### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](2.3.xhtml "What's New in Python 2.3") |
- [上一页](2.5.xhtml "What's New in Python 2.5") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 有什么新变化?](index.xhtml) »
- $('.inline-search').show(0); |
# What's New in Python 2.4
作者A.M. Kuchling
This article explains the new features in Python 2.4.1, released on March 30, 2005.
Python 2.4 is a medium-sized release. It doesn't introduce as many changes as the radical Python 2.2, but introduces more features than the conservative 2.3 release. The most significant new language features are function decorators and generator expressions; most other changes are to the standard library.
According to the CVS change logs, there were 481 patches applied and 502 bugs fixed between Python 2.3 and 2.4. Both figures are likely to be underestimates.
This article doesn't attempt to provide a complete specification of every single new feature, but instead provides a brief introduction to each feature. For full details, you should refer to the documentation for Python 2.4, such as the Python Library Reference and the Python Reference Manual. Often you will be referred to the PEP for a particular new feature for explanations of the implementation and design rationale.
## PEP 218: Built-In Set Objects
Python 2.3 introduced the `sets` module. C implementations of set data types have now been added to the Python core as two new built-in types, `set(iterable)` and `frozenset(iterable)`. They provide high speed operations for membership testing, for eliminating duplicates from sequences, and for mathematical operations like unions, intersections, differences, and symmetric differences.
```
>>> a = set('abracadabra') # form a set from a string
>>> 'z' in a # fast membership testing
False
>>> a # unique letters in a
set(['a', 'r', 'b', 'c', 'd'])
>>> ''.join(a) # convert back into a string
'arbcd'
>>> b = set('alacazam') # form a second set
>>> a - b # letters in a but not in b
set(['r', 'd', 'b'])
>>> a | b # letters in either a or b
set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
>>> a & b # letters in both a and b
set(['a', 'c'])
>>> a ^ b # letters in a or b but not both
set(['r', 'd', 'b', 'm', 'z', 'l'])
>>> a.add('z') # add a new element
>>> a.update('wxy') # add multiple new elements
>>> a
set(['a', 'c', 'b', 'd', 'r', 'w', 'y', 'x', 'z'])
>>> a.remove('x') # take one element out
>>> a
set(['a', 'c', 'b', 'd', 'r', 'w', 'y', 'z'])
```
The [`frozenset()`](../library/stdtypes.xhtml#frozenset "frozenset") type is an immutable version of [`set()`](../library/stdtypes.xhtml#set "set"). Since it is immutable and hashable, it may be used as a dictionary key or as a member of another set.
The `sets` module remains in the standard library, and may be useful if you wish to subclass the `Set` or `ImmutableSet` classes. There are currently no plans to deprecate the module.
参见
[**PEP 218**](https://www.python.org/dev/peps/pep-0218) \[https://www.python.org/dev/peps/pep-0218\] - Adding a Built-In Set Object TypeOriginally proposed by Greg Wilson and ultimately implemented by Raymond Hettinger.
## PEP 237: Unifying Long Integers and Integers
The lengthy transition process for this PEP, begun in Python 2.2, takes another step forward in Python 2.4. In 2.3, certain integer operations that would behave differently after int/long unification triggered [`FutureWarning`](../library/exceptions.xhtml#FutureWarning "FutureWarning")warnings and returned values limited to 32 or 64 bits (depending on your platform). In 2.4, these expressions no longer produce a warning and instead produce a different result that's usually a long integer.
The problematic expressions are primarily left shifts and lengthy hexadecimal and octal constants. For example, `2 << 32` results in a warning in 2.3, evaluating to 0 on 32-bit platforms. In Python 2.4, this expression now returns the correct answer, 8589934592.
参见
[**PEP 237**](https://www.python.org/dev/peps/pep-0237) \[https://www.python.org/dev/peps/pep-0237\] - Unifying Long Integers and IntegersOriginal PEP written by Moshe Zadka and GvR. The changes for 2.4 were implemented by Kalle Svensson.
## PEP 289: Generator Expressions
The iterator feature introduced in Python 2.2 and the [`itertools`](../library/itertools.xhtml#module-itertools "itertools: Functions creating iterators for efficient looping.") module make it easier to write programs that loop through large data sets without having the entire data set in memory at one time. List comprehensions don't fit into this picture very well because they produce a Python list object containing all of the items. This unavoidably pulls all of the objects into memory, which can be a problem if your data set is very large. When trying to write a functionally-styled program, it would be natural to write something like:
```
links = [link for link in get_all_links() if not link.followed]
for link in links:
...
```
instead of
```
for link in get_all_links():
if link.followed:
continue
...
```
The first form is more concise and perhaps more readable, but if you're dealing with a large number of link objects you'd have to write the second form to avoid having all link objects in memory at the same time.
Generator expressions work similarly to list comprehensions but don't materialize the entire list; instead they create a generator that will return elements one by one. The above example could be written as:
```
links = (link for link in get_all_links() if not link.followed)
for link in links:
...
```
Generator expressions always have to be written inside parentheses, as in the above example. The parentheses signalling a function call also count, so if you want to create an iterator that will be immediately passed to a function you could write:
```
print sum(obj.count for obj in list_all_objects())
```
Generator expressions differ from list comprehensions in various small ways. Most notably, the loop variable (*obj* in the above example) is not accessible outside of the generator expression. List comprehensions leave the variable assigned to its last value; future versions of Python will change this, making list comprehensions match generator expressions in this respect.
参见
[**PEP 289**](https://www.python.org/dev/peps/pep-0289) \[https://www.python.org/dev/peps/pep-0289\] - Generator ExpressionsProposed by Raymond Hettinger and implemented by Jiwon Seo with early efforts steered by Hye-Shik Chang.
## PEP 292: Simpler String Substitutions
Some new classes in the standard library provide an alternative mechanism for substituting variables into strings; this style of substitution may be better for applications where untrained users need to edit templates.
The usual way of substituting variables by name is the `%` operator:
```
>>> '%(page)i: %(title)s' % {'page':2, 'title': 'The Best of Times'}
'2: The Best of Times'
```
When writing the template string, it can be easy to forget the `i` or `s`after the closing parenthesis. This isn't a big problem if the template is in a Python module, because you run the code, get an "Unsupported format character" [`ValueError`](../library/exceptions.xhtml#ValueError "ValueError"), and fix the problem. However, consider an application such as Mailman where template strings or translations are being edited by users who aren't aware of the Python language. The format string's syntax is complicated to explain to such users, and if they make a mistake, it's difficult to provide helpful feedback to them.
PEP 292 adds a `Template` class to the [`string`](../library/string.xhtml#module-string "string: Common string operations.") module that uses `$` to indicate a substitution:
```
>>> import string
>>> t = string.Template('$page: $title')
>>> t.substitute({'page':2, 'title': 'The Best of Times'})
'2: The Best of Times'
```
If a key is missing from the dictionary, the `substitute()` method will raise a [`KeyError`](../library/exceptions.xhtml#KeyError "KeyError"). There's also a `safe_substitute()` method that ignores missing keys:
```
>>> t = string.Template('$page: $title')
>>> t.safe_substitute({'page':3})
'3: $title'
```
参见
[**PEP 292**](https://www.python.org/dev/peps/pep-0292) \[https://www.python.org/dev/peps/pep-0292\] - Simpler String SubstitutionsWritten and implemented by Barry Warsaw.
## PEP 318: Decorators for Functions and Methods
Python 2.2 extended Python's object model by adding static methods and class methods, but it didn't extend Python's syntax to provide any new way of defining static or class methods. Instead, you had to write a [`def`](../reference/compound_stmts.xhtml#def) statement in the usual way, and pass the resulting method to a [`staticmethod()`](../library/functions.xhtml#staticmethod "staticmethod") or [`classmethod()`](../library/functions.xhtml#classmethod "classmethod") function that would wrap up the function as a method of the new type. Your code would look like this:
```
class C:
def meth (cls):
...
meth = classmethod(meth) # Rebind name to wrapped-up class method
```
If the method was very long, it would be easy to miss or forget the [`classmethod()`](../library/functions.xhtml#classmethod "classmethod") invocation after the function body.
The intention was always to add some syntax to make such definitions more readable, but at the time of 2.2's release a good syntax was not obvious. Today a good syntax *still* isn't obvious but users are asking for easier access to the feature; a new syntactic feature has been added to meet this need.
The new feature is called "function decorators". The name comes from the idea that [`classmethod()`](../library/functions.xhtml#classmethod "classmethod"), [`staticmethod()`](../library/functions.xhtml#staticmethod "staticmethod"), and friends are storing additional information on a function object; they're *decorating* functions with more details.
The notation borrows from Java and uses the `'@'` character as an indicator. Using the new syntax, the example above would be written:
```
class C:
@classmethod
def meth (cls):
...
```
The `@classmethod` is shorthand for the `meth=classmethod(meth)` assignment. More generally, if you have the following:
```
@A
@B
@C
def f ():
...
```
It's equivalent to the following pre-decorator code:
```
def f(): ...
f = A(B(C(f)))
```
Decorators must come on the line before a function definition, one decorator per line, and can't be on the same line as the def statement, meaning that
```
@A def
f(): ...
```
is illegal. You can only decorate function definitions, either at the module level or inside a class; you can't decorate class definitions.
A decorator is just a function that takes the function to be decorated as an argument and returns either the same function or some new object. The return value of the decorator need not be callable (though it typically is), unless further decorators will be applied to the result. It's easy to write your own decorators. The following simple example just sets an attribute on the function object:
```
>>> def deco(func):
... func.attr = 'decorated'
... return func
...
>>> @deco
... def f(): pass
...
>>> f
<function f at 0x402ef0d4>
>>> f.attr
'decorated'
>>>
```
As a slightly more realistic example, the following decorator checks that the supplied argument is an integer:
```
def require_int (func):
def wrapper (arg):
assert isinstance(arg, int)
return func(arg)
return wrapper
@require_int
def p1 (arg):
print arg
@require_int
def p2(arg):
print arg*2
```
An example in [**PEP 318**](https://www.python.org/dev/peps/pep-0318) \[https://www.python.org/dev/peps/pep-0318\] contains a fancier version of this idea that lets you both specify the required type and check the returned type.
