### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](concurrency.xhtml "并发执行") |
- [上一页](errno.xhtml "errno --- Standard errno system symbols") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 标准库](index.xhtml) »
- [通用操作系统服务](allos.xhtml) »
- $('.inline-search').show(0); |
# [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") --- Python 的外部函数库
- - - - - -
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 是 Python 的外部函数库。它提供了与 C 兼容的数据类型,并允许调用 DLL 或共享库中的函数。可使用该模块以纯 Python 形式对这些库进行封装。
## ctypes 教程
注意:在本教程中的示例代码使用 [`doctest`](doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.") 进行过测试,保证其正确运行。由于有些代码在Linux,Windows或Mac OS X下的表现不同,这些代码会在 doctest 中包含相关的指令注解。
注意:部分示例代码引用了 ctypes [`c_int`](#ctypes.c_int "ctypes.c_int") 类型。在 `sizeof(long) == sizeof(int)` 的平台上此类型是 [`c_long`](#ctypes.c_long "ctypes.c_long") 的一个别名。所以,在程序输出 [`c_long`](#ctypes.c_long "ctypes.c_long") 而不是你期望的 [`c_int`](#ctypes.c_int "ctypes.c_int") 时不必感到迷惑 --- 它们实际上是同一种类型。
### 载入动态连接库
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 导出了 *cdll* 对象,在 Windows 系统中还导出了 *windll* 和 *oledll* 对象用于载入动态连接库。
通过操作这些对象的属性,你可以载入外部的动态链接库。*cdll* 载入按标准的 `cdecl` 调用协议导出的函数,而 *windll* 导入的库按 `stdcall` 调用协议调用其中的函数。 *oledll* 也按 `stdcall` 调用协议调用其中的函数,并假定该函数返回的是 Windows `HRESULT` 错误代码,并当函数调用失败时,自动根据该代码甩出一个 [`OSError`](exceptions.xhtml#OSError "OSError") 异常。
在 3.3 版更改: 原来在 Windows 下甩出的异常类型 [`WindowsError`](exceptions.xhtml#WindowsError "WindowsError") 现在是 [`OSError`](exceptions.xhtml#OSError "OSError") 的一个别名。
这是一些 Windows 下的例子。注意:`msvcrt` 是微软 C 标准库,包含了大部分 C 标准函数,这些函数都是以 cdecl 调用协议进行调用的。
```
>>> from ctypes import *
>>> print(windll.kernel32)
<WinDLL 'kernel32', handle ... at ...>
>>> print(cdll.msvcrt)
<CDLL 'msvcrt', handle ... at ...>
>>> libc = cdll.msvcrt
>>>
```
Windows会自动添加通常的 `.dll` 文件扩展名。
注解
通过 `cdll.msvcrt` 调用的标准 C 函数,可能会导致调用一个过时的,与当前 Python 所不兼容的函数。因此,请尽量使用标准的 Python 函数,而不要使用 `msvcrt` 模块。
在 Linux 下,必须使用 *包含* 文件扩展名的文件名来导入共享库。因此不能简单使用对象属性的方式来导入库。因此,你可以使用方法 `LoadLibrary()`,或构造 CDLL 对象来导入库。
```
>>> cdll.LoadLibrary("libc.so.6")
<CDLL 'libc.so.6', handle ... at ...>
>>> libc = CDLL("libc.so.6")
>>> libc
<CDLL 'libc.so.6', handle ... at ...>
>>>
```
### 操作导入的动态链接库中的函数
通过操作dll对象的属性来操作这些函数。
```
>>> from ctypes import *
>>> libc.printf
<_FuncPtr object at 0x...>
>>> print(windll.kernel32.GetModuleHandleA)
<_FuncPtr object at 0x...>
>>> print(windll.kernel32.MyOwnFunction)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "ctypes.py", line 239, in __getattr__
func = _StdcallFuncPtr(name, self)
AttributeError: function 'MyOwnFunction' not found
>>>
```
注意:Win32系统的动态库,比如 `kernel32` 和 `user32`,通常会同时导出同一个函数的 ANSI 版本和 UNICODE 版本。UNICODE 版本通常会在名字最后以 `W` 结尾,而 ANSI 版本的则以 `A` 结尾。 win32的 `GetModuleHandle` 函数会根据一个模块名返回一个 *模块句柄*,该函数暨同时包含这样的两个版本的原型函数,并通过宏 UNICODE 是否定义,来决定宏 `GetModuleHandle` 导出的是哪个具体函数。
```
/* ANSI version */
HMODULE GetModuleHandleA(LPCSTR lpModuleName);
/* UNICODE version */
HMODULE GetModuleHandleW(LPCWSTR lpModuleName);
```
*windll* 不会通过这样的魔法手段来帮你决定选择哪一种函数,你必须显式的调用 `GetModuleHandleA` 或 `GetModuleHandleW`,并分别使用字节对象或字符串对象作参数。
有时候,dlls的导出的函数名不符合 Python 的标识符规范,比如 `"??2@YAPAXI@Z"`。此时,你必须使用 [`getattr()`](functions.xhtml#getattr "getattr") 方法来获得该函数。
```
>>> getattr(cdll.msvcrt, "??2@YAPAXI@Z")
<_FuncPtr object at 0x...>
>>>
```
Windows 下,有些 dll 导出的函数没有函数名,而是通过其顺序号调用。对此类函数,你也可以通过 dll 对象的数值索引来操作这些函数。
```
>>> cdll.kernel32[1]
<_FuncPtr object at 0x...>
>>> cdll.kernel32[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "ctypes.py", line 310, in __getitem__
func = _StdcallFuncPtr(name, self)
