💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
# 3.8 多层感知机 我们已经介绍了包括线性回归和softmax回归在内的单层神经网络。然而深度学习主要关注多层模型。在本节中,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。 ## 3.8.1 隐藏层 多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。图3.3展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。 :-: ![](https://img.kancloud.cn/53/f6/53f6d5a932aa1dbe74c65dd9de204c9c.svg) <div align=center> 图3.3 带有隐藏层的多层感知机</div> 在图3.3所示的多层感知机中,输入和输出个数分别为4和3,中间的隐藏层中包含了5个隐藏单元(hidden unit)。由于输入层不涉及计算,图3.3中的多层感知机的层数为2。由图3.3可见,隐藏层中的神经元和输入层中各个输入完全连接,输出层中的神经元和隐藏层中的各个神经元也完全连接。因此,多层感知机中的隐藏层和输出层都是全连接层。 具体来说,给定一个小批量样本`$ \boldsymbol{X} \in \mathbb{R}^{n \times d} $`,其批量大小为`$ n $`,输入个数为`$ d $`。假设多层感知机只有一个隐藏层,其中隐藏单元个数为`$ h $`。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为`$ \boldsymbol{H} $`,有`$ \boldsymbol{H} \in \mathbb{R}^{n \times h} $`。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为`$ \boldsymbol{W}_h \in \mathbb{R}^{d \times h} $`和 `$ \boldsymbol{b}_h \in \mathbb{R}^{1 \times h} $`,输出层的权重和偏差参数分别为`$ \boldsymbol{W}_o \in \mathbb{R}^{h \times q} $`和`$ \boldsymbol{b}_o \in \mathbb{R}^{1 \times q} $`。 我们先来看一种含单隐藏层的多层感知机的设计。其输出`$ \boldsymbol{O} \in \mathbb{R}^{n \times q} $`的计算为 ```[tex] \begin{aligned} \boldsymbol{H} &= \boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h,\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned} ``` 也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到 ```[tex] \boldsymbol{O} = (\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h)\boldsymbol{W}_o + \boldsymbol{b}_o = \boldsymbol{X} \boldsymbol{W}_h\boldsymbol{W}_o + \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o. ``` 从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为`$ \boldsymbol{W}_h\boldsymbol{W}_o $`,偏差参数为`$ \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o $`。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。 ## 3.8.2 激活函数 上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。下面我们介绍几个常用的激活函数。 ### 3.8.2.1 ReLU函数 ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素 `$ x $`,该函数定义为 ```[tex] \text{ReLU}(x) = \max(x, 0). ``` 可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数`xyplot`。 ``` python %matplotlib inline import torch import numpy as np import matplotlib.pylab as plt import sys sys.path.append("..") import d2lzh_pytorch as d2l def xyplot(x_vals, y_vals, name): d2l.set_figsize(figsize=(5, 2.5)) d2l.plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy()) d2l.plt.xlabel('x') d2l.plt.ylabel(name + '(x)') ``` 我们接下来通过`NDArray`提供的`relu`函数来绘制ReLU函数。可以看到,该激活函数是一个两段线性函数。 ``` python x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True) y = x.relu() xyplot(x, y, 'relu') ``` :-: ![](https://img.kancloud.cn/ae/ec/aeecfa0e40c5a4a0b6503fae6a7906dd_878x474.png) 显然,当输入为负数时,ReLU函数的导数为0;当输入为正数时,ReLU函数的导数为1。尽管输入为0时ReLU函数不可导,但是我们可以取此处的导数为0。下面绘制ReLU函数的导数。 ``` python y.sum().backward() xyplot(x, x.grad, 'grad of relu') ``` :-: ![](https://img.kancloud.cn/58/f4/58f45f242b4927a6310c1adfcd88c5bb_886x480.png) ### 3.8.2.2 sigmoid函数 sigmoid函数可以将元素的值变换到0和1之间: ```[tex] \text{sigmoid}(x) = \frac{1}{1 + \exp(-x)}. ``` sigmoid函数在早期的神经网络中较为普遍,但它目前逐渐被更简单的ReLU函数取代。在后面“循环神经网络”一章中我们会介绍如何利用它值域在0到1之间这一特性来控制信息在神经网络中的流动。下面绘制了sigmoid函数。当输入接近0时,sigmoid函数接近线性变换。 ``` python y = x.sigmoid() xyplot(x, y, 'sigmoid') ``` :-: ![](https://img.kancloud.cn/31/ee/31eef633e3e384dcb2cf0c46cfd9b560_878x476.png) 依据链式法则,sigmoid函数的导数 ```[tex] \text{sigmoid}'(x) = \text{sigmoid}(x)\left(1-\text{sigmoid}(x)\right). ``` 下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。 ``` python x.grad.zero_() y.sum().backward() xyplot(x, x.grad, 'grad of sigmoid') ``` :-: ![](https://img.kancloud.cn/7f/41/7f41252c6ce81ddde0b32274f109301e_896x458.png) ### 3.8.2.3 tanh函数 tanh(双曲正切)函数可以将元素的值变换到-1和1之间: ```[tex] \text{tanh}(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}. ``` 我们接着绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。 ``` python y = x.tanh() xyplot(x, y, 'tanh') ``` :-: ![](https://img.kancloud.cn/b7/43/b74379d8f033bff50c8e69d0fdab1b36_896x480.png) 依据链式法则,tanh函数的导数 ```[tex] \text{tanh}'(x) = 1 - \text{tanh}^2(x). ``` 下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。 ``` python x.grad.zero_() y.sum().backward() xyplot(x, x.grad, 'grad of tanh') ``` ![](https://img.kancloud.cn/15/31/1531290a1434881caf70d1d677ea1eb8_908x486.png) ## 3.8.3 多层感知机 多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例并沿用本节之前定义的符号,多层感知机按以下方式计算输出: ```[tex] \begin{aligned} \boldsymbol{H} &= \phi(\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h),\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned} ``` 其中`$ \phi $`表示激活函数。在分类问题中,我们可以对输出`$ \boldsymbol{O} $`做softmax运算,并使用softmax回归中的交叉熵损失函数。 在回归问题中,我们将输出层的输出个数设为1,并将输出`$ \boldsymbol{O} $`直接提供给线性回归中使用的平方损失函数。 ## 小结 * 多层感知机在输出层与输入层之间加入了一个或多个全连接隐藏层,并通过激活函数对隐藏层输出进行变换。 * 常用的激活函数包括ReLU函数、sigmoid函数和tanh函数。 ----------- > 注:本节除了代码之外与原书基本相同,[原书传送门](https://zh.d2l.ai/chapter_deep-learning-basics/mlp.html)