Decorator functions can take arguments. If arguments are supplied, your decorator function is called with only those arguments and must return a new decorator function; this function must take a single function and return a function, as previously described. In other words, `@A @B @C(args)` becomes:
```
def f(): ...
_deco = C(args)
f = A(B(_deco(f)))
```
Getting this right can be slightly brain-bending, but it's not too difficult.
A small related change makes the `func_name` attribute of functions writable. This attribute is used to display function names in tracebacks, so decorators should change the name of any new function that's constructed and returned.
参见
[**PEP 318**](https://www.python.org/dev/peps/pep-0318) \[https://www.python.org/dev/peps/pep-0318\] - Decorators for Functions, Methods and ClassesWritten by Kevin D. Smith, Jim Jewett, and Skip Montanaro. Several people wrote patches implementing function decorators, but the one that was actually checked in was patch #979728, written by Mark Russell.
<https://wiki.python.org/moin/PythonDecoratorLibrary>This Wiki page contains several examples of decorators.
## PEP 322: Reverse Iteration
A new built-in function, `reversed(seq)`, takes a sequence and returns an iterator that loops over the elements of the sequence in reverse order.
```
>>> for i in reversed(xrange(1,4)):
... print i
...
3
2
1
```
Compared to extended slicing, such as `range(1,4)[::-1]`, [`reversed()`](../library/functions.xhtml#reversed "reversed") is easier to read, runs faster, and uses substantially less memory.
Note that [`reversed()`](../library/functions.xhtml#reversed "reversed") only accepts sequences, not arbitrary iterators. If you want to reverse an iterator, first convert it to a list with [`list()`](../library/stdtypes.xhtml#list "list").
```
>>> input = open('/etc/passwd', 'r')
>>> for line in reversed(list(input)):
... print line
...
root:*:0:0:System Administrator:/var/root:/bin/tcsh
...
```
参见
[**PEP 322**](https://www.python.org/dev/peps/pep-0322) \[https://www.python.org/dev/peps/pep-0322\] - Reverse IterationWritten and implemented by Raymond Hettinger.
## PEP 324: New subprocess Module
The standard library provides a number of ways to execute a subprocess, offering different features and different levels of complexity. `os.system(command)` is easy to use, but slow (it runs a shell process which executes the command) and dangerous (you have to be careful about escaping the shell's metacharacters). The `popen2` module offers classes that can capture standard output and standard error from the subprocess, but the naming is confusing. The [`subprocess`](../library/subprocess.xhtml#module-subprocess "subprocess: Subprocess management.") module cleans this up, providing a unified interface that offers all the features you might need.
Instead of `popen2`'s collection of classes, [`subprocess`](../library/subprocess.xhtml#module-subprocess "subprocess: Subprocess management.") contains a single class called `Popen` whose constructor supports a number of different keyword arguments.
```
class Popen(args, bufsize=0, executable=None,
stdin=None, stdout=None, stderr=None,
preexec_fn=None, close_fds=False, shell=False,
cwd=None, env=None, universal_newlines=False,
startupinfo=None, creationflags=0):
```
*args* is commonly a sequence of strings that will be the arguments to the program executed as the subprocess. (If the *shell* argument is true, *args*can be a string which will then be passed on to the shell for interpretation, just as [`os.system()`](../library/os.xhtml#os.system "os.system") does.)
*stdin*, *stdout*, and *stderr* specify what the subprocess's input, output, and error streams will be. You can provide a file object or a file descriptor, or you can use the constant `subprocess.PIPE` to create a pipe between the subprocess and the parent.
The constructor has a number of handy options:
- *close\_fds* requests that all file descriptors be closed before running the subprocess.
- *cwd* specifies the working directory in which the subprocess will be executed (defaulting to whatever the parent's working directory is).
- *env* is a dictionary specifying environment variables.
- *preexec\_fn* is a function that gets called before the child is started.
- *universal\_newlines* opens the child's input and output using Python's [universal newlines](../glossary.xhtml#term-universal-newlines) feature.
Once you've created the `Popen` instance, you can call its `wait()`method to pause until the subprocess has exited, `poll()` to check if it's exited without pausing, or `communicate(data)` to send the string *data*to the subprocess's standard input. `communicate(data)` then reads any data that the subprocess has sent to its standard output or standard error, returning a tuple `(stdout_data, stderr_data)`.
`call()` is a shortcut that passes its arguments along to the `Popen`constructor, waits for the command to complete, and returns the status code of the subprocess. It can serve as a safer analog to [`os.system()`](../library/os.xhtml#os.system "os.system"):
```
sts = subprocess.call(['dpkg', '-i', '/tmp/new-package.deb'])
if sts == 0:
# Success
...
else:
# dpkg returned an error
...
```
The command is invoked without use of the shell. If you really do want to use the shell, you can add `shell=True` as a keyword argument and provide a string instead of a sequence:
```
sts = subprocess.call('dpkg -i /tmp/new-package.deb', shell=True)
```
The PEP takes various examples of shell and Python code and shows how they'd be translated into Python code that uses [`subprocess`](../library/subprocess.xhtml#module-subprocess "subprocess: Subprocess management."). Reading this section of the PEP is highly recommended.
参见
[**PEP 324**](https://www.python.org/dev/peps/pep-0324) \[https://www.python.org/dev/peps/pep-0324\] - subprocess - New process moduleWritten and implemented by Peter Åstrand, with assistance from Fredrik Lundh and others.
## PEP 327: Decimal Data Type
Python has always supported floating-point (FP) numbers, based on the underlying C `double` type, as a data type. However, while most programming languages provide a floating-point type, many people (even programmers) are unaware that floating-point numbers don't represent certain decimal fractions accurately. The new `Decimal` type can represent these fractions accurately, up to a user-specified precision limit.
### Why is Decimal needed?
The limitations arise from the representation used for floating-point numbers. FP numbers are made up of three components:
- The sign, which is positive or negative.
- The mantissa, which is a single-digit binary number followed by a fractional part. For example, `1.01` in base-2 notation is `1 + 0/2 + 1/4`, or 1.25 in decimal notation.
- The exponent, which tells where the decimal point is located in the number represented.
For example, the number 1.25 has positive sign, a mantissa value of 1.01 (in binary), and an exponent of 0 (the decimal point doesn't need to be shifted). The number 5 has the same sign and mantissa, but the exponent is 2 because the mantissa is multiplied by 4 (2 to the power of the exponent 2); 1.25 \* 4 equals 5.
Modern systems usually provide floating-point support that conforms to a standard called IEEE 754. C's `double` type is usually implemented as a 64-bit IEEE 754 number, which uses 52 bits of space for the mantissa. This means that numbers can only be specified to 52 bits of precision. If you're trying to represent numbers whose expansion repeats endlessly, the expansion is cut off after 52 bits. Unfortunately, most software needs to produce output in base 10, and common fractions in base 10 are often repeating decimals in binary. For example, 1.1 decimal is binary `1.0001100110011 ...`; .1 = 1/16 + 1/32 + 1/256 plus an infinite number of additional terms. IEEE 754 has to chop off that infinitely repeated decimal after 52 digits, so the representation is slightly inaccurate.
Sometimes you can see this inaccuracy when the number is printed:
```
>>> 1.1
1.1000000000000001
```
The inaccuracy isn't always visible when you print the number because the FP-to-decimal-string conversion is provided by the C library, and most C libraries try to produce sensible output. Even if it's not displayed, however, the inaccuracy is still there and subsequent operations can magnify the error.
For many applications this doesn't matter. If I'm plotting points and displaying them on my monitor, the difference between 1.1 and 1.1000000000000001 is too small to be visible. Reports often limit output to a certain number of decimal places, and if you round the number to two or three or even eight decimal places, the error is never apparent. However, for applications where it does matter, it's a lot of work to implement your own custom arithmetic routines.
Hence, the `Decimal` type was created.
### The `Decimal` type
A new module, [`decimal`](../library/decimal.xhtml#module-decimal "decimal: Implementation of the General Decimal Arithmetic Specification."), was added to Python's standard library. It contains two classes, `Decimal` and `Context`. `Decimal`instances represent numbers, and `Context` instances are used to wrap up various settings such as the precision and default rounding mode.
`Decimal` instances are immutable, like regular Python integers and FP numbers; once it's been created, you can't change the value an instance represents. `Decimal` instances can be created from integers or strings:
```
>>> import decimal
>>> decimal.Decimal(1972)
Decimal("1972")
>>> decimal.Decimal("1.1")
Decimal("1.1")
```
You can also provide tuples containing the sign, the mantissa represented as a tuple of decimal digits, and the exponent:
```
>>> decimal.Decimal((1, (1, 4, 7, 5), -2))
Decimal("-14.75")
```
Cautionary note: the sign bit is a Boolean value, so 0 is positive and 1 is negative.
Converting from floating-point numbers poses a bit of a problem: should the FP number representing 1.1 turn into the decimal number for exactly 1.1, or for 1.1 plus whatever inaccuracies are introduced? The decision was to dodge the issue and leave such a conversion out of the API. Instead, you should convert the floating-point number into a string using the desired precision and pass the string to the `Decimal` constructor:
```
>>> f = 1.1
>>> decimal.Decimal(str(f))
Decimal("1.1")
>>> decimal.Decimal('%.12f' % f)
Decimal("1.100000000000")
```
Once you have `Decimal` instances, you can perform the usual mathematical operations on them. One limitation: exponentiation requires an integer exponent:
```
>>> a = decimal.Decimal('35.72')
>>> b = decimal.Decimal('1.73')
>>> a+b
Decimal("37.45")
>>> a-b
Decimal("33.99")
>>> a*b
Decimal("61.7956")
>>> a/b
Decimal("20.64739884393063583815028902")
>>> a ** 2
Decimal("1275.9184")
>>> a**b
Traceback (most recent call last):
...
decimal.InvalidOperation: x ** (non-integer)
```
You can combine `Decimal` instances with integers, but not with floating-point numbers:
```
>>> a + 4
Decimal("39.72")
>>> a + 4.5
Traceback (most recent call last):
...
TypeError: You can interact Decimal only with int, long or Decimal data types.