AttributeError: function ordinal 0 not found
>>>
```
### 调用函数
你可以貌似是调用其它 Python 函数那样直接调用这些函数。在这个例子中,我们调用了 `time()` 函数,该函数返回一个系统时间戳(从 Unix 时间起点到现在的秒数),而``GetModuleHandleA()`` 函数返回一个 win32 模块句柄。
此函数中调用的两个函数都使用了空指针(用 `None` 作为空指针):
```
>>> print(libc.time(None))
1150640792
>>> print(hex(windll.kernel32.GetModuleHandleA(None)))
0x1d000000
>>>
```
注解
调用该函数,若 [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 发现传入的参数个数不符,则会甩出一个异常 [`ValueError`](exceptions.xhtml#ValueError "ValueError")。但该行为并不可靠。它在 3.6.2 中被废弃,会在 3.7 中彻底移除。
如果你用 `cdecl` 调用方式调用 `stdcall` 约定的函数,则会甩出一个异常 [`ValueError`](exceptions.xhtml#ValueError "ValueError")。反之亦然。
```
>>> cdll.kernel32.GetModuleHandleA(None)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: Procedure probably called with not enough arguments (4 bytes missing)
>>>
>>> windll.msvcrt.printf(b"spam")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: Procedure probably called with too many arguments (4 bytes in excess)
>>>
```
你必须阅读这些库的头文件或说明文档来确定它们的调用协议。
在Windows中,[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 使用 win32 结构化异常处理来防止由于在调用函数时使用非法参数导致的程序崩溃。
```
>>> windll.kernel32.GetModuleHandleA(32)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OSError: exception: access violation reading 0x00000020
>>>
```
然而,总有许多办法,通过调用 [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 使得 Python 程序崩溃。因此,你必须小心使用。 [`faulthandler`](faulthandler.xhtml#module-faulthandler "faulthandler: Dump the Python traceback.") 模块可以用于帮助诊断程序崩溃的原因。(比如由于错误的C库函数调用导致的段错误)。
`None`,整型,字节对象和(UNICODE)字符串是仅有的可以直接作为函数参数使用的四种Python本地数据类型。None` 作为C的空指针 (`NULL`),字节和字符串类型作为一个指向其保存数据的内存块指针 (`char *` 或 `wchar_t *`)。Python 的整型则作为平台默认的C的 `int` 类型,他们的数值被截断以适应C类型的整型长度。
在我们开始调用函数前,我们必须先了解作为函数参数的 [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 数据类型。
### 基础数据类型
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 定义了一些和C兼容的基本数据类型:
ctypes 类型
C 类型
Python 数据类型
[`c_bool`](#ctypes.c_bool "ctypes.c_bool")
`_Bool`
bool (1)
[`c_char`](#ctypes.c_char "ctypes.c_char")
`char`
单字符字节对象
[`c_wchar`](#ctypes.c_wchar "ctypes.c_wchar")
`wchar_t`
单字符字符串
[`c_byte`](#ctypes.c_byte "ctypes.c_byte")
`char`
int
[`c_ubyte`](#ctypes.c_ubyte "ctypes.c_ubyte")
`unsigned char`
int
[`c_short`](#ctypes.c_short "ctypes.c_short")
`short`
int
[`c_ushort`](#ctypes.c_ushort "ctypes.c_ushort")
`unsigned short`
int
[`c_int`](#ctypes.c_int "ctypes.c_int")
`int`
int
[`c_uint`](#ctypes.c_uint "ctypes.c_uint")
`unsigned int`
int
[`c_long`](#ctypes.c_long "ctypes.c_long")
`long`
int
[`c_ulong`](#ctypes.c_ulong "ctypes.c_ulong")
`unsigned long`
int
[`c_longlong`](#ctypes.c_longlong "ctypes.c_longlong")
`__int64` 或 `long long`
int
[`c_ulonglong`](#ctypes.c_ulonglong "ctypes.c_ulonglong")
`unsigned __int64` 或 `unsigned long long`
int
[`c_size_t`](#ctypes.c_size_t "ctypes.c_size_t")
`size_t`
int
[`c_ssize_t`](#ctypes.c_ssize_t "ctypes.c_ssize_t")
`ssize_t` 或 `Py_ssize_t`
int
[`c_float`](#ctypes.c_float "ctypes.c_float")
`float`
float
[`c_double`](#ctypes.c_double "ctypes.c_double")
`double`
float
[`c_longdouble`](#ctypes.c_longdouble "ctypes.c_longdouble")
`long double`
float
[`c_char_p`](#ctypes.c_char_p "ctypes.c_char_p")
`char *` (NUL terminated)
字节串对象或 `None`
[`c_wchar_p`](#ctypes.c_wchar_p "ctypes.c_wchar_p")
`wchar_t *` (NUL terminated)
字符串或 `None`
[`c_void_p`](#ctypes.c_void_p "ctypes.c_void_p")
`void *`
int 或 `None`
1. 构造函数接受任何具有真值的对象。
所有这些类型都可以通过使用正确类型和值的可选初始值调用它们来创建:
```
>>> c_int()
c_long(0)
>>> c_wchar_p("Hello, World")
c_wchar_p(140018365411392)
>>> c_ushort(-3)
c_ushort(65533)
>>>
```
