# 3.2 线性回归的从零开始实现
在了解了线性回归的背景知识之后,现在我们可以动手实现它了。尽管强大的深度学习框架可以减少大量重复性工作,但若过于依赖它提供的便利,会导致我们很难深入理解深度学习是如何工作的。因此,本节将介绍如何只利用`Tensor`和`autograd`来实现一个线性回归的训练。
首先,导入本节中实验所需的包或模块,其中的matplotlib包可用于作图,且设置成嵌入显示。
``` python
%matplotlib inline
import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random
```
## 3.2.1 生成数据集
我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别。设训练数据集样本数为1000,输入个数(特征数)为2。给定随机生成的批量样本特征 `$ \boldsymbol{X} \in \mathbb{R}^{1000 \times 2} $`,我们使用线性回归模型真实权重 `$ \boldsymbol{w} = [2, -3.4]^\top $` 和偏差 `$ b = 4.2 $`,以及一个随机噪声项 `$ \epsilon $` 来生成标签
```[tex]
\boldsymbol{y} = \boldsymbol{X}\boldsymbol{w} + b + \epsilon
```
其中噪声项 $\epsilon$ 服从均值为0、标准差为0.01的正态分布。噪声代表了数据集中无意义的干扰。下面,让我们生成数据集。
``` python
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.from_numpy(np.random.normal(0, 1, (num_examples, num_inputs)))
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.from_numpy(np.random.normal(0, 0.01, size=labels.size()))
```
注意,`features`的每一行是一个长度为2的向量,而`labels`的每一行是一个长度为1的向量(标量)。
``` python
print(features[0], labels[0])
```
输出:
```
tensor([0.8557, 0.4793]) tensor(4.2887)
```
通过生成第二个特征`features[:, 1]`和标签 `labels` 的散点图,可以更直观地观察两者间的线性关系。
``` python
def use_svg_display():
# 用矢量图显示
display.set_matplotlib_formats('svg')
def set_figsize(figsize=(3.5, 2.5)):
use_svg_display()
# 设置图的尺寸
plt.rcParams['figure.figsize'] = figsize
# # 在../d2lzh_pytorch里面添加上面两个函数后就可以这样导入
# import sys
# sys.path.append("..")
# from d2lzh_pytorch import *
set_figsize()
plt.scatter(features[:, 1].numpy(), labels.numpy(), 1);
```
:-: ![](https://img.kancloud.cn/57/27/5727781b0526810cc22f6e47572217c5_636x442.png)
我们将上面的`plt`作图函数以及`use_svg_display`函数和`set_figsize`函数定义在`d2lzh_pytorch`包里。以后在作图时,我们将直接调用`d2lzh_pytorch.plt`。由于`plt`在`d2lzh_pytorch`包中是一个全局变量,我们在作图前只需要调用`d2lzh_pytorch.set_figsize()`即可打印矢量图并设置图的尺寸。
> 原书中提到的`d2lzh`里面使用了mxnet,改成pytorch实现后本项目统一将原书的`d2lzh`改为`d2lzh_pytorch`。
## 3.2.2 读取数据
在训练模型的时候,我们需要遍历数据集并不断读取小批量数据样本。这里我们定义一个函数:它每次返回`batch_size`(批量大小)个随机样本的特征和标签。
``` python
# 本函数已保存在d2lzh包中方便以后使用
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices) # 样本的读取顺序是随机的
for i in range(0, num_examples, batch_size):
j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # 最后一次可能不足一个batch