>>>
```
`Decimal` numbers can be used with the [`math`](../library/math.xhtml#module-math "math: Mathematical functions (sin() etc.).") and [`cmath`](../library/cmath.xhtml#module-cmath "cmath: Mathematical functions for complex numbers.")modules, but note that they'll be immediately converted to floating-point numbers before the operation is performed, resulting in a possible loss of precision and accuracy. You'll also get back a regular floating-point number and not a `Decimal`.
```
>>> import math, cmath
>>> d = decimal.Decimal('123456789012.345')
>>> math.sqrt(d)
351364.18288201344
>>> cmath.sqrt(-d)
351364.18288201344j
```
`Decimal` instances have a `sqrt()` method that returns a `Decimal`, but if you need other things such as trigonometric functions you'll have to implement them.
```
>>> d.sqrt()
Decimal("351364.1828820134592177245001")
```
### The `Context` type
Instances of the `Context` class encapsulate several settings for decimal operations:
- `prec` is the precision, the number of decimal places.
- `rounding` specifies the rounding mode. The [`decimal`](../library/decimal.xhtml#module-decimal "decimal: Implementation of the General Decimal Arithmetic Specification.") module has constants for the various possibilities: `ROUND_DOWN`, `ROUND_CEILING`, `ROUND_HALF_EVEN`, and various others.
- `traps` is a dictionary specifying what happens on encountering certain error conditions: either an exception is raised or a value is returned. Some examples of error conditions are division by zero, loss of precision, and overflow.
There's a thread-local default context available by calling `getcontext()`; you can change the properties of this context to alter the default precision, rounding, or trap handling. The following example shows the effect of changing the precision of the default context:
```
>>> decimal.getcontext().prec
28
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.1428571428571428571428571429")
>>> decimal.getcontext().prec = 9
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.142857143")
```
The default action for error conditions is selectable; the module can either return a special value such as infinity or not-a-number, or exceptions can be raised:
```
>>> decimal.Decimal(1) / decimal.Decimal(0)
Traceback (most recent call last):
...
decimal.DivisionByZero: x / 0
>>> decimal.getcontext().traps[decimal.DivisionByZero] = False
>>> decimal.Decimal(1) / decimal.Decimal(0)
Decimal("Infinity")
>>>
```
The `Context` instance also has various methods for formatting numbers such as `to_eng_string()` and `to_sci_string()`.
For more information, see the documentation for the [`decimal`](../library/decimal.xhtml#module-decimal "decimal: Implementation of the General Decimal Arithmetic Specification.") module, which includes a quick-start tutorial and a reference.
参见
[**PEP 327**](https://www.python.org/dev/peps/pep-0327) \[https://www.python.org/dev/peps/pep-0327\] - Decimal Data TypeWritten by Facundo Batista and implemented by Facundo Batista, Eric Price, Raymond Hettinger, Aahz, and Tim Peters.
<http://www.lahey.com/float.htm>The article uses Fortran code to illustrate many of the problems that floating-point inaccuracy can cause.
<http://speleotrove.com/decimal/>A description of a decimal-based representation. This representation is being proposed as a standard, and underlies the new Python decimal type. Much of this material was written by Mike Cowlishaw, designer of the Rexx language.
## PEP 328: Multi-line Imports
One language change is a small syntactic tweak aimed at making it easier to import many names from a module. In a `from module import names` statement, *names* is a sequence of names separated by commas. If the sequence is very long, you can either write multiple imports from the same module, or you can use backslashes to escape the line endings like this:
```
from SimpleXMLRPCServer import SimpleXMLRPCServer,\
SimpleXMLRPCRequestHandler,\
CGIXMLRPCRequestHandler,\
resolve_dotted_attribute
```
The syntactic change in Python 2.4 simply allows putting the names within parentheses. Python ignores newlines within a parenthesized expression, so the backslashes are no longer needed:
```
from SimpleXMLRPCServer import (SimpleXMLRPCServer,
SimpleXMLRPCRequestHandler,
CGIXMLRPCRequestHandler,
resolve_dotted_attribute)
```
The PEP also proposes that all [`import`](../reference/simple_stmts.xhtml#import) statements be absolute imports, with a leading `.` character to indicate a relative import. This part of the PEP was not implemented for Python 2.4, but was completed for Python 2.5.
参见
[**PEP 328**](https://www.python.org/dev/peps/pep-0328) \[https://www.python.org/dev/peps/pep-0328\] - Imports: Multi-Line and Absolute/RelativeWritten by Aahz. Multi-line imports were implemented by Dima Dorfman.
## PEP 331: Locale-Independent Float/String Conversions
The [`locale`](../library/locale.xhtml#module-locale "locale: Internationalization services.") modules lets Python software select various conversions and display conventions that are localized to a particular country or language. However, the module was careful to not change the numeric locale because various functions in Python's implementation required that the numeric locale remain set to the `'C'` locale. Often this was because the code was using the C library's `atof()` function.
Not setting the numeric locale caused trouble for extensions that used third-party C libraries, however, because they wouldn't have the correct locale set. The motivating example was GTK+, whose user interface widgets weren't displaying numbers in the current locale.
The solution described in the PEP is to add three new functions to the Python API that perform ASCII-only conversions, ignoring the locale setting:
- `PyOS_ascii_strtod(str, ptr)` and `PyOS_ascii_atof(str, ptr)`both convert a string to a C `double`.
- `PyOS_ascii_formatd(buffer, buf_len, format, d)` converts a `double` to an ASCII string.
The code for these functions came from the GLib library (<https://developer.gnome.org/glib/stable/>), whose developers kindly relicensed the relevant functions and donated them to the Python Software Foundation. The [`locale`](../library/locale.xhtml#module-locale "locale: Internationalization services.") module can now change the numeric locale, letting extensions such as GTK+ produce the correct results.
参见
[**PEP 331**](https://www.python.org/dev/peps/pep-0331) \[https://www.python.org/dev/peps/pep-0331\] - Locale-Independent Float/String ConversionsWritten by Christian R. Reis, and implemented by Gustavo Carneiro.
## 其他语言特性修改
Here are all of the changes that Python 2.4 makes to the core Python language.
- Decorators for functions and methods were added ([**PEP 318**](https://www.python.org/dev/peps/pep-0318) \[https://www.python.org/dev/peps/pep-0318\]).
- Built-in [`set()`](../library/stdtypes.xhtml#set "set") and [`frozenset()`](../library/stdtypes.xhtml#frozenset "frozenset") types were added ([**PEP 218**](https://www.python.org/dev/peps/pep-0218) \[https://www.python.org/dev/peps/pep-0218\]). Other new built-ins include the `reversed(seq)` function ([**PEP 322**](https://www.python.org/dev/peps/pep-0322) \[https://www.python.org/dev/peps/pep-0322\]).
- Generator expressions were added ([**PEP 289**](https://www.python.org/dev/peps/pep-0289) \[https://www.python.org/dev/peps/pep-0289\]).
- Certain numeric expressions no longer return values restricted to 32 or 64 bits ([**PEP 237**](https://www.python.org/dev/peps/pep-0237) \[https://www.python.org/dev/peps/pep-0237\]).
- You can now put parentheses around the list of names in a
```
from module import
names
```
statement ([**PEP 328**](https://www.python.org/dev/peps/pep-0328) \[https://www.python.org/dev/peps/pep-0328\]).
- The [`dict.update()`](../library/stdtypes.xhtml#dict.update "dict.update") method now accepts the same argument forms as the [`dict`](../library/stdtypes.xhtml#dict "dict") constructor. This includes any mapping, any iterable of key/value pairs, and keyword arguments. (Contributed by Raymond Hettinger.)
- The string methods `ljust()`, `rjust()`, and `center()` now take an optional argument for specifying a fill character other than a space. (Contributed by Raymond Hettinger.)
- Strings also gained an `rsplit()` method that works like the `split()`method but splits from the end of the string. (Contributed by Sean Reifschneider.)
```
>>> 'www.python.org'.split('.', 1)
['www', 'python.org']
'www.python.org'.rsplit('.', 1)
['www.python', 'org']
```
- Three keyword parameters, *cmp*, *key*, and *reverse*, were added to the `sort()` method of lists. These parameters make some common usages of `sort()` simpler. All of these parameters are optional.
For the *cmp* parameter, the value should be a comparison function that takes two parameters and returns -1, 0, or +1 depending on how the parameters compare. This function will then be used to sort the list. Previously this was the only parameter that could be provided to `sort()`.
*key* should be a single-parameter function that takes a list element and returns a comparison key for the element. The list is then sorted using the comparison keys. The following example sorts a list case-insensitively:
```
>>> L = ['A', 'b', 'c', 'D']
>>> L.sort() # Case-sensitive sort
>>> L
['A', 'D', 'b', 'c']
>>> # Using 'key' parameter to sort list
>>> L.sort(key=lambda x: x.lower())
>>> L
['A', 'b', 'c', 'D']
>>> # Old-fashioned way
>>> L.sort(cmp=lambda x,y: cmp(x.lower(), y.lower()))
>>> L
['A', 'b', 'c', 'D']
```
The last example, which uses the *cmp* parameter, is the old way to perform a case-insensitive sort. It works but is slower than using a *key* parameter. Using *key* calls `lower()` method once for each element in the list while using *cmp* will call it twice for each comparison, so using *key* saves on invocations of the `lower()` method.
For simple key functions and comparison functions, it is often possible to avoid a [`lambda`](../reference/expressions.xhtml#lambda) expression by using an unbound method instead. For example, the above case-insensitive sort is best written as:
```
>>> L.sort(key=str.lower)
>>> L
['A', 'b', 'c', 'D']
```
Finally, the *reverse* parameter takes a Boolean value. If the value is true, the list will be sorted into reverse order. Instead of
```
L.sort();
L.reverse()
```
, you can now write `L.sort(reverse=True)`.
The results of sorting are now guaranteed to be stable. This means that two entries with equal keys will be returned in the same order as they were input. For example, you can sort a list of people by name, and then sort the list by age, resulting in a list sorted by age where people with the same age are in name-sorted order.
(All changes to `sort()` contributed by Raymond Hettinger.)
