源码包中`src/runtime/slice.go:slice`定义了Slice的数据结构:
~~~go
type slice struct {
array unsafe.Pointer // 指向底层数组
len int // len表示切片长度
cap int // cap表示底层数组容量
}
~~~
### 使用make创建Slice
使用make来创建Slice时,可以同时指定长度和容量,创建时底层会分配一个数组,数组的长度即容量。
例如,语句`slice := make([]int, 5, 10)`所创建的Slice,结构如下图所示:
![](https://img.kancloud.cn/53/a2/53a28b0e3501a2c41757a622b037681b_682x302.png)
该Slice长度为5,即可以使用下标slice\[0\] ~ slice\[4\]来操作里面的元素,capacity为10,表示后续向slice添加新的元素时可以不必重新分配内存,直接使用预留内存即可
### 使用数组创建Slice
使用数组来创建Slice时,Slice将与原数组共用一部分内存。
例如,语句`slice := array[5:7]`所创建的Slice,结构如下图所示:
![](https://img.kancloud.cn/03/47/0347f89e879cffd3040a735111ca6e96_682x302.png)
切片从数组array\[5\]开始,到数组array\[7\]结束(不含array\[7\]),即切片长度为2,数组后面的内容都作为切片的预留内存,即capacity为5。
数组和切片操作可能作用于同一块内存,这也是使用过程中需要注意的地方
### Slice 扩容
使用append向Slice追加元素时,如果Slice空间不足,将会触发Slice扩容,扩容实际上是重新分配一块更大的内存,将原Slice数据拷贝进新Slice,然后返回新Slice,扩容后再将数据追加进去。
例如,当向一个capacity为5,且length也为5的Slice再次追加1个元素时,就会发生扩容,如下图所示:
![](https://img.kancloud.cn/60/d0/60d0d4b16988ab98dd712e9e3b1d2b14_772x531.png)
扩容操作只关心容量,会把原Slice数据拷贝到新Slice,追加数据由append在扩容结束后完成。上图可见,扩容后新的Slice长度仍然是5,但容量由5提升到了10,原Slice的数据也都拷贝到了新Slice指向的数组中。
扩容容量的选择遵循以下规则:
* 如果原Slice容量小于1024,则新Slice容量将扩大为原来的2倍;
* 如果原Slice容量大于等于1024,则新Slice容量将扩大为原来的1.25倍;
使用append()向Slice添加一个元素的实现步骤如下:
* 假如Slice容量够用,则将新元素追加进去,Slice.len++,返回原Slice
* 原Slice容量不够,则将Slice先扩容,扩容后得到新Slice
* 将新元素追加进新Slice,Slice.len++,返回新的Slice
### Slice Copy
使用copy()内置函数拷贝两个切片时,会将源切片的数据逐个拷贝到目的切片指向的数组中,拷贝数量取两个切片长度的最小值。
例如长度为10的切片拷贝到长度为5的切片时,将会拷贝5个元素。
也就是说,copy过程中不会发生扩容
### 特殊切片
根据数组或切片生成新的切片一般使用`slice := array[start:end]`方式,这种新生成的切片并没有指定切片的容量,实际上新切片的容量是从start开始直至array的结束。
比如下面两个切片,长度和容量都是一致的,使用共同的内存地址:
~~~go
sliceA := make([]int, 5, 10)
sliceB := sliceA[0:5]
~~~
根据数组或切片生成切片还有另一种写法,即切片同时也指定容量,即slice\[start:end:cap\], 其中cap即为新切片的容量,当然容量不能超过原切片实际值,如下所示:
~~~go
sliceA := make([]int, 5, 10) //length = 5; capacity = 10
sliceB := sliceA[0:5] //length = 5; capacity = 10
sliceC := sliceA[0:5:5] //length = 5; capacity = 5
~~~
这切片方法不常见,在Golang源码里能够见到,不过非常利于切片的理解
- 概述
- go语言基础特性
- Go语言声明
- Go项目构建及编译
- go command
- 程序设计原则
- Go基础
- 变量
- 常量
- iota
- 基本类型
- byte和rune类型
- 类型定义和类型别名
- 数组
- string
- 高效字符串连接
- string底层原理
- 运算符
- new
- make
- 指针
- 下划线 & import
- 语法糖
- 简短变量申明
- 流程控制
- ifelse
- switch
- select
- select实现原理
- select常见案例
- for
- range
- range实现原理
- 常见案例
- range陷阱
- Goto&Break&Continue
- Go函数
- 函数
- 可变参数函数
- 高阶函数
- init函数和main函数
- 匿名函数
- 闭包
- 常用内置函数
- defer
- defer常见案例
- defer规则
- defer与函数返回值
- defer实现原理
- defer陷阱
- 数据结构
- slice
- slice内存布局
- slice&array
- slice底层实现
- slice陷阱
- map
- Map实现原理
- 集合
- List
- Set
- 线程安全数据结构
- sync.Map
- Concurrent Map
- 面向对象编程
- struct
- 匿名结构体&匿名字段
- 嵌套结构体
- 结构体的“继承”
- struct tag
- 行为方法
- 方法与函数
- type Method Value & Method Expressions
- interface
- 类型断言
- 多态
- 错误机制
- error
- 自定义错误
- panic&recover
- reflect
- reflect包
- 应用示例
- DeepEqual
- 反射-fillObjectField
- 反射-copyObject
- IO
- 读取文件
- 写文件
- bufio
- ioutil
- Go网络编程
- tcp
- tcp粘包
- udp
- HTTP
- http服务
- httprouter
- webSocket
- go并发编程
- Goroutine
- thread vs goroutine
- Goroutine任务取消
- 通过channel广播实现
- Context
- Goroutine调度机制
- goroutine调度器1.0
- GMP模型调度器
- 调度器窃取策略
- 调度器的生命周期
- 调度过程全解析
- channel
- 无缓冲的通道
- 缓冲信道
- 单向信道
- chan实现原理
- 共享内存并发机制
- mutex互斥锁
- mutex
- mutex原理
- mutex模式
- RWLock
- 使用信道处理竞态条件
- WaitGroup
- 工作池
- 并发任务
- once运行一次
- 仅需任意任务完成
- 所有任务完成
- 对象池
- 定时器Timer
- Timer
- Timer实现原理
- 周期性定时器Ticker
- Ticker对外接口
- ticker使用场景
- ticker实现原理
- ticker使用陷阱
- 包和依赖管理
- package
- 依赖管理
- 测试
- 单元测试
- 表格测试法
- Banchmark
- BDD
- 常用架构模式
- Pipe-filter pattern
- Micro Kernel
- JSON
- json-内置解析器
- easyjson
- 性能分析
- gc
- 工具类
- fmt
- Time
- builtin
- unsafe
- sync.pool
- atomic
- flag
- runtime
- strconv
- template