由于这些类型是可变的,它们的值也可以在以后更改:
```
>>> i = c_int(42)
>>> print(i)
c_long(42)
>>> print(i.value)
42
>>> i.value = -99
>>> print(i.value)
-99
>>>
```
当给指针类型的对象 [`c_char_p`](#ctypes.c_char_p "ctypes.c_char_p"), [`c_wchar_p`](#ctypes.c_wchar_p "ctypes.c_wchar_p") 和 [`c_void_p`](#ctypes.c_void_p "ctypes.c_void_p") 等赋值时,将改变它们所指向的 *内存地址*,而 *不是* 它们所指向的内存区域的 *内容* (这是理所当然的,因为 Python 的 bytes 对象是不可变的):
```
>>> s = "Hello, World"
>>> c_s = c_wchar_p(s)
>>> print(c_s)
c_wchar_p(139966785747344)
>>> print(c_s.value)
Hello World
>>> c_s.value = "Hi, there"
>>> print(c_s) # the memory location has changed
c_wchar_p(139966783348904)
>>> print(c_s.value)
Hi, there
>>> print(s) # first object is unchanged
Hello, World
>>>
```
但你要注意不能将它们传递给会改变指针所指内存的函数。如果你需要可改变的内存块,ctypes 提供了 [`create_string_buffer()`](#ctypes.create_string_buffer "ctypes.create_string_buffer") 函数,它提供多种方式创建这种内存块。当前的内存块内容可以通过 `raw` 属性存取,如果你希望将它作为NUL结束的字符串,请使用 `value` 属性:
```
>>> from ctypes import *
>>> p = create_string_buffer(3) # create a 3 byte buffer, initialized to NUL bytes
>>> print(sizeof(p), repr(p.raw))
3 b'\x00\x00\x00'
>>> p = create_string_buffer(b"Hello") # create a buffer containing a NUL terminated string
>>> print(sizeof(p), repr(p.raw))
6 b'Hello\x00'
>>> print(repr(p.value))
b'Hello'
>>> p = create_string_buffer(b"Hello", 10) # create a 10 byte buffer
>>> print(sizeof(p), repr(p.raw))
10 b'Hello\x00\x00\x00\x00\x00'
>>> p.value = b"Hi"
>>> print(sizeof(p), repr(p.raw))
10 b'Hi\x00lo\x00\x00\x00\x00\x00'
>>>
```
[`create_string_buffer()`](#ctypes.create_string_buffer "ctypes.create_string_buffer") 函数替代以前的ctypes版本中的 `c_buffer()` 函数 (仍然可当作别名使用)和 `c_string()` 函数。[`create_unicode_buffer()`](#ctypes.create_unicode_buffer "ctypes.create_unicode_buffer") 函数创建包含 unicode 字符的可变内存块,与之对应的C语言类型是 `wchar_t`。
### 调用函数,继续
注意 printf 将打印到真正标准输出设备,而\*不是\* [`sys.stdout`](sys.xhtml#sys.stdout "sys.stdout"),因此这些实例只能在控制台提示符下工作,而不能在 *IDLE* 或 *PythonWin* 中运行。
```
>>> printf = libc.printf
>>> printf(b"Hello, %s\n", b"World!")
Hello, World!
14
>>> printf(b"Hello, %S\n", "World!")
Hello, World!
14
>>> printf(b"%d bottles of beer\n", 42)
42 bottles of beer
19
>>> printf(b"%f bottles of beer\n", 42.5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ArgumentError: argument 2: exceptions.TypeError: Don't know how to convert parameter 2
>>>
```
正如前面所提到过的,除了整数、字符串以及字节串之外,所有的 Python 类型都必须使用它们对应的 [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") 类型包装,才能够被正确地转换为所需的C语言类型。
```
>>> printf(b"An int %d, a double %f\n", 1234, c_double(3.14))
An int 1234, a double 3.140000
31
>>>
```
### 使用自定义的数据类型调用函数
You can also customize [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") argument conversion to allow instances of your own classes be used as function arguments. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") looks for an `_as_parameter_` attribute and uses this as the function argument. Of course, it must be one of integer, string, or bytes:
```
>>> class Bottles:
... def __init__(self, number):
... self._as_parameter_ = number
...
>>> bottles = Bottles(42)
>>> printf(b"%d bottles of beer\n", bottles)
42 bottles of beer
19
>>>
```
If you don't want to store the instance's data in the `_as_parameter_`instance variable, you could define a [`property`](functions.xhtml#property "property") which makes the attribute available on request.
### Specifying the required argument types (function prototypes)
It is possible to specify the required argument types of functions exported from DLLs by setting the `argtypes` attribute.