- There is a new built-in function `sorted(iterable)` that works like the in-place [`list.sort()`](../library/stdtypes.xhtml#list.sort "list.sort") method but can be used in expressions. The differences are:
- the input may be any iterable;
- a newly formed copy is sorted, leaving the original intact; and
- the expression returns the new sorted copy
```
>>> L = [9,7,8,3,2,4,1,6,5]
>>> [10+i for i in sorted(L)] # usable in a list comprehension
[11, 12, 13, 14, 15, 16, 17, 18, 19]
>>> L # original is left unchanged
[9,7,8,3,2,4,1,6,5]
>>> sorted('Monty Python') # any iterable may be an input
[' ', 'M', 'P', 'h', 'n', 'n', 'o', 'o', 't', 't', 'y', 'y']
>>> # List the contents of a dict sorted by key values
>>> colormap = dict(red=1, blue=2, green=3, black=4, yellow=5)
>>> for k, v in sorted(colormap.iteritems()):
... print k, v
...
black 4
blue 2
green 3
red 1
yellow 5
```
(Contributed by Raymond Hettinger.)
- Integer operations will no longer trigger an `OverflowWarning`. The `OverflowWarning` warning will disappear in Python 2.5.
- The interpreter gained a new switch, [`-m`](../using/cmdline.xhtml#cmdoption-m), that takes a name, searches for the corresponding module on `sys.path`, and runs the module as a script. For example, you can now run the Python profiler with `python -m profile`. (Contributed by Nick Coghlan.)
- The `eval(expr, globals, locals)` and
```
execfile(filename, globals,
locals)
```
functions and the `exec` statement now accept any mapping type for the *locals* parameter. Previously this had to be a regular Python dictionary. (Contributed by Raymond Hettinger.)
- The [`zip()`](../library/functions.xhtml#zip "zip") built-in function and `itertools.izip()` now return an empty list if called with no arguments. Previously they raised a [`TypeError`](../library/exceptions.xhtml#TypeError "TypeError") exception. This makes them more suitable for use with variable length argument lists:
```
>>> def transpose(array):
... return zip(*array)
...
>>> transpose([(1,2,3), (4,5,6)])
[(1, 4), (2, 5), (3, 6)]
>>> transpose([])
[]
```
(Contributed by Raymond Hettinger.)
- Encountering a failure while importing a module no longer leaves a partially-initialized module object in `sys.modules`. The incomplete module object left behind would fool further imports of the same module into succeeding, leading to confusing errors. (Fixed by Tim Peters.)
- [`None`](../library/constants.xhtml#None "None") is now a constant; code that binds a new value to the name `None` is now a syntax error. (Contributed by Raymond Hettinger.)
### 性能优化
- The inner loops for list and tuple slicing were optimized and now run about one-third faster. The inner loops for dictionaries were also optimized, resulting in performance boosts for `keys()`, `values()`, `items()`, `iterkeys()`, `itervalues()`, and `iteritems()`. (Contributed by Raymond Hettinger.)
- The machinery for growing and shrinking lists was optimized for speed and for space efficiency. Appending and popping from lists now runs faster due to more efficient code paths and less frequent use of the underlying system `realloc()`. List comprehensions also benefit. `list.extend()` was also optimized and no longer converts its argument into a temporary list before extending the base list. (Contributed by Raymond Hettinger.)
- [`list()`](../library/stdtypes.xhtml#list "list"), [`tuple()`](../library/stdtypes.xhtml#tuple "tuple"), [`map()`](../library/functions.xhtml#map "map"), [`filter()`](../library/functions.xhtml#filter "filter"), and [`zip()`](../library/functions.xhtml#zip "zip") now run several times faster with non-sequence arguments that supply a [`__len__()`](../reference/datamodel.xhtml#object.__len__ "object.__len__") method. (Contributed by Raymond Hettinger.)
- The methods `list.__getitem__()`, `dict.__getitem__()`, and `dict.__contains__()` are now implemented as `method_descriptor`objects rather than `wrapper_descriptor` objects. This form of access doubles their performance and makes them more suitable for use as arguments to functionals: `map(mydict.__getitem__, keylist)`. (Contributed by Raymond Hettinger.)
- Added a new opcode, `LIST_APPEND`, that simplifies the generated bytecode for list comprehensions and speeds them up by about a third. (Contributed by Raymond Hettinger.)
- The peephole bytecode optimizer has been improved to produce shorter, faster bytecode; remarkably, the resulting bytecode is more readable. (Enhanced by Raymond Hettinger.)
- String concatenations in statements of the form `s = s + "abc"` and
```
s +=
"abc"
```
are now performed more efficiently in certain circumstances. This optimization won't be present in other Python implementations such as Jython, so you shouldn't rely on it; using the `join()` method of strings is still recommended when you want to efficiently glue a large number of strings together. (Contributed by Armin Rigo.)
The net result of the 2.4 optimizations is that Python 2.4 runs the pystone benchmark around 5% faster than Python 2.3 and 35% faster than Python 2.2. (pystone is not a particularly good benchmark, but it's the most commonly used measurement of Python's performance. Your own applications may show greater or smaller benefits from Python 2.4.)
## New, Improved, and Deprecated Modules
As usual, Python's standard library received a number of enhancements and bug fixes. Here's a partial list of the most notable changes, sorted alphabetically by module name. Consult the `Misc/NEWS` file in the source tree for a more complete list of changes, or look through the CVS logs for all the details.
- The [`asyncore`](../library/asyncore.xhtml#module-asyncore "asyncore: A base class for developing asynchronous socket handling services.") module's `loop()` function now has a *count* parameter that lets you perform a limited number of passes through the polling loop. The default is still to loop forever.
- The [`base64`](../library/base64.xhtml#module-base64 "base64: RFC 3548: Base16, Base32, Base64 Data Encodings; Base85 and Ascii85") module now has more complete [**RFC 3548**](https://tools.ietf.org/html/rfc3548.html) \[https://tools.ietf.org/html/rfc3548.html\] support for Base64, Base32, and Base16 encoding and decoding, including optional case folding and optional alternative alphabets. (Contributed by Barry Warsaw.)
- The [`bisect`](../library/bisect.xhtml#module-bisect "bisect: Array bisection algorithms for binary searching.") module now has an underlying C implementation for improved performance. (Contributed by Dmitry Vasiliev.)
- The CJKCodecs collections of East Asian codecs, maintained by Hye-Shik Chang, was integrated into 2.4. The new encodings are:
- Chinese (PRC): gb2312, gbk, gb18030, big5hkscs, hz
- Chinese (ROC): big5, cp950
- Japanese: cp932, euc-jis-2004, euc-jp, euc-jisx0213, iso-2022-jp,iso-2022-jp-1, iso-2022-jp-2, iso-2022-jp-3, iso-2022-jp-ext, iso-2022-jp-2004, shift-jis, shift-jisx0213, shift-jis-2004
- Korean: cp949, euc-kr, johab, iso-2022-kr
- Some other new encodings were added: HP Roman8, ISO\_8859-11, ISO\_8859-16, PCTP-154, and TIS-620.
- The UTF-8 and UTF-16 codecs now cope better with receiving partial input. Previously the `StreamReader` class would try to read more data, making it impossible to resume decoding from the stream. The `read()` method will now return as much data as it can and future calls will resume decoding where previous ones left off. (Implemented by Walter Dörwald.)
- There is a new [`collections`](../library/collections.xhtml#module-collections "collections: Container datatypes") module for various specialized collection datatypes. Currently it contains just one type, `deque`, a double-ended queue that supports efficiently adding and removing elements from either end:
```
>>> from collections import deque
>>> d = deque('ghi') # make a new deque with three items
>>> d.append('j') # add a new entry to the right side
>>> d.appendleft('f') # add a new entry to the left side
>>> d # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])
>>> d.pop() # return and remove the rightmost item
'j'
>>> d.popleft() # return and remove the leftmost item
'f'
>>> list(d) # list the contents of the deque
['g', 'h', 'i']
>>> 'h' in d # search the deque
True
```
Several modules, such as the `Queue` and [`threading`](../library/threading.xhtml#module-threading "threading: Thread-based parallelism.") modules, now take advantage of [`collections.deque`](../library/collections.xhtml#collections.deque "collections.deque") for improved performance. (Contributed by Raymond Hettinger.)
- The `ConfigParser` classes have been enhanced slightly. The `read()`method now returns a list of the files that were successfully parsed, and the [`set()`](../library/stdtypes.xhtml#set "set") method raises [`TypeError`](../library/exceptions.xhtml#TypeError "TypeError") if passed a *value* argument that isn't a string. (Contributed by John Belmonte and David Goodger.)
- The [`curses`](../library/curses.xhtml#module-curses "curses: An interface to the curses library, providing portable terminal handling. (Unix)") module now supports the ncurses extension `use_default_colors()`. On platforms where the terminal supports transparency, this makes it possible to use a transparent background. (Contributed by Jörg Lehmann.)
- The [`difflib`](../library/difflib.xhtml#module-difflib "difflib: Helpers for computing differences between objects.") module now includes an `HtmlDiff` class that creates an HTML table showing a side by side comparison of two versions of a text. (Contributed by Dan Gass.)
- The [`email`](../library/email.xhtml#module-email "email: Package supporting the parsing, manipulating, and generating email messages.") package was updated to version 3.0, which dropped various deprecated APIs and removes support for Python versions earlier than 2.3. The 3.0 version of the package uses a new incremental parser for MIME messages, available in the `email.FeedParser` module. The new parser doesn't require reading the entire message into memory, and doesn't raise exceptions if a message is malformed; instead it records any problems in the `defect`attribute of the message. (Developed by Anthony Baxter, Barry Warsaw, Thomas Wouters, and others.)
- The [`heapq`](../library/heapq.xhtml#module-heapq "heapq: Heap queue algorithm (a.k.a. priority queue).") module has been converted to C. The resulting tenfold improvement in speed makes the module suitable for handling high volumes of data. In addition, the module has two new functions `nlargest()` and `nsmallest()` that use heaps to find the N largest or smallest values in a dataset without the expense of a full sort. (Contributed by Raymond Hettinger.)
- The `httplib` module now contains constants for HTTP status codes defined in various HTTP-related RFC documents. Constants have names such as `OK`, `CREATED`, `CONTINUE`, and `MOVED_PERMANENTLY`; use pydoc to get a full list. (Contributed by Andrew Eland.)