yield features.index_select(0, j), labels.index_select(0, j)
```
让我们读取第一个小批量数据样本并打印。每个批量的特征形状为(10, 2),分别对应批量大小和输入个数;标签形状为批量大小。
``` python
batch_size = 10
for X, y in data_iter(batch_size, features, labels):
print(X, y)
break
```
输出:
```
tensor([[-1.4239, -1.3788],
[ 0.0275, 1.3550],
[ 0.7616, -1.1384],
[ 0.2967, -0.1162],
[ 0.0822, 2.0826],
[-0.6343, -0.7222],
[ 0.4282, 0.0235],
[ 1.4056, 0.3506],
[-0.6496, -0.5202],
[-0.3969, -0.9951]])
tensor([ 6.0394, -0.3365, 9.5882, 5.1810, -2.7355, 5.3873, 4.9827, 5.7962,
4.6727, 6.7921])
```
## 3.2.3 初始化模型参数
我们将权重初始化成均值为0、标准差为0.01的正态随机数,偏差则初始化成0。
``` python
w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32)
b = torch.zeros(1, dtype=torch.float32)
```
之后的模型训练中,需要对这些参数求梯度来迭代参数的值,因此我们要让它们的`requires_grad=True`。
``` python
w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
```
## 3.2.4 定义模型
下面是线性回归的矢量计算表达式的实现。我们使用`mm`函数做矩阵乘法。
``` python
def linreg(X, w, b): # 本函数已保存在d2lzh_pytorch包中方便以后使用
return torch.mm(X, w) + b
```
## 3.2.5 定义损失函数
我们使用上一节描述的平方损失来定义线性回归的损失函数。在实现中,我们需要把真实值`y`变形成预测值`y_hat`的形状。以下函数返回的结果也将和`y_hat`的形状相同。
``` python
def squared_loss(y_hat, y): # 本函数已保存在d2lzh_pytorch包中方便以后使用
# 注意这里返回的是向量, 另外, pytorch里的MSELoss并没有除以 2
return (y_hat - y.view(y_hat.size())) ** 2 / 2
```
## 3.2.6 定义优化算法
以下的`sgd`函数实现了上一节中介绍的小批量随机梯度下降算法。它通过不断迭代模型参数来优化损失函数。这里自动求梯度模块计算得来的梯度是一个批量样本的梯度和。我们将它除以批量大小来得到平均值。
``` python
def sgd(params, lr, batch_size): # 本函数已保存在d2lzh_pytorch包中方便以后使用
for param in params:
param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.data
```
## 3.2.7 训练模型
在训练中,我们将多次迭代模型参数。在每次迭代中,我们根据当前读取的小批量数据样本(特征`X`和标签`y`),通过调用反向函数`backward`计算小批量随机梯度,并调用优化算法`sgd`迭代模型参数。由于我们之前设批量大小`batch_size`为10,每个小批量的损失`l`的形状为(10, 1)。回忆一下自动求梯度一节。由于变量`l`并不是一个标量,所以我们可以调用`.sum()`将其求和得到一个标量,再运行`l.backward()`得到该变量有关模型参数的梯度。注意在每次更新完参数后不要忘了将参数的梯度清零。
在一个迭代周期(epoch)中,我们将完整遍历一遍`data_iter`函数,并对训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数`num_epochs`和学习率`lr`都是超参数,分别设3和0.03。在实践中,大多超参数都需要通过反复试错来不断调节。虽然迭代周期数设得越大模型可能越有效,但是训练时间可能过长。而有关学习率对模型的影响,我们会在后面“优化算法”一章中详细介绍。
``` python
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs): # 训练模型一共需要num_epochs个迭代周期