`argtypes` must be a sequence of C data types (the `printf` function is probably not a good example here, because it takes a variable number and different types of parameters depending on the format string, on the other hand this is quite handy to experiment with this feature):
```
>>> printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
>>> printf(b"String '%s', Int %d, Double %f\n", b"Hi", 10, 2.2)
String 'Hi', Int 10, Double 2.200000
37
>>>
```
Specifying a format protects against incompatible argument types (just as a prototype for a C function), and tries to convert the arguments to valid types:
```
>>> printf(b"%d %d %d", 1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ArgumentError: argument 2: exceptions.TypeError: wrong type
>>> printf(b"%s %d %f\n", b"X", 2, 3)
X 2 3.000000
13
>>>
```
If you have defined your own classes which you pass to function calls, you have to implement a `from_param()` class method for them to be able to use them in the `argtypes` sequence. The `from_param()` class method receives the Python object passed to the function call, it should do a typecheck or whatever is needed to make sure this object is acceptable, and then return the object itself, its `_as_parameter_` attribute, or whatever you want to pass as the C function argument in this case. Again, the result should be an integer, string, bytes, a [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") instance, or an object with an `_as_parameter_` attribute.
### Return types
By default functions are assumed to return the C `int` type. Other return types can be specified by setting the `restype` attribute of the function object.
Here is a more advanced example, it uses the `strchr` function, which expects a string pointer and a char, and returns a pointer to a string:
```
>>> strchr = libc.strchr
>>> strchr(b"abcdef", ord("d"))
8059983
>>> strchr.restype = c_char_p # c_char_p is a pointer to a string
>>> strchr(b"abcdef", ord("d"))
b'def'
>>> print(strchr(b"abcdef", ord("x")))
None
>>>
```
If you want to avoid the `ord("x")` calls above, you can set the `argtypes` attribute, and the second argument will be converted from a single character Python bytes object into a C char:
```
>>> strchr.restype = c_char_p
>>> strchr.argtypes = [c_char_p, c_char]
>>> strchr(b"abcdef", b"d")
'def'
>>> strchr(b"abcdef", b"def")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ArgumentError: argument 2: exceptions.TypeError: one character string expected
>>> print(strchr(b"abcdef", b"x"))
None
>>> strchr(b"abcdef", b"d")
'def'
>>>
```
You can also use a callable Python object (a function or a class for example) as the `restype` attribute, if the foreign function returns an integer. The callable will be called with the *integer* the C function returns, and the result of this call will be used as the result of your function call. This is useful to check for error return values and automatically raise an exception:
```
>>> GetModuleHandle = windll.kernel32.GetModuleHandleA
>>> def ValidHandle(value):
... if value == 0:
... raise WinError()
... return value
...
>>>
>>> GetModuleHandle.restype = ValidHandle
>>> GetModuleHandle(None)
486539264
>>> GetModuleHandle("something silly")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in ValidHandle
OSError: [Errno 126] The specified module could not be found.
>>>
```
`WinError` is a function which will call Windows `FormatMessage()` api to get the string representation of an error code, and *returns* an exception. `WinError` takes an optional error code parameter, if no one is used, it calls [`GetLastError()`](#ctypes.GetLastError "ctypes.GetLastError") to retrieve it.
Please note that a much more powerful error checking mechanism is available through the `errcheck` attribute; see the reference manual for details.
### Passing pointers (or: passing parameters by reference)
Sometimes a C api function expects a *pointer* to a data type as parameter, probably to write into the corresponding location, or if the data is too large to be passed by value. This is also known as *passing parameters by reference*.
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") exports the [`byref()`](#ctypes.byref "ctypes.byref") function which is used to pass parameters by reference. The same effect can be achieved with the [`pointer()`](#ctypes.pointer "ctypes.pointer") function, although [`pointer()`](#ctypes.pointer "ctypes.pointer") does a lot more work since it constructs a real pointer object, so it is faster to use [`byref()`](#ctypes.byref "ctypes.byref") if you don't need the pointer object in Python itself:
```
>>> i = c_int()
>>> f = c_float()
>>> s = create_string_buffer(b'\000' * 32)
>>> print(i.value, f.value, repr(s.value))
0 0.0 b''
>>> libc.sscanf(b"1 3.14 Hello", b"%d %f %s",
... byref(i), byref(f), s)
3
>>> print(i.value, f.value, repr(s.value))
1 3.1400001049 b'Hello'
>>>
```
### Structures and unions
Structures and unions must derive from the [`Structure`](#ctypes.Structure "ctypes.Structure") and [`Union`](#ctypes.Union "ctypes.Union")base classes which are defined in the [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") module. Each subclass must define a `_fields_` attribute. `_fields_` must be a list of *2-tuples*, containing a *field name* and a *field type*.
The field type must be a [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") type like [`c_int`](#ctypes.c_int "ctypes.c_int"), or any other derived [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") type: structure, union, array, pointer.
Here is a simple example of a POINT structure, which contains two integers named *x* and *y*, and also shows how to initialize a structure in the constructor:
```
>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = [("x", c_int),
... ("y", c_int)]
...
>>> point = POINT(10, 20)
>>> print(point.x, point.y)
10 20
>>> point = POINT(y=5)
>>> print(point.x, point.y)
0 5
>>> POINT(1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: too many initializers
>>>
```
You can, however, build much more complicated structures. A structure can itself contain other structures by using a structure as a field type.