- The [`imaplib`](../library/imaplib.xhtml#module-imaplib "imaplib: IMAP4 protocol client (requires sockets).") module now supports IMAP's THREAD command (contributed by Yves Dionne) and new `deleteacl()` and `myrights()` methods (contributed by Arnaud Mazin).
- The [`itertools`](../library/itertools.xhtml#module-itertools "itertools: Functions creating iterators for efficient looping.") module gained a `groupby(iterable[, *func*])`function. *iterable* is something that can be iterated over to return a stream of elements, and the optional *func* parameter is a function that takes an element and returns a key value; if omitted, the key is simply the element itself. `groupby()` then groups the elements into subsequences which have matching values of the key, and returns a series of 2-tuples containing the key value and an iterator over the subsequence.
Here's an example to make this clearer. The *key* function simply returns whether a number is even or odd, so the result of `groupby()` is to return consecutive runs of odd or even numbers.
```
>>> import itertools
>>> L = [2, 4, 6, 7, 8, 9, 11, 12, 14]
>>> for key_val, it in itertools.groupby(L, lambda x: x % 2):
... print key_val, list(it)
...
0 [2, 4, 6]
1 [7]
0 [8]
1 [9, 11]
0 [12, 14]
>>>
```
`groupby()` is typically used with sorted input. The logic for `groupby()` is similar to the Unix `uniq` filter which makes it handy for eliminating, counting, or identifying duplicate elements:
```
>>> word = 'abracadabra'
>>> letters = sorted(word) # Turn string into a sorted list of letters
>>> letters
['a', 'a', 'a', 'a', 'a', 'b', 'b', 'c', 'd', 'r', 'r']
>>> for k, g in itertools.groupby(letters):
... print k, list(g)
...
a ['a', 'a', 'a', 'a', 'a']
b ['b', 'b']
c ['c']
d ['d']
r ['r', 'r']
>>> # List unique letters
>>> [k for k, g in groupby(letters)]
['a', 'b', 'c', 'd', 'r']
>>> # Count letter occurrences
>>> [(k, len(list(g))) for k, g in groupby(letters)]
[('a', 5), ('b', 2), ('c', 1), ('d', 1), ('r', 2)]
```
(Contributed by Hye-Shik Chang.)
- [`itertools`](../library/itertools.xhtml#module-itertools "itertools: Functions creating iterators for efficient looping.") also gained a function named `tee(iterator, N)` that returns *N* independent iterators that replicate *iterator*. If *N* is omitted, the default is 2.
```
>>> L = [1,2,3]
>>> i1, i2 = itertools.tee(L)
>>> i1,i2
(<itertools.tee object at 0x402c2080>, <itertools.tee object at 0x402c2090>)
>>> list(i1) # Run the first iterator to exhaustion
[1, 2, 3]
>>> list(i2) # Run the second iterator to exhaustion
[1, 2, 3]
```
Note that `tee()` has to keep copies of the values returned by the iterator; in the worst case, it may need to keep all of them. This should therefore be used carefully if the leading iterator can run far ahead of the trailing iterator in a long stream of inputs. If the separation is large, then you might as well use [`list()`](../library/stdtypes.xhtml#list "list") instead. When the iterators track closely with one another, `tee()` is ideal. Possible applications include bookmarking, windowing, or lookahead iterators. (Contributed by Raymond Hettinger.)
- A number of functions were added to the [`locale`](../library/locale.xhtml#module-locale "locale: Internationalization services.") module, such as `bind_textdomain_codeset()` to specify a particular encoding and a family of `l*gettext()` functions that return messages in the chosen encoding. (Contributed by Gustavo Niemeyer.)
- Some keyword arguments were added to the [`logging`](../library/logging.xhtml#module-logging "logging: Flexible event logging system for applications.") package's `basicConfig()` function to simplify log configuration. The default behavior is to log messages to standard error, but various keyword arguments can be specified to log to a particular file, change the logging format, or set the logging level. For example:
```
import logging
logging.basicConfig(filename='/var/log/application.log',
level=0, # Log all messages
format='%(levelname):%(process):%(thread):%(message)')
```
Other additions to the [`logging`](../library/logging.xhtml#module-logging "logging: Flexible event logging system for applications.") package include a `log(level, msg)`convenience method, as well as a `TimedRotatingFileHandler` class that rotates its log files at a timed interval. The module already had `RotatingFileHandler`, which rotated logs once the file exceeded a certain size. Both classes derive from a new `BaseRotatingHandler` class that can be used to implement other rotating handlers.
(Changes implemented by Vinay Sajip.)
- The [`marshal`](../library/marshal.xhtml#module-marshal "marshal: Convert Python objects to streams of bytes and back (with different constraints).") module now shares interned strings on unpacking a data structure. This may shrink the size of certain pickle strings, but the primary effect is to make `.pyc` files significantly smaller. (Contributed by Martin von Löwis.)
- The [`nntplib`](../library/nntplib.xhtml#module-nntplib "nntplib: NNTP protocol client (requires sockets).") module's `NNTP` class gained `description()` and `descriptions()` methods to retrieve newsgroup descriptions for a single group or for a range of groups. (Contributed by Jürgen A. Erhard.)
- Two new functions were added to the [`operator`](../library/operator.xhtml#module-operator "operator: Functions corresponding to the standard operators.") module, `attrgetter(attr)` and `itemgetter(index)`. Both functions return callables that take a single argument and return the corresponding attribute or item; these callables make excellent data extractors when used with [`map()`](../library/functions.xhtml#map "map")or [`sorted()`](../library/functions.xhtml#sorted "sorted"). For example:
```
>>> L = [('c', 2), ('d', 1), ('a', 4), ('b', 3)]
>>> map(operator.itemgetter(0), L)
['c', 'd', 'a', 'b']
>>> map(operator.itemgetter(1), L)
[2, 1, 4, 3]
>>> sorted(L, key=operator.itemgetter(1)) # Sort list by second tuple item
[('d', 1), ('c', 2), ('b', 3), ('a', 4)]
```
(Contributed by Raymond Hettinger.)
- The [`optparse`](../library/optparse.xhtml#module-optparse "optparse: Command-line option parsing library. (已移除)") module was updated in various ways. The module now passes its messages through [`gettext.gettext()`](../library/gettext.xhtml#gettext.gettext "gettext.gettext"), making it possible to internationalize Optik's help and error messages. Help messages for options can now include the string `'%default'`, which will be replaced by the option's default value. (Contributed by Greg Ward.)
- The long-term plan is to deprecate the `rfc822` module in some future Python release in favor of the [`email`](../library/email.xhtml#module-email "email: Package supporting the parsing, manipulating, and generating email messages.") package. To this end, the `email.Utils.formatdate()` function has been changed to make it usable as a replacement for `rfc822.formatdate()`. You may want to write new e-mail processing code with this in mind. (Change implemented by Anthony Baxter.)
- A new `urandom(n)` function was added to the [`os`](../library/os.xhtml#module-os "os: Miscellaneous operating system interfaces.") module, returning a string containing *n* bytes of random data. This function provides access to platform-specific sources of randomness such as `/dev/urandom` on Linux or the Windows CryptoAPI. (Contributed by Trevor Perrin.)
- Another new function: `os.path.lexists(path)` returns true if the file specified by *path* exists, whether or not it's a symbolic link. This differs from the existing `os.path.exists(path)` function, which returns false if *path* is a symlink that points to a destination that doesn't exist. (Contributed by Beni Cherniavsky.)
- A new `getsid()` function was added to the [`posix`](../library/posix.xhtml#module-posix "posix: The most common POSIX system calls (normally used via module os). (Unix)") module that underlies the [`os`](../library/os.xhtml#module-os "os: Miscellaneous operating system interfaces.") module. (Contributed by J. Raynor.)
- The [`poplib`](../library/poplib.xhtml#module-poplib "poplib: POP3 protocol client (requires sockets).") module now supports POP over SSL. (Contributed by Hector Urtubia.)
- The [`profile`](../library/profile.xhtml#module-profile "profile: Python source profiler.") module can now profile C extension functions. (Contributed by Nick Bastin.)
- The [`random`](../library/random.xhtml#module-random "random: Generate pseudo-random numbers with various common distributions.") module has a new method called `getrandbits(N)` that returns a long integer *N* bits in length. The existing `randrange()`method now uses `getrandbits()` where appropriate, making generation of arbitrarily large random numbers more efficient. (Contributed by Raymond Hettinger.)
- The regular expression language accepted by the [`re`](../library/re.xhtml#module-re "re: Regular expression operations.") module was extended with simple conditional expressions, written as `(?(group)A|B)`. *group* is either a numeric group ID or a group name defined with `(?P<group>...)`earlier in the expression. If the specified group matched, the regular expression pattern *A* will be tested against the string; if the group didn't match, the pattern *B* will be used instead. (Contributed by Gustavo Niemeyer.)
- The [`re`](../library/re.xhtml#module-re "re: Regular expression operations.") module is also no longer recursive, thanks to a massive amount of work by Gustavo Niemeyer. In a recursive regular expression engine, certain patterns result in a large amount of C stack space being consumed, and it was possible to overflow the stack. For example, if you matched a 30000-byte string of `a` characters against the expression `(a|b)+`, one stack frame was consumed per character. Python 2.3 tried to check for stack overflow and raise a [`RuntimeError`](../library/exceptions.xhtml#RuntimeError "RuntimeError") exception, but certain patterns could sidestep the checking and if you were unlucky Python could segfault. Python 2.4's regular expression engine can match this pattern without problems.
- The [`signal`](../library/signal.xhtml#module-signal "signal: Set handlers for asynchronous events.") module now performs tighter error-checking on the parameters to the [`signal.signal()`](../library/signal.xhtml#signal.signal "signal.signal") function. For example, you can't set a handler on the `SIGKILL` signal; previous versions of Python would quietly accept this, but 2.4 will raise a [`RuntimeError`](../library/exceptions.xhtml#RuntimeError "RuntimeError") exception.
- Two new functions were added to the [`socket`](../library/socket.xhtml#module-socket "socket: Low-level networking interface.") module. `socketpair()`returns a pair of connected sockets and `getservbyport(port)` looks up the service name for a given port number. (Contributed by Dave Cole and Barry Warsaw.)
