线。
* TX\_EN:数据发送使能。在整个数据发送过程保存有效电平。
* TXD\[3:0\]或 TXD\[1:0\]:数据发送数据线。对于 MII 有 4 位, RMII 只有 2 位。只有在TX\_EN 处于有效电平数据线才有效。
* CRS:载波侦听信号,由 PHY 芯片负责驱动,当发送或接收介质处于非空闲状态时使能该信号。在全双工模式该信号线无效。
* COL:冲突检测信号,由 PHY 芯片负责驱动,检测到介质上存在冲突后该线被使能,并且保持至冲突解除。在全双工模式该信号线无效。
* RXD\[3:0\]或 RXD\[1:0\]:数据接收数据线,由 PHY 芯片负责驱动。对于 MII 有 4 位,RMII 只有 2 位。在 MII 模式,当 RX\_DV 禁止、 RX\_ER 使能时,特定的 RXD\[3:0\]值用于传输来自 PHY 的特定信息。
* RX\_DV:接收数据有效信号,功能类似 TX\_EN,只不过用于数据接收,由 PHY 芯片负责驱动。对于 RMII 接口,是把 CRS 和 RX\_DV 整合成 CRS\_DV 信号线,当介质处于不同状态时会自切换该信号状态。
* RX\_ER:接收错误信号线,由 PHY 驱动,向 MAC 控制器报告在帧某处检测到错误。
* REF\_CLK:仅用于 RMII 接口,由外部时钟源提供 50MHz 参考时钟。因为要达到 100Mbit/s 传输速度, MII 和 RMII 数据线数量不同,使用 MII 和 RMII 在时钟线的设计是完全不同的。对于 MII 接口,一般是外部为 PHY 提供 25MHz 时钟源,再由 PHY 提供 TX\_CLK 和 RX\_CLK 时钟。对于 RMII 接口,一般需要外部直接提供 50MHz时钟源,同时接入 MAC 和 PHY。
开发板板载的 PHY 芯片型号为 LAN8720A,该芯片只支持 RMII 接口,电路设计时参考图 3‑6。
![](https://box.kancloud.cn/68af6d555032595bfa7c8dda520b2b6e_392x829.png)
注:其中, PPS\_OUT 是 IEEE 1588 定义的一个时钟同步机制。
- 说明
- 第1章:网络协议简介
- 1.1:常用网络协议
- 1.2:网络协议的分层模型
- 1.3:协议层报文间的封装与拆封
- 第2章:LwIP简介
- 2.1:LwIP的优缺点
- 2.2:LwIP的文件说明
- 2.2.1:如何获取LwIP源码文件
- 2.2.2:LwIP文件说明
- 2.3:查看LwIP的说明文档
- 2.4:使用vscode查看源码
- 2.4.1:查看文件中的符号列表(函数列表)
- 2.4.2:函数定义跳转
- 2.5:LwIP源码里的example
- 2.6:LwIP的三种编程接口
- 2.6.1:RAW/Callback API
- 2.6.2:NETCONN API
- 2.6.3:SOCKET API
- 第3章:开发平台介绍
- 3.1:以太网简介
- 3.1.1:PHY层
- 3.1.2:MAC子层
- 3.2:STM32的ETH外设
- 3.3:MII 和 RMII 接口
- 3.4:PHY:LAN8720A
- 3.5:硬件设计
- 3.6:软件设计
- 3.6.1:获取STM32的裸机工程模板
- 3.6.2:添加bsp_eth.c与bsp_eth.h
- 3.6.3:修改stm32f4xx_hal_conf.h文件
- 第4章:LwIP的网络接口管理
- 4.1:netif结构体
- 4.2:netif使用
- 4.3:与netif相关的底层函数
- 4.4:ethernetif.c文件内容
- 4.4.1:ethernetif数据结构
- 4.4.2:ethernetif_init()
- 4.4.3:low_level_init()
- 第5章:LwIP的内存管理
- 5.1:几种内存分配策略
- 5.1.1:固定大小的内存块
- 5.1.2:可变长度分配
- 5.2:动态内存池(POOL)
- 5.2.1:内存池的预处理
- 5.2.2:内存池的初始化
- 5.2.3:内存分配
- 5.2.4:内存释放
- 5.3:动态内存堆
- 5.3.1:内存堆的组织结构
- 5.3.2:内存堆初始化
- 5.3.3:内存分配
- 5.3.4:内存释放
- 5.4:使用C库的malloc和free来管理内存
- 5.5:LwIP中的配置
- 第6章:网络数据包
- 6.1:TCP/IP协议的分层思想
- 6.2:LwIP的线程模型
- 6.3:pbuf结构体说明
- 6.4:pbuf的类型
- 6.4.1:PBUF_RAM类型的pbuf
- 6.4.2:PBUF_POOL类型的pbuf
- 6.4.3:PBUF_ROM和PBUF_REF类型pbuf
- 6.5:pbuf_alloc()
- 6.6:pbuf_free()
- 6.7:其它pbuf操作函数
- 6.7.1:pbuf_realloc()
- 6.7.2:pbuf_header()
- 6.7.3:pbuf_take()
- 6.8:网卡中使用的pbuf
- 6.8.1:low_level_output()
- 6.8.2:low_level_input()
- 6.8.3:ethernetif_input()
- 第7章:无操作系统移植LwIP
- 7.1:将LwIP添加到裸机工程
- 7.2:移植头文件
- 7.3:移植网卡驱动
- 7.4:LwIP时基
- 7.5:协议栈初始化
- 7.6:获取数据包
- 7.6.1:查询方式
- 7.6.2:ping命令详解
- 7.6.3:中断方式
- 第8章:有操作系统移植LwIP
- 8.1:LwIP中添加操作系统
- 8.1.1:拷贝FreeRTOS源码到工程文件夹
- 8.1.2:添加FreeRTOS源码到工程组文件夹
- 8.1.3:指定FreeRTOS头文件的路径
- 8.1.4:修改stm32f10x_it.c
- 8.2:lwipopts.h文件需要加入的配置
- 8.3:sys_arch.c/h文件的编写
- 8.4:网卡底层的编写
- 8.5:协议栈初始化
- 8.6:移植后使用ping测试基本响应
- 第9章:LwIP一探究竟
- 9.1:网卡接收数据的流程
- 9.2:内核超时处理
- 9.2.1:sys_timeo结构体与超时链表
- 9.2.2:注册超时事件
- 9.2.3:超时检查
- 9.3:tcpip_thread线程
- 9.4:LwIP中的消息
- 9.4.1:消息结构
- 9.4.2:数据包消息
- 9.4.3:API消息
- 9.5:揭开LwIP神秘的面纱
- 第10章:ARP协议
- 10.1:链路层概述
- 10.2:MAC地址的基本概念
- 10.3:初识ARP
- 10.4:以太网帧结构
- 10.5:IP地址映射为物理地址
- 10.6:ARP缓存表
- 10.7:ARP缓存表的超时处理
- 10.8:ARP报文
- 10.9:发送ARP请求包
- 10.10:数据包接收流程
- 10.10.1:以太网之数据包接收
- 10.10.2:ARP数据包处理
- 10.10.3:更新ARP缓存表
- 10.11:数据包发送流程
- 10.11.1:etharp_output()函数
- 10.11.2:etharp_output_to_arp_index()函数
- 10.11.3:etharp_query()函数
- 第11章:IP协议
- 11.1:IP地址.md
- 11.1.1:概述
- 11.1.2:IP地址编址
- 11.1.3:特殊IP地址