Here is a RECT structure which contains two POINTs named *upperleft* and *lowerright*:
```
>>> class RECT(Structure):
... _fields_ = [("upperleft", POINT),
... ("lowerright", POINT)]
...
>>> rc = RECT(point)
>>> print(rc.upperleft.x, rc.upperleft.y)
0 5
>>> print(rc.lowerright.x, rc.lowerright.y)
0 0
>>>
```
Nested structures can also be initialized in the constructor in several ways:
```
>>> r = RECT(POINT(1, 2), POINT(3, 4))
>>> r = RECT((1, 2), (3, 4))
```
Field [descriptor](../glossary.xhtml#term-descriptor)s can be retrieved from the *class*, they are useful for debugging because they can provide useful information:
```
>>> print(POINT.x)
<Field type=c_long, ofs=0, size=4>
>>> print(POINT.y)
<Field type=c_long, ofs=4, size=4>
>>>
```
警告
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") does not support passing unions or structures with bit-fields to functions by value. While this may work on 32-bit x86, it's not guaranteed by the library to work in the general case. Unions and structures with bit-fields should always be passed to functions by pointer.
### Structure/union alignment and byte order
By default, Structure and Union fields are aligned in the same way the C compiler does it. It is possible to override this behavior be specifying a `_pack_` class attribute in the subclass definition. This must be set to a positive integer and specifies the maximum alignment for the fields. This is what `#pragma pack(n)` also does in MSVC.
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") uses the native byte order for Structures and Unions. To build structures with non-native byte order, you can use one of the [`BigEndianStructure`](#ctypes.BigEndianStructure "ctypes.BigEndianStructure"), [`LittleEndianStructure`](#ctypes.LittleEndianStructure "ctypes.LittleEndianStructure"), `BigEndianUnion`, and `LittleEndianUnion` base classes. These classes cannot contain pointer fields.
### Bit fields in structures and unions
It is possible to create structures and unions containing bit fields. Bit fields are only possible for integer fields, the bit width is specified as the third item in the `_fields_` tuples:
```
>>> class Int(Structure):
... _fields_ = [("first_16", c_int, 16),
... ("second_16", c_int, 16)]
...
>>> print(Int.first_16)
<Field type=c_long, ofs=0:0, bits=16>
>>> print(Int.second_16)
<Field type=c_long, ofs=0:16, bits=16>
>>>
```
### Arrays
Arrays are sequences, containing a fixed number of instances of the same type.
The recommended way to create array types is by multiplying a data type with a positive integer:
```
TenPointsArrayType = POINT * 10
```
Here is an example of a somewhat artificial data type, a structure containing 4 POINTs among other stuff:
```
>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class MyStruct(Structure):
... _fields_ = [("a", c_int),
... ("b", c_float),
... ("point_array", POINT * 4)]
>>>
>>> print(len(MyStruct().point_array))
4
>>>
```
Instances are created in the usual way, by calling the class:
```
arr = TenPointsArrayType()
for pt in arr:
print(pt.x, pt.y)
```
The above code print a series of `0 0` lines, because the array contents is initialized to zeros.
Initializers of the correct type can also be specified:
```
>>> from ctypes import *
>>> TenIntegers = c_int * 10
>>> ii = TenIntegers(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
>>> print(ii)
<c_long_Array_10 object at 0x...>
>>> for i in ii: print(i, end=" ")
...
1 2 3 4 5 6 7 8 9 10
>>>
```
### Pointers
Pointer instances are created by calling the [`pointer()`](#ctypes.pointer "ctypes.pointer") function on a [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") type:
```
>>> from ctypes import *
>>> i = c_int(42)
>>> pi = pointer(i)
>>>
```
Pointer instances have a [`contents`](#ctypes._Pointer.contents "ctypes._Pointer.contents") attribute which returns the object to which the pointer points, the `i` object above:
```
>>> pi.contents
c_long(42)
>>>
```
Note that [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") does not have OOR (original object return), it constructs a new, equivalent object each time you retrieve an attribute:
```
>>> pi.contents is i
False
>>> pi.contents is pi.contents
False
>>>
```
Assigning another [`c_int`](#ctypes.c_int "ctypes.c_int") instance to the pointer's contents attribute would cause the pointer to point to the memory location where this is stored:
```
>>> i = c_int(99)
>>> pi.contents = i
>>> pi.contents
c_long(99)
>>>
```
Pointer instances can also be indexed with integers:
```
>>> pi[0]
99
>>>
```
Assigning to an integer index changes the pointed to value:
```
>>> print(i)
c_long(99)
>>> pi[0] = 22
>>> print(i)
c_long(22)
>>>
```
It is also possible to use indexes different from 0, but you must know what you're doing, just as in C: You can access or change arbitrary memory locations. Generally you only use this feature if you receive a pointer from a C function, and you *know* that the pointer actually points to an array instead of a single item.
Behind the scenes, the [`pointer()`](#ctypes.pointer "ctypes.pointer") function does more than simply create pointer instances, it has to create pointer *types* first. This is done with the [`POINTER()`](#ctypes.POINTER "ctypes.POINTER") function, which accepts any [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") type, and returns a new type:
```
>>> PI = POINTER(c_int)
>>> PI
<class 'ctypes.LP_c_long'>
>>> PI(42)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: expected c_long instead of int
>>> PI(c_int(42))
<ctypes.LP_c_long object at 0x...>
>>>
```
Calling the pointer type without an argument creates a `NULL` pointer. `NULL` pointers have a `False` boolean value:
```
>>> null_ptr = POINTER(c_int)()
>>> print(bool(null_ptr))
False
>>>
```
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") checks for `NULL` when dereferencing pointers (but dereferencing invalid non-`NULL` pointers would crash Python):
```
>>> null_ptr[0]
Traceback (most recent call last):
....