- The `sys.exitfunc()` function has been deprecated. Code should be using the existing [`atexit`](../library/atexit.xhtml#module-atexit "atexit: Register and execute cleanup functions.") module, which correctly handles calling multiple exit functions. Eventually `sys.exitfunc()` will become a purely internal interface, accessed only by [`atexit`](../library/atexit.xhtml#module-atexit "atexit: Register and execute cleanup functions.").
- The [`tarfile`](../library/tarfile.xhtml#module-tarfile "tarfile: Read and write tar-format archive files.") module now generates GNU-format tar files by default. (Contributed by Lars Gustäbel.)
- The [`threading`](../library/threading.xhtml#module-threading "threading: Thread-based parallelism.") module now has an elegantly simple way to support thread-local data. The module contains a `local` class whose attribute values are local to different threads.
```
import threading
data = threading.local()
data.number = 42
data.url = ('www.python.org', 80)
```
Other threads can assign and retrieve their own values for the `number`and `url` attributes. You can subclass `local` to initialize attributes or to add methods. (Contributed by Jim Fulton.)
- The [`timeit`](../library/timeit.xhtml#module-timeit "timeit: Measure the execution time of small code snippets.") module now automatically disables periodic garbage collection during the timing loop. This change makes consecutive timings more comparable. (Contributed by Raymond Hettinger.)
- The [`weakref`](../library/weakref.xhtml#module-weakref "weakref: Support for weak references and weak dictionaries.") module now supports a wider variety of objects including Python functions, class instances, sets, frozensets, deques, arrays, files, sockets, and regular expression pattern objects. (Contributed by Raymond Hettinger.)
- The `xmlrpclib` module now supports a multi-call extension for transmitting multiple XML-RPC calls in a single HTTP operation. (Contributed by Brian Quinlan.)
- The `mpz`, `rotor`, and `xreadlines` modules have been removed.
### cookielib
The `cookielib` library supports client-side handling for HTTP cookies, mirroring the `Cookie` module's server-side cookie support. Cookies are stored in cookie jars; the library transparently stores cookies offered by the web server in the cookie jar, and fetches the cookie from the jar when connecting to the server. As in web browsers, policy objects control whether cookies are accepted or not.
In order to store cookies across sessions, two implementations of cookie jars are provided: one that stores cookies in the Netscape format so applications can use the Mozilla or Lynx cookie files, and one that stores cookies in the same format as the Perl libwww library.
`urllib2` has been changed to interact with `cookielib`: `HTTPCookieProcessor` manages a cookie jar that is used when accessing URLs.
This module was contributed by John J. Lee.
### doctest
The [`doctest`](../library/doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.") module underwent considerable refactoring thanks to Edward Loper and Tim Peters. Testing can still be as simple as running [`doctest.testmod()`](../library/doctest.xhtml#doctest.testmod "doctest.testmod"), but the refactorings allow customizing the module's operation in various ways
The new `DocTestFinder` class extracts the tests from a given object's docstrings:
```
def f (x, y):
""">>> f(2,2)
4
>>> f(3,2)
6
"""
return x*y
finder = doctest.DocTestFinder()
# Get list of DocTest instances
tests = finder.find(f)
```
The new `DocTestRunner` class then runs individual tests and can produce a summary of the results:
```
runner = doctest.DocTestRunner()
for t in tests:
tried, failed = runner.run(t)
runner.summarize(verbose=1)
```
The above example produces the following output:
```
1 items passed all tests:
2 tests in f
2 tests in 1 items.
2 passed and 0 failed.
Test passed.
```
`DocTestRunner` uses an instance of the `OutputChecker` class to compare the expected output with the actual output. This class takes a number of different flags that customize its behaviour; ambitious users can also write a completely new subclass of `OutputChecker`.
The default output checker provides a number of handy features. For example, with the [`doctest.ELLIPSIS`](../library/doctest.xhtml#doctest.ELLIPSIS "doctest.ELLIPSIS") option flag, an ellipsis (`...`) in the expected output matches any substring, making it easier to accommodate outputs that vary in minor ways:
```
def o (n):
""">>> o(1)
<__main__.C instance at 0x...>
>>>
"""
```
Another special string, `<BLANKLINE>`, matches a blank line:
```
def p (n):
""">>> p(1)
<BLANKLINE>
>>>
"""
```
Another new capability is producing a diff-style display of the output by specifying the [`doctest.REPORT_UDIFF`](../library/doctest.xhtml#doctest.REPORT_UDIFF "doctest.REPORT_UDIFF") (unified diffs), [`doctest.REPORT_CDIFF`](../library/doctest.xhtml#doctest.REPORT_CDIFF "doctest.REPORT_CDIFF") (context diffs), or [`doctest.REPORT_NDIFF`](../library/doctest.xhtml#doctest.REPORT_NDIFF "doctest.REPORT_NDIFF")(delta-style) option flags. For example:
```
def g (n):
""">>> g(4)
here
is
a
lengthy
>>>"""
L = 'here is a rather lengthy list of words'.split()
for word in L[:n]:
print word
```
Running the above function's tests with [`doctest.REPORT_UDIFF`](../library/doctest.xhtml#doctest.REPORT_UDIFF "doctest.REPORT_UDIFF") specified, you get the following output:
```
**********************************************************************
File "t.py", line 15, in g
Failed example:
g(4)
Differences (unified diff with -expected +actual):
@@ -2,3 +2,3 @@
is
a
-lengthy
+rather
**********************************************************************
```
## Build and C API Changes
Some of the changes to Python's build process and to the C API are:
- Three new convenience macros were added for common return values from extension functions: [`Py_RETURN_NONE`](../c-api/none.xhtml#c.Py_RETURN_NONE "Py_RETURN_NONE"), [`Py_RETURN_TRUE`](../c-api/bool.xhtml#c.Py_RETURN_TRUE "Py_RETURN_TRUE"), and [`Py_RETURN_FALSE`](../c-api/bool.xhtml#c.Py_RETURN_FALSE "Py_RETURN_FALSE"). (Contributed by Brett Cannon.)
- Another new macro, `Py_CLEAR(obj)`, decreases the reference count of *obj* and sets *obj* to the null pointer. (Contributed by Jim Fulton.)
- A new function, `PyTuple_Pack(N, obj1, obj2, ..., objN)`, constructs tuples from a variable length argument list of Python objects. (Contributed by Raymond Hettinger.)
- A new function, `PyDict_Contains(d, k)`, implements fast dictionary lookups without masking exceptions raised during the look-up process. (Contributed by Raymond Hettinger.)
- The `Py_IS_NAN(X)` macro returns 1 if its float or double argument *X* is a NaN. (Contributed by Tim Peters.)
- C code can avoid unnecessary locking by using the new [`PyEval_ThreadsInitialized()`](../c-api/init.xhtml#c.PyEval_ThreadsInitialized "PyEval_ThreadsInitialized") function to tell if any thread operations have been performed. If this function returns false, no lock operations are needed. (Contributed by Nick Coghlan.)
- A new function, [`PyArg_VaParseTupleAndKeywords()`](../c-api/arg.xhtml#c.PyArg_VaParseTupleAndKeywords "PyArg_VaParseTupleAndKeywords"), is the same as [`PyArg_ParseTupleAndKeywords()`](../c-api/arg.xhtml#c.PyArg_ParseTupleAndKeywords "PyArg_ParseTupleAndKeywords") but takes a `va_list` instead of a number of arguments. (Contributed by Greg Chapman.)
- A new method flag, `METH_COEXISTS`, allows a function defined in slots to co-exist with a [`PyCFunction`](../c-api/structures.xhtml#c.PyCFunction "PyCFunction") having the same name. This can halve the access time for a method such as `set.__contains__()`. (Contributed by Raymond Hettinger.)
- Python can now be built with additional profiling for the interpreter itself, intended as an aid to people developing the Python core. Providing `--enable-profiling` to the **configure** script will let you profile the interpreter with **gprof**, and providing the `--with-tsc` switch enables profiling using the Pentium's Time-Stamp-Counter register. Note that the `--with-tsc` switch is slightly misnamed, because the profiling feature also works on the PowerPC platform, though that processor architecture doesn't call that register "the TSC register". (Contributed by Jeremy Hylton.)
- The `tracebackobject` type has been renamed to `PyTracebackObject`.
### Port-Specific Changes
- The Windows port now builds under MSVC++ 7.1 as well as version 6. (Contributed by Martin von Löwis.)
## Porting to Python 2.4
This section lists previously described changes that may require changes to your code:
- Left shifts and hexadecimal/octal constants that are too large no longer trigger a [`FutureWarning`](../library/exceptions.xhtml#FutureWarning "FutureWarning") and return a value limited to 32 or 64 bits; instead they return a long integer.
- Integer operations will no longer trigger an `OverflowWarning`. The `OverflowWarning` warning will disappear in Python 2.5.
- The [`zip()`](../library/functions.xhtml#zip "zip") built-in function and `itertools.izip()` now return an empty list instead of raising a [`TypeError`](../library/exceptions.xhtml#TypeError "TypeError") exception if called with no arguments.
- You can no longer compare the `date` and [`datetime`](../library/datetime.xhtml#datetime.datetime "datetime.datetime") instances provided by the [`datetime`](../library/datetime.xhtml#module-datetime "datetime: Basic date and time types.") module. Two instances of different classes will now always be unequal, and relative comparisons (`<`, `>`) will raise a [`TypeError`](../library/exceptions.xhtml#TypeError "TypeError").
- `dircache.listdir()` now passes exceptions to the caller instead of returning empty lists.
- `LexicalHandler.startDTD()` used to receive the public and system IDs in the wrong order. This has been corrected; applications relying on the wrong order need to be fixed.
- [`fcntl.ioctl()`](../library/fcntl.xhtml#fcntl.ioctl "fcntl.ioctl") now warns if the *mutate* argument is omitted and relevant.
- The [`tarfile`](../library/tarfile.xhtml#module-tarfile "tarfile: Read and write tar-format archive files.") module now generates GNU-format tar files by default.
- Encountering a failure while importing a module no longer leaves a partially-initialized module object in `sys.modules`.
- [`None`](../library/constants.xhtml#None "None") is now a constant; code that binds a new value to the name `None` is now a syntax error.