# 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。X
# 和y分别是小批量样本的特征和标签
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y).sum() # l是有关小批量X和y的损失
l.backward() # 小批量的损失对模型参数求梯度
sgd([w, b], lr, batch_size) # 使用小批量随机梯度下降迭代模型参数
# 不要忘了梯度清零
w.grad.data.zero_()
b.grad.data.zero_()
train_l = loss(net(features, w, b), labels)
print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))
```
输出:
```
epoch 1, loss 0.028127
epoch 2, loss 0.000095
epoch 3, loss 0.000050
```
训练完成后,我们可以比较学到的参数和用来生成训练集的真实参数。它们应该很接近。
``` python
print(true_w, '\n', w)
print(true_b, '\n', b)
```
输出:
```
[2, -3.4]
tensor([[ 1.9998],
[-3.3998]], requires_grad=True)
4.2
tensor([4.2001], requires_grad=True)
```
## 小结
* 可以看出,仅使用`Tensor`和`autograd`模块就可以很容易地实现一个模型。接下来,本书会在此基础上描述更多深度学习模型,并介绍怎样使用更简洁的代码(见下一节)来实现它们。
-----------
> 注:本节除了代码之外与原书基本相同,[原书传送门](https://zh.d2l.ai/chapter_deep-learning-basics/linear-regression-scratch.html)
- Home
- Introduce
- 1.深度学习简介
- 深度学习简介
- 2.预备知识
- 2.1环境配置
- 2.2数据操作
- 2.3自动求梯度
- 3.深度学习基础
- 3.1 线性回归
- 3.2 线性回归的从零开始实现
- 3.3 线性回归的简洁实现
- 3.4 softmax回归
- 3.5 图像分类数据集(Fashion-MINST)
- 3.6 softmax回归的从零开始实现
- 3.7 softmax回归的简洁实现
- 3.8 多层感知机
- 3.9 多层感知机的从零开始实现
- 3.10 多层感知机的简洁实现
- 3.11 模型选择、反向传播和计算图
- 3.12 权重衰减
- 3.13 丢弃法
- 3.14 正向传播、反向传播和计算图
- 3.15 数值稳定性和模型初始化
- 3.16 实战kaggle比赛:房价预测
- 4 深度学习计算
- 4.1 模型构造
- 4.2 模型参数的访问、初始化和共享
- 4.3 模型参数的延后初始化
- 4.4 自定义层
- 4.5 读取和存储
- 4.6 GPU计算
- 5 卷积神经网络
- 5.1 二维卷积层
- 5.2 填充和步幅
- 5.3 多输入通道和多输出通道
- 5.4 池化层
- 5.5 卷积神经网络(LeNet)
- 5.6 深度卷积神经网络(AlexNet)
- 5.7 使用重复元素的网络(VGG)
- 5.8 网络中的网络(NiN)
- 5.9 含并行连结的网络(GoogLeNet)
- 5.10 批量归一化
- 5.11 残差网络(ResNet)
- 5.12 稠密连接网络(DenseNet)
- 6 循环神经网络
- 6.1 语言模型
- 6.2 循环神经网络
- 6.3 语言模型数据集(周杰伦专辑歌词)
- 6.4 循环神经网络的从零开始实现
- 6.5 循环神经网络的简单实现
- 6.6 通过时间反向传播
- 6.7 门控循环单元(GRU)
- 6.8 长短期记忆(LSTM)
- 6.9 深度循环神经网络
- 6.10 双向循环神经网络
- 7 优化算法
- 7.1 优化与深度学习
- 7.2 梯度下降和随机梯度下降
- 7.3 小批量随机梯度下降
- 7.4 动量法
- 7.5 AdaGrad算法
- 7.6 RMSProp算法
- 7.7 AdaDelta
- 7.8 Adam算法
- 8 计算性能
- 8.1 命令式和符号式混合编程
- 8.2 异步计算
- 8.3 自动并行计算
- 8.4 多GPU计算
- 9 计算机视觉
- 9.1 图像增广
- 9.2 微调
- 9.3 目标检测和边界框
- 9.4 锚框
- 10 自然语言处理
- 10.1 词嵌入(word2vec)
- 10.2 近似训练
- 10.3 word2vec实现
- 10.4 子词嵌入(fastText)
- 10.5 全局向量的词嵌入(Glove)
- 10.6 求近义词和类比词
- 10.7 文本情感分类:使用循环神经网络
- 10.8 文本情感分类:使用卷积网络
- 10.9 编码器--解码器(seq2seq)
- 10.10 束搜索
- 10.11 注意力机制
- 10.12 机器翻译