ValueError: NULL pointer access
>>>
>>> null_ptr[0] = 1234
Traceback (most recent call last):
....
ValueError: NULL pointer access
>>>
```
### Type conversions
Usually, ctypes does strict type checking. This means, if you have `POINTER(c_int)` in the `argtypes` list of a function or as the type of a member field in a structure definition, only instances of exactly the same type are accepted. There are some exceptions to this rule, where ctypes accepts other objects. For example, you can pass compatible array instances instead of pointer types. So, for `POINTER(c_int)`, ctypes accepts an array of c\_int:
```
>>> class Bar(Structure):
... _fields_ = [("count", c_int), ("values", POINTER(c_int))]
...
>>> bar = Bar()
>>> bar.values = (c_int * 3)(1, 2, 3)
>>> bar.count = 3
>>> for i in range(bar.count):
... print(bar.values[i])
...
1
2
3
>>>
```
In addition, if a function argument is explicitly declared to be a pointer type (such as `POINTER(c_int)`) in `argtypes`, an object of the pointed type (`c_int` in this case) can be passed to the function. ctypes will apply the required [`byref()`](#ctypes.byref "ctypes.byref") conversion in this case automatically.
To set a POINTER type field to `NULL`, you can assign `None`:
```
>>> bar.values = None
>>>
```
Sometimes you have instances of incompatible types. In C, you can cast one type into another type. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") provides a [`cast()`](#ctypes.cast "ctypes.cast") function which can be used in the same way. The `Bar` structure defined above accepts `POINTER(c_int)` pointers or [`c_int`](#ctypes.c_int "ctypes.c_int") arrays for its `values` field, but not instances of other types:
```
>>> bar.values = (c_byte * 4)()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: incompatible types, c_byte_Array_4 instance instead of LP_c_long instance
>>>
```
For these cases, the [`cast()`](#ctypes.cast "ctypes.cast") function is handy.
The [`cast()`](#ctypes.cast "ctypes.cast") function can be used to cast a ctypes instance into a pointer to a different ctypes data type. [`cast()`](#ctypes.cast "ctypes.cast") takes two parameters, a ctypes object that is or can be converted to a pointer of some kind, and a ctypes pointer type. It returns an instance of the second argument, which references the same memory block as the first argument:
```
>>> a = (c_byte * 4)()
>>> cast(a, POINTER(c_int))
<ctypes.LP_c_long object at ...>
>>>
```
So, [`cast()`](#ctypes.cast "ctypes.cast") can be used to assign to the `values` field of `Bar` the structure:
```
>>> bar = Bar()
>>> bar.values = cast((c_byte * 4)(), POINTER(c_int))
>>> print(bar.values[0])
0
>>>
```
### Incomplete Types
*Incomplete Types* are structures, unions or arrays whose members are not yet specified. In C, they are specified by forward declarations, which are defined later:
```
struct cell; /* forward declaration */
struct cell {
char *name;
struct cell *next;
};
```
The straightforward translation into ctypes code would be this, but it does not work:
```
>>> class cell(Structure):
... _fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in cell
NameError: name 'cell' is not defined
>>>
```
because the new `class cell` is not available in the class statement itself. In [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python."), we can define the `cell` class and set the `_fields_`attribute later, after the class statement:
```
>>> from ctypes import *
>>> class cell(Structure):
... pass
...
>>> cell._fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
>>>
```
Lets try it. We create two instances of `cell`, and let them point to each other, and finally follow the pointer chain a few times:
```
>>> c1 = cell()
>>> c1.name = "foo"
>>> c2 = cell()
>>> c2.name = "bar"
>>> c1.next = pointer(c2)
>>> c2.next = pointer(c1)
>>> p = c1
>>> for i in range(8):
... print(p.name, end=" ")
... p = p.next[0]
...
foo bar foo bar foo bar foo bar
>>>
```
### Callback functions
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") allows creating C callable function pointers from Python callables. These are sometimes called *callback functions*.
First, you must create a class for the callback function. The class knows the calling convention, the return type, and the number and types of arguments this function will receive.
The [`CFUNCTYPE()`](#ctypes.CFUNCTYPE "ctypes.CFUNCTYPE") factory function creates types for callback functions using the `cdecl` calling convention. On Windows, the [`WINFUNCTYPE()`](#ctypes.WINFUNCTYPE "ctypes.WINFUNCTYPE")factory function creates types for callback functions using the `stdcall`calling convention.
Both of these factory functions are called with the result type as first argument, and the callback functions expected argument types as the remaining arguments.