- The `signals.signal()` function now raises a [`RuntimeError`](../library/exceptions.xhtml#RuntimeError "RuntimeError") exception for certain illegal values; previously these errors would pass silently. For example, you can no longer set a handler on the `SIGKILL` signal.
## Acknowledgements
The author would like to thank the following people for offering suggestions, corrections and assistance with various drafts of this article: Koray Can, Hye-Shik Chang, Michael Dyck, Raymond Hettinger, Brian Hurt, Hamish Lawson, Fredrik Lundh, Sean Reifschneider, Sadruddin Rejeb.
### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](2.3.xhtml "What's New in Python 2.3") |
- [上一页](2.5.xhtml "What's New in Python 2.5") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 有什么新变化?](index.xhtml) »
- $('.inline-search').show(0); |
© [版权所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 软件基金会是一个非盈利组织。 [请捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [发现了问题](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 创建。
- Python文档内容
- Python 有什么新变化?
- Python 3.7 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- C API 的改变
- 构建的改变
- 性能优化
- 其他 CPython 实现的改变
- 已弃用的 Python 行为
- 已弃用的 Python 模块、函数和方法
- 已弃用的 C API 函数和类型
- 平台支持的移除
- API 与特性的移除
- 移除的模块
- Windows 专属的改变
- 移植到 Python 3.7
- Python 3.7.1 中的重要变化
- Python 3.7.2 中的重要变化
- Python 3.6 有什么新变化A
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 其他改进
- 弃用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要变化
- Python 3.6.4 中的重要变化
- Python 3.6.5 中的重要变化
- Python 3.6.7 中的重要变化
- Python 3.5 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- Other module-level changes
- 性能优化
- Build and C API Changes
- 弃用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 发布重点
- 新的特性
- 新增模块
- 改进的模块
- CPython Implementation Changes
- 弃用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 发布重点
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他语言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 弃用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 多线程
- 性能优化
- Unicode
- Codecs
- 文档
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 性能优化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他语言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新变化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他语言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他语言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推导式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最终版
- Python 3.7.3 发布候选版 1
- Python 3.7.2 最终版
- Python 3.7.2 发布候选版 1
- Python 3.7.1 最终版
- Python 3.7.1 RC 2版本
- Python 3.7.1 发布候选版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 课前甜点
- 使用 Python 解释器
- 调用解释器
- 解释器的运行环境
- Python 的非正式介绍
- Python 作为计算器使用
- 走向编程的第一步
- 其他流程控制工具
- if 语句
- for 语句
- range() 函数
- break 和 continue 语句,以及循环中的 else 子句
- pass 语句
- 定义函数
- 函数定义的更多形式
- 小插曲:编码风格
- 数据结构
- 列表的更多特性
- del 语句
- 元组和序列
- 集合
- 字典
- 循环的技巧
- 深入条件控制
- 序列和其它类型的比较
- 模块
- 有关模块的更多信息
- 标准模块
- dir() 函数
- 包
- 输入输出
- 更漂亮的输出格式
- 读写文件
- 错误和异常
- 语法错误
- 异常
- 处理异常
- 抛出异常
- 用户自定义异常
- 定义清理操作
- 预定义的清理操作
- 类
- 名称和对象
- Python 作用域和命名空间
- 初探类
- 补充说明
- 继承
- 私有变量
- 杂项说明
- 迭代器
- 生成器
- 生成器表达式
- 标准库简介
- 操作系统接口
- 文件通配符
- 命令行参数
- 错误输出重定向和程序终止
- 字符串模式匹配
- 数学
- 互联网访问
- 日期和时间
- 数据压缩
- 性能测量
- 质量控制
- 自带电池
- 标准库简介 —— 第二部分
- 格式化输出
- 模板
- 使用二进制数据记录格式
- 多线程
- 日志
- 弱引用
- 用于操作列表的工具
- 十进制浮点运算
- 虚拟环境和包
- 概述
- 创建虚拟环境
- 使用pip管理包
- 接下来?
- 交互式编辑和编辑历史
- Tab 补全和编辑历史
- 默认交互式解释器的替代品
- 浮点算术:争议和限制
- 表示性错误
- 附录
- 交互模式
- 安装和使用 Python
- 命令行与环境
- 命令行
- 环境变量
- 在Unix平台中使用Python
- 获取最新版本的Python
- 构建Python
- 与Python相关的路径和文件
- 杂项
- 编辑器和集成开发环境
- 在Windows上使用 Python
- 完整安装程序
- Microsoft Store包
- nuget.org 安装包
- 可嵌入的包
- 替代捆绑包
- 配置Python
- 适用于Windows的Python启动器
- 查找模块
- 附加模块
- 在Windows上编译Python
- 其他平台
- 在苹果系统上使用 Python
- 获取和安装 MacPython
- IDE
- 安装额外的 Python 包
- Mac 上的图形界面编程
- 在 Mac 上分发 Python 应用程序
- 其他资源
- Python 语言参考
- 概述
- 其他实现
- 标注
- 词法分析
- 行结构
- 其他形符
- 标识符和关键字
- 字面值
- 运算符
- 分隔符
- 数据模型
- 对象、值与类型
- 标准类型层级结构
- 特殊方法名称
- 协程
- 执行模型
- 程序的结构
- 命名与绑定
- 异常
- 导入系统
- importlib
- 包
- 搜索
- 加载
- 基于路径的查找器
- 替换标准导入系统
- Package Relative Imports
- 有关 main 的特殊事项
- 开放问题项
- 参考文献
- 表达式
- 算术转换
- 原子
- 原型
- await 表达式
- 幂运算符
- 一元算术和位运算
- 二元算术运算符
- 移位运算
- 二元位运算
- 比较运算
- 布尔运算
- 条件表达式
- lambda 表达式
- 表达式列表
- 求值顺序
- 运算符优先级
- 简单语句
- 表达式语句
- 赋值语句
- assert 语句
- pass 语句
- del 语句
- return 语句
- yield 语句
- raise 语句
- break 语句
- continue 语句
- import 语句
- global 语句
- nonlocal 语句
- 复合语句
- if 语句
- while 语句
- for 语句
- try 语句
- with 语句
- 函数定义
- 类定义
- 协程
- 最高层级组件
- 完整的 Python 程序
- 文件输入
- 交互式输入
- 表达式输入
- 完整的语法规范
- Python 标准库
- 概述
- 可用性注释
- 内置函数
- 内置常量
- 由 site 模块添加的常量
- 内置类型
- 逻辑值检测
- 布尔运算 — and, or, not
- 比较
- 数字类型 — int, float, complex
- 迭代器类型
- 序列类型 — list, tuple, range
- 文本序列类型 — str
- 二进制序列类型 — bytes, bytearray, memoryview
- 集合类型 — set, frozenset
- 映射类型 — dict
- 上下文管理器类型
- 其他内置类型
- 特殊属性
- 内置异常
- 基类
- 具体异常
- 警告
- 异常层次结构
- 文本处理服务
- string — 常见的字符串操作
- re — 正则表达式操作
- 模块 difflib 是一个计算差异的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 数据库
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函数
- 二进制数据服务
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 数据类型
- datetime — 基础日期/时间数据类型
- calendar — General calendar-related functions
- collections — 容器数据类型
- collections.abc — 容器的抽象基类
- heapq — 堆队列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 浅层 (shallow) 和深层 (deep) 复制操作
- pprint — 数据美化输出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 数字和数学模块
- numbers — 数字的抽象基类
- math — 数学函数
- cmath — Mathematical functions for complex numbers
- decimal — 十进制定点和浮点运算
- fractions — 分数
- random — 生成伪随机数
- statistics — Mathematical statistics functions
- 函数式编程模块
- itertools — 为高效循环而创建迭代器的函数
- functools — 高阶函数和可调用对象上的操作
- operator — 标准运算符替代函数
- 文件和目录访问
- pathlib — 面向对象的文件系统路径
- os.path — 常见路径操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路径操作函数
- 数据持久化
- pickle —— Python 对象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 数据库 DB-API 2.0 接口模块
- 数据压缩和存档
- zlib — 与 gzip 兼容的压缩
- gzip — 对 gzip 格式的支持
- bz2 — 对 bzip2 压缩算法的支持
- lzma — 用 LZMA 算法压缩
- zipfile — 在 ZIP 归档中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件读写
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服务
- hashlib — 安全哈希与消息摘要
- hmac — 基于密钥的消息验证
- secrets — Generate secure random numbers for managing secrets
- 通用操作系统服务
- os — 操作系统接口模块
- io — 处理流的核心工具
- time — 时间的访问和转换
- argparse — 命令行选项、参数和子命令解析器
- getopt — C-style parser for command line options
- 模块 logging — Python 的日志记录工具
- logging.config — 日志记录配置
- logging.handlers — Logging handlers
- getpass — 便携式密码输入工具
- curses — 终端字符单元显示的处理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函数库
- 并发执行
- threading — 基于线程的并行
- multiprocessing — 基于进程的并行
- concurrent 包
- concurrent.futures — 启动并行任务
- subprocess — 子进程管理
- sched — 事件调度器
- queue — 一个同步的队列类
- _thread — 底层多线程 API
- _dummy_thread — _thread 的替代模块
- dummy_threading — 可直接替代 threading 模块。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 网络和进程间通信
- asyncio — 异步 I/O
- socket — 底层网络接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高级 I/O 复用库
- asyncore — 异步socket处理器
- asynchat — 异步 socket 指令/响应 处理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互联网数据处理
- email — 电子邮件与 MIME 处理包
- json — JSON 编码和解码器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 数据编码
- binhex — 对binhex4文件进行编码和解码
- binascii — 二进制和 ASCII 码互转
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 结构化标记处理工具
- html — 超文本标记语言支持
- html.parser — 简单的 HTML 和 XHTML 解析器
- html.entities — HTML 一般实体的定义
- XML处理模块
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互联网协议和支持
- webbrowser — 方便的Web浏览器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 处理模块
