# 10.4 子词嵌入(fastText)
英语单词通常有其内部结构和形成方式。例如,我们可以从“dog”“dogs”和“dogcatcher”的字面上推测它们的关系。这些词都有同一个词根“dog”,但使用不同的后缀来改变词的含义。而且,这个关联可以推广至其他词汇。例如,“dog”和“dogs”的关系如同“cat”和“cats”的关系,“boy”和“boyfriend”的关系如同“girl”和“girlfriend”的关系。这一特点并非为英语所独有。在法语和西班牙语中,很多动词根据场景不同有40多种不同的形态,而在芬兰语中,一个名词可能有15种以上的形态。事实上,构词学(morphology)作为语言学的一个重要分支,研究的正是词的内部结构和形成方式。
在word2vec中,我们并没有直接利用构词学中的信息。无论是在跳字模型还是连续词袋模型中,我们都将形态不同的单词用不同的向量来表示。例如,“dog”和“dogs”分别用两个不同的向量表示,而模型中并未直接表达这两个向量之间的关系。鉴于此,fastText提出了子词嵌入(subword embedding)的方法,从而试图将构词信息引入word2vec中的跳字模型 [1]。
在fastText中,每个中心词被表示成子词的集合。下面我们用单词“where”作为例子来了解子词是如何产生的。首先,我们在单词的首尾分别添加特殊字符“<”和“>”以区分作为前后缀的子词。然后,将单词当成一个由字符构成的序列来提取`$ n $`元语法。例如,当`$ n = 3 $`时,我们得到所有长度为3的子词:“<wh>”“whe”“her”“ere”“<re>”以及特殊子词“<where>”。
在fastText中,对于一个词`$ w $`,我们将它所有长度在`$ 3 \sim 6 $`的子词和特殊子词的并集记为`$ \mathcal{G}_w $`。那么词典则是所有词的子词集合的并集。假设词典中子词`$ g $`的向量为`$ \boldsymbol{z}_ g $`,那么跳字模型中词`$ w $`的作为中心词的向量`$ \boldsymbol{v}_w $`则表示成
```[tex]
\boldsymbol{v}_w = \sum_{g\in\mathcal{G}_w} \boldsymbol{z}_g.
```
fastText的其余部分同跳字模型一致,不在此重复。可以看到,与跳字模型相比,fastText中词典规模更大,造成模型参数更多,同时一个词的向量需要对所有子词向量求和,继而导致计算复杂度更高。但与此同时,较生僻的复杂单词,甚至是词典中没有的单词,可能会从同它结构类似的其他词那里获取更好的词向量表示。
## 小结
* fastText提出了子词嵌入方法。它在word2vec中的跳字模型的基础上,将中心词向量表示成单词的子词向量之和。
* 子词嵌入利用构词上的规律,通常可以提升生僻词表示的质量。
## 参考文献
[1] Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606.
-----------
> 注:本节与原书完全相同,[原书传送门](https://zh.d2l.ai/chapter_natural-language-processing/fasttext.html)
- Home
- Introduce
- 1.深度学习简介
- 深度学习简介
- 2.预备知识
- 2.1环境配置
- 2.2数据操作
- 2.3自动求梯度
- 3.深度学习基础
- 3.1 线性回归
- 3.2 线性回归的从零开始实现
- 3.3 线性回归的简洁实现
- 3.4 softmax回归
- 3.5 图像分类数据集(Fashion-MINST)
- 3.6 softmax回归的从零开始实现
- 3.7 softmax回归的简洁实现
- 3.8 多层感知机
- 3.9 多层感知机的从零开始实现
- 3.10 多层感知机的简洁实现
- 3.11 模型选择、反向传播和计算图
- 3.12 权重衰减
- 3.13 丢弃法
- 3.14 正向传播、反向传播和计算图
- 3.15 数值稳定性和模型初始化
- 3.16 实战kaggle比赛:房价预测
- 4 深度学习计算
- 4.1 模型构造
- 4.2 模型参数的访问、初始化和共享
- 4.3 模型参数的延后初始化
- 4.4 自定义层
- 4.5 读取和存储
- 4.6 GPU计算
- 5 卷积神经网络
- 5.1 二维卷积层
- 5.2 填充和步幅
- 5.3 多输入通道和多输出通道
- 5.4 池化层
- 5.5 卷积神经网络(LeNet)
- 5.6 深度卷积神经网络(AlexNet)
- 5.7 使用重复元素的网络(VGG)
- 5.8 网络中的网络(NiN)
- 5.9 含并行连结的网络(GoogLeNet)
- 5.10 批量归一化
- 5.11 残差网络(ResNet)
- 5.12 稠密连接网络(DenseNet)
- 6 循环神经网络
- 6.1 语言模型
- 6.2 循环神经网络
- 6.3 语言模型数据集(周杰伦专辑歌词)
- 6.4 循环神经网络的从零开始实现
- 6.5 循环神经网络的简单实现
- 6.6 通过时间反向传播
- 6.7 门控循环单元(GRU)
- 6.8 长短期记忆(LSTM)
- 6.9 深度循环神经网络
- 6.10 双向循环神经网络
- 7 优化算法
- 7.1 优化与深度学习
- 7.2 梯度下降和随机梯度下降
- 7.3 小批量随机梯度下降
- 7.4 动量法
- 7.5 AdaGrad算法
- 7.6 RMSProp算法
- 7.7 AdaDelta
- 7.8 Adam算法
- 8 计算性能
- 8.1 命令式和符号式混合编程
- 8.2 异步计算
- 8.3 自动并行计算
- 8.4 多GPU计算
- 9 计算机视觉
- 9.1 图像增广
- 9.2 微调
- 9.3 目标检测和边界框
- 9.4 锚框
- 10 自然语言处理
- 10.1 词嵌入(word2vec)
- 10.2 近似训练
- 10.3 word2vec实现
- 10.4 子词嵌入(fastText)
- 10.5 全局向量的词嵌入(Glove)
- 10.6 求近义词和类比词
- 10.7 文本情感分类:使用循环神经网络
- 10.8 文本情感分类:使用卷积网络
- 10.9 编码器--解码器(seq2seq)
- 10.10 束搜索
- 10.11 注意力机制
- 10.12 机器翻译