I will present an example here which uses the standard C library's `qsort()` function, that is used to sort items with the help of a callback function. `qsort()` will be used to sort an array of integers:
```
>>> IntArray5 = c_int * 5
>>> ia = IntArray5(5, 1, 7, 33, 99)
>>> qsort = libc.qsort
>>> qsort.restype = None
>>>
```
`qsort()` must be called with a pointer to the data to sort, the number of items in the data array, the size of one item, and a pointer to the comparison function, the callback. The callback will then be called with two pointers to items, and it must return a negative integer if the first item is smaller than the second, a zero if they are equal, and a positive integer otherwise.
So our callback function receives pointers to integers, and must return an integer. First we create the `type` for the callback function:
```
>>> CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
>>>
```
To get started, here is a simple callback that shows the values it gets passed:
```
>>> def py_cmp_func(a, b):
... print("py_cmp_func", a[0], b[0])
... return 0
...
>>> cmp_func = CMPFUNC(py_cmp_func)
>>>
```
The result:
```
>>> qsort(ia, len(ia), sizeof(c_int), cmp_func)
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 5 7
py_cmp_func 1 7
>>>
```
Now we can actually compare the two items and return a useful result:
```
>>> def py_cmp_func(a, b):
... print("py_cmp_func", a[0], b[0])
... return a[0] - b[0]
...
>>>
>>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func))
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 1 7
py_cmp_func 5 7
>>>
```
As we can easily check, our array is sorted now:
```
>>> for i in ia: print(i, end=" ")
...
1 5 7 33 99
>>>
```
The function factories can be used as decorator factories, so we may as well write:
```
>>> @CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
... def py_cmp_func(a, b):
... print("py_cmp_func", a[0], b[0])
... return a[0] - b[0]
...
>>> qsort(ia, len(ia), sizeof(c_int), py_cmp_func)
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 1 7
py_cmp_func 5 7
>>>
```
注解
Make sure you keep references to [`CFUNCTYPE()`](#ctypes.CFUNCTYPE "ctypes.CFUNCTYPE") objects as long as they are used from C code. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") doesn't, and if you don't, they may be garbage collected, crashing your program when a callback is made.
Also, note that if the callback function is called in a thread created outside of Python's control (e.g. by the foreign code that calls the callback), ctypes creates a new dummy Python thread on every invocation. This behavior is correct for most purposes, but it means that values stored with [`threading.local`](threading.xhtml#threading.local "threading.local") will *not* survive across different callbacks, even when those calls are made from the same C thread.
### Accessing values exported from dlls
Some shared libraries not only export functions, they also export variables. An example in the Python library itself is the [`Py_OptimizeFlag`](../c-api/init.xhtml#c.Py_OptimizeFlag "Py_OptimizeFlag"), an integer set to 0, 1, or 2, depending on the [`-O`](../using/cmdline.xhtml#cmdoption-o) or [`-OO`](../using/cmdline.xhtml#cmdoption-oo) flag given on startup.
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") can access values like this with the `in_dll()` class methods of the type. *pythonapi* is a predefined symbol giving access to the Python C api:
```
>>> opt_flag = c_int.in_dll(pythonapi, "Py_OptimizeFlag")
>>> print(opt_flag)
c_long(0)
>>>
```
If the interpreter would have been started with [`-O`](../using/cmdline.xhtml#cmdoption-o), the sample would have printed `c_long(1)`, or `c_long(2)` if [`-OO`](../using/cmdline.xhtml#cmdoption-oo) would have been specified.
An extended example which also demonstrates the use of pointers accesses the [`PyImport_FrozenModules`](../c-api/import.xhtml#c.PyImport_FrozenModules "PyImport_FrozenModules") pointer exported by Python.
Quoting the docs for that value:
> This pointer is initialized to point to an array of `struct _frozen`records, terminated by one whose members are all *NULL* or zero. When a frozen module is imported, it is searched in this table. Third-party code could play tricks with this to provide a dynamically created collection of frozen modules.
So manipulating this pointer could even prove useful. To restrict the example size, we show only how this table can be read with [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python."):
```
>>> from ctypes import *
>>>
>>> class struct_frozen(Structure):
... _fields_ = [("name", c_char_p),
... ("code", POINTER(c_ubyte)),
... ("size", c_int)]
...
>>>
```
We have defined the `struct _frozen` data type, so we can get the pointer to the table:
```
>>> FrozenTable = POINTER(struct_frozen)
>>> table = FrozenTable.in_dll(pythonapi, "PyImport_FrozenModules")
>>>
```
Since `table` is a `pointer` to the array of `struct_frozen` records, we can iterate over it, but we just have to make sure that our loop terminates, because pointers have no size. Sooner or later it would probably crash with an access violation or whatever, so it's better to break out of the loop when we hit the NULL entry:
```
>>> for item in table:
... if item.name is None:
... break
... print(item.name.decode("ascii"), item.size)
...
_frozen_importlib 31764
_frozen_importlib_external 41499
__hello__ 161
__phello__ -161
__phello__.spam 161
>>>
```
The fact that standard Python has a frozen module and a frozen package (indicated by the negative size member) is not well known, it is only used for testing. Try it out with `import __hello__` for example.
### Surprises
There are some edges in [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") where you might expect something other than what actually happens.
Consider the following example:
```
>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class RECT(Structure):
... _fields_ = ("a", POINT), ("b", POINT)
...
>>> p1 = POINT(1, 2)
>>> p2 = POINT(3, 4)
>>> rc = RECT(p1, p2)
>>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
1 2 3 4
>>> # now swap the two points
>>> rc.a, rc.b = rc.b, rc.a
>>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
3 4 3 4
>>>
```
Hm. We certainly expected the last statement to print `3 4 1 2`. What happened? Here are the steps of the `rc.a, rc.b = rc.b, rc.a` line above:
```
>>> temp0, temp1 = rc.b, rc.a
>>> rc.a = temp0
>>> rc.b = temp1
>>>
```
Note that `temp0` and `temp1` are objects still using the internal buffer of the `rc` object above. So executing `rc.a = temp0` copies the buffer contents of `temp0` into `rc` 's buffer. This, in turn, changes the contents of `temp1`. So, the last assignment `rc.b = temp1`, doesn't have the expected effect.
Keep in mind that retrieving sub-objects from Structure, Unions, and Arrays doesn't *copy* the sub-object, instead it retrieves a wrapper object accessing the root-object's underlying buffer.
Another example that may behave different from what one would expect is this:
```
>>> s = c_char_p()
>>> s.value = "abc def ghi"
>>> s.value
'abc def ghi'
>>> s.value is s.value
False
>>>
```
Why is it printing `False`? ctypes instances are objects containing a memory block plus some [descriptor](../glossary.xhtml#term-descriptor)s accessing the contents of the memory. Storing a Python object in the memory block does not store the object itself, instead the `contents` of the object is stored. Accessing the contents again constructs a new Python object each time!
### Variable-sized data types
[`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") provides some support for variable-sized arrays and structures.
The [`resize()`](#ctypes.resize "ctypes.resize") function can be used to resize the memory buffer of an existing ctypes object. The function takes the object as first argument, and the requested size in bytes as the second argument. The memory block cannot be made smaller than the natural memory block specified by the objects type, a [`ValueError`](exceptions.xhtml#ValueError "ValueError") is raised if this is tried:
```
>>> short_array = (c_short * 4)()
>>> print(sizeof(short_array))
8
>>> resize(short_array, 4)
Traceback (most recent call last):
...
ValueError: minimum size is 8
>>> resize(short_array, 32)
>>> sizeof(short_array)
32
>>> sizeof(type(short_array))
8
>>>
```
This is nice and fine, but how would one access the additional elements contained in this array? Since the type still only knows about 4 elements, we get errors accessing other elements:
```
>>> short_array[:]
[0, 0, 0, 0]
>>> short_array[7]
Traceback (most recent call last):
...
IndexError: invalid index
>>>
```
Another way to use variable-sized data types with [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") is to use the dynamic nature of Python, and (re-)define the data type after the required size is already known, on a case by case basis.
## ctypes reference
### Finding shared libraries
When programming in a compiled language, shared libraries are accessed when compiling/linking a program, and when the program is run.
The purpose of the `find_library()` function is to locate a library in a way similar to what the compiler or runtime loader does (on platforms with several versions of a shared library the most recent should be loaded), while the ctypes library loaders act like when a program is run, and call the runtime loader directly.
The `ctypes.util` module provides a function which can help to determine the library to load.
`ctypes.util.``find_library`(*name*)Try to find a library and return a pathname. *name* is the library name without any prefix like *lib*, suffix like `.so`, `.dylib` or version number (this is the form used for the posix linker option `-l`). If no library can be found, returns `None`.
The exact functionality is system dependent.
On Linux, `find_library()` tries to run external programs (`/sbin/ldconfig`, `gcc`, `objdump` and `ld`) to find the library file. It returns the filename of the library file.
在 3.6 版更改: On Linux, the value of the environment variable `LD_LIBRARY_PATH` is used when searching for libraries, if a library cannot be found by any other means.
Here are some examples:
```
>>> from ctypes.util import find_library
>>> find_library("m")
'libm.so.6'
>>> find_library("c")
'libc.so.6'
>>> find_library("bz2")
'libbz2.so.1.0'
>>>
```
On OS X, `find_library()` tries several predefined naming schemes and paths to locate the library, and returns a full pathname if successful:
```
>>> from ctypes.util import find_library
>>> find_library("c")
'/usr/lib/libc.dylib'
>>> find_library("m")
'/usr/lib/libm.dylib'
>>> find_library("bz2")
'/usr/lib/libbz2.dylib'
>>> find_library("AGL")
'/System/Library/Frameworks/AGL.framework/AGL'
>>>
```
On Windows, `find_library()` searches along the system search path, and returns the full pathname, but since there is no predefined naming scheme a call like `find_library("c")` will fail and return `None`.
If wrapping a shared library with [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python."), it *may* be better to determine the shared library name at development time, and hardcode that into the wrapper module instead of using `find_library()` to locate the library at runtime.
### Loading shared libraries
There are several ways to load shared libraries into the Python process. One way is to instantiate one of the following classes:
*class* `ctypes.``CDLL`(*name*, *mode=DEFAULT\_MODE*, *handle=None*, *use\_errno=False*, *use\_last\_error=False*)Instances of this class represent loaded shared libraries. Functions in these libraries use the standard C calling convention, and are assumed to return `int`.
*class* `ctypes.``OleDLL`(*name*, *mode=DEFAULT\_MODE*, *handle=None*, *use\_errno=False*, *use\_last\_error=False*)Windows only: Instances of this class represent loaded shared libraries, functions in