- urllib.request — 用于打开 URL 的可扩展库
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模块
- http.client — HTTP协议客户端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP协议客户端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服务器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服务端与客户端模块
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒体服务
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 读写 Sun AU 文件
- wave — 读写WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推测图像类型
- sndhdr — 推测声音文件的类型
- ossaudiodev — Access to OSS-compatible audio devices
- 国际化
- gettext — 多语种国际化服务
- locale — 国际化服务
- 程序框架
- turtle — 海龟绘图
- cmd — 支持面向行的命令解释器
- shlex — Simple lexical analysis
- Tk图形用户界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滚动文字控件
- IDLE
- 其他图形用户界面(GUI)包
- 开发工具
- typing — 类型标注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 单元测试框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自动将 Python 2 代码转为 Python 3 代码
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 调试和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 测量小代码片段的执行时间
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 软件打包和分发
- distutils — 构建和安装 Python 模块
- ensurepip — Bootstrapping the pip installer
- venv — 创建虚拟环境
- zipapp — Manage executable Python zip archives
- Python运行时服务
- sys — 系统相关的参数和函数
- sysconfig — Provide access to Python's configuration information
- builtins — 内建对象
- main — 顶层脚本环境
- warnings — Warning control
- dataclasses — 数据类
- contextlib — Utilities for with-statement contexts
- abc — 抽象基类
- atexit — 退出处理器
- traceback — Print or retrieve a stack traceback
- future — Future 语句定义
- gc — 垃圾回收器接口
- inspect — 检查对象
- site — Site-specific configuration hook
- 自定义 Python 解释器
- code — Interpreter base classes
- codeop — Compile Python code
- 导入模块
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找脚本使用的模块
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 语言服务
- parser — Access Python parse trees
- ast — 抽象语法树
- symtable — Access to the compiler's symbol tables
- symbol — 与 Python 解析树一起使用的常量
- token — 与Python解析树一起使用的常量
- keyword — 检验Python关键字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊缩进检测
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字节码反汇编器
- pickletools — Tools for pickle developers
- 杂项服务
- formatter — Generic output formatting
- Windows系统相关模块
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注册表访问
- winsound — Sound-playing interface for Windows
- Unix 专有服务
- posix — The most common POSIX system calls
- pwd — 用户密码数据库
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 终端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 库例程
- 被取代的模块
- optparse — Parser for command line options
- imp — Access the import internals
- 未创建文档的模块
- 平台特定模块
- 扩展和嵌入 Python 解释器
- 推荐的第三方工具
- 不使用第三方工具创建扩展
- 使用 C 或 C++ 扩展 Python
- 自定义扩展类型:教程
- 定义扩展类型:已分类主题
- 构建C/C++扩展
- 在Windows平台编译C和C++扩展
- 在更大的应用程序中嵌入 CPython 运行时
- Embedding Python in Another Application
- Python/C API 参考手册
- 概述
- 代码标准
- 包含文件
- 有用的宏
- 对象、类型和引用计数
- 异常
- 嵌入Python
- 调试构建
- 稳定的应用程序二进制接口
- The Very High Level Layer
- Reference Counting
- 异常处理
- Printing and clearing
- 抛出异常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 标准异常
- 标准警告类别
- 工具
- 操作系统实用程序
- 系统功能
- 过程控制
- 导入模块
- Data marshalling support
- 语句解释及变量编译
- 字符串转换与格式化
- 反射
- 编解码器注册与支持功能
- 抽象对象层
- Object Protocol
- 数字协议
- Sequence Protocol
- Mapping Protocol
- 迭代器协议
- 缓冲协议
- Old Buffer Protocol
- 具体的对象层
- 基本对象
- 数值对象
- 序列对象
- 容器对象
- 函数对象
- 其他对象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置变量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 内存管理
- 概述
- 原始内存接口
- Memory Interface
- 对象分配器
- 默认内存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 对象实现支持
- 在堆中分配对象
- Common Object Structures
- Type 对象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使对象类型支持循环垃圾回收
- API 和 ABI 版本管理
- 分发 Python 模块
- 关键术语
- 开源许可与协作
- 安装工具
- 阅读指南
- 我该如何...?
- ...为我的项目选择一个名字?
- ...创建和分发二进制扩展?
- 安装 Python 模块
- 关键术语
- 基本使用
- 我应如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安装 pip ?
- ... 只为当前用户安装软件包?
- ... 安装科学计算类 Python 软件包?
- ... 使用并行安装的多个 Python 版本?
- 常见的安装问题
- 在 Linux 的系统 Python 版本上安装
- 未安装 pip
- 安装二进制编译扩展
- Python 常用指引
- 将 Python 2 代码迁移到 Python 3
- 简要说明
- 详情
- 将扩展模块移植到 Python 3
- 条件编译
- 对象API的更改
- 模块初始化和状态
- CObject 替换为 Capsule
- 其他选项
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 实现描述器
- 摘要
- 定义和简介
- 描述器协议
- 发起调用描述符
- 描述符示例
- Properties
- 函数和方法
- Static Methods and Class Methods
- 函数式编程指引
- 概述
- 迭代器
- 生成器表达式和列表推导式
- 生成器
- 内置函数
- itertools 模块
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文献
- 日志 HOWTO
- 日志基础教程
- 进阶日志教程
- 日志级别
- 有用的处理程序
- 记录日志中引发的异常
- 使用任意对象作为消息
- 优化
- 日志操作手册
- 在多个模块中使用日志
- 在多线程中使用日志
- 使用多个日志处理器和多种格式化
- 在多个地方记录日志
- 日志服务器配置示例
- 处理日志处理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正则表达式HOWTO
- 概述
- 简单模式
- 使用正则表达式
- 更多模式能力
- 修改字符串
- 常见问题
- 反馈
- 套接字编程指南
- 套接字
- 创建套接字
- 使用一个套接字
- 断开连接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 关键函数
- Operator 模块函数
- 升序和降序
- 排序稳定性和排序复杂度
- 使用装饰-排序-去装饰的旧方法
- 使用 cmp 参数的旧方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包获取网络资源
- 概述
- Fetching URLs
- 处理异常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 脚注
- Argparse 教程
- 概念
- 基础
- 位置参数介绍
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模块介绍
- 创建 Address/Network/Interface 对象
- 审查 Address/Network/Interface 对象
- Network 作为 Address 列表
- 比较
- 将IP地址与其他模块一起使用
- 实例创建失败时获取更多详细信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 检测CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常见问题
- Python常见问题
- 一般信息
- 现实世界中的 Python
- 编程常见问题
- 一般问题
- 核心语言
- 数字和字符串
- 性能
- 序列(元组/列表)
- 对象
- 模块
- 设计和历史常见问题
- 为什么Python使用缩进来分组语句?
- 为什么简单的算术运算得到奇怪的结果?
- 为什么浮点计算不准确?
- 为什么Python字符串是不可变的?
- 为什么必须在方法定义和调用中显式使用“self”?
- 为什么不能在表达式中赋值?
- 为什么Python对某些功能(例如list.index())使用方法来实现,而其他功能(例如len(List))使用函数实现?
- 为什么 join()是一个字符串方法而不是列表或元组方法?
- 异常有多快?
- 为什么Python中没有switch或case语句?
- 难道不能在解释器中模拟线程,而非得依赖特定于操作系统的线程实现吗?
- 为什么lambda表达式不能包含语句?
- 可以将Python编译为机器代码,C或其他语言吗?
- Python如何管理内存?
- 为什么CPython不使用更传统的垃圾回收方案?
- CPython退出时为什么不释放所有内存?
- 为什么有单独的元组和列表数据类型?
- 列表是如何在CPython中实现的?
- 字典是如何在CPython中实现的?
- 为什么字典key必须是不可变的?
- 为什么 list.sort() 没有返回排序列表?
- 如何在Python中指定和实施接口规范?
- 为什么没有goto?
- 为什么原始字符串(r-strings)不能以反斜杠结尾?
- 为什么Python没有属性赋值的“with”语句?
- 为什么 if/while/def/class语句需要冒号?
- 为什么Python在列表和元组的末尾允许使用逗号?
- 代码库和插件 FAQ
- 通用的代码库问题
- 通用任务
- 线程相关
- 输入输出
- 网络 / Internet 编程
- 数据库
- 数学和数字
- 扩展/嵌入常见问题
- 可以使用C语言中创建自己的函数吗?
- 可以使用C++语言中创建自己的函数吗?
- C很难写,有没有其他选择?
- 如何从C执行任意Python语句?
- 如何从C中评估任意Python表达式?
- 如何从Python对象中提取C的值?
- 如何使用Py_BuildValue()创建任意长度的元组?
- 如何从C调用对象的方法?
- 如何捕获PyErr_Print()(或打印到stdout / stderr的任何内容)的输出?
- 如何从C访问用Python编写的模块?
- 如何从Python接口到C ++对象?
- 我使用Setup文件添加了一个模块,为什么make失败了?
- 如何调试扩展?
- 我想在Linux系统上编译一个Python模块,但是缺少一些文件。为什么?
- 如何区分“输入不完整”和“输入无效”?
- 如何找到未定义的g++符号__builtin_new或__pure_virtual?
- 能否创建一个对象类,其中部分方法在C中实现,而其他方法在Python中实现(例如通过继承)?
- Python在Windows上的常见问题
- 我怎样在Windows下运行一个Python程序?
- 我怎么让 Python 脚本可执行?
- 为什么有时候 Python 程序会启动缓慢?
- 我怎样使用Python脚本制作可执行文件?
- *.pyd 文件和DLL文件相同吗?
- 我怎样将Python嵌入一个Windows程序?
- 如何让编辑器不要在我的 Python 源代码中插入 tab ?
- 如何在不阻塞的情况下检查按键?
- 图形用户界面(GUI)常见问题
- 图形界面常见问题
- Python 是否有平台无关的图形界面工具包?
- 有哪些Python的GUI工具是某个平台专用的?
- 有关Tkinter的问题
- “为什么我的电脑上安装了 Python ?”
- 什么是Python?
- 为什么我的电脑上安装了 Python ?
- 我能删除 Python 吗?
- 术语对照表
- 文档说明
- Python 文档贡献者
- 解决 Bug
- 文档错误
- 使用 Python 的错误追踪系统
- 开始为 Python 贡献您的知识
- 版权
- 历史和许可证
- 软件历史
- 访问Python或以其他方式使用Python的条款和条件
- Python 3.7.3 的 PSF 许可协议
- Python 2.0 的 BeOpen.com 许可协议
- Python 1.6.1 的 CNRI 许可协议
- Python 0.9.0 至 1.2 的 CWI 许可协议
- 集成软件的许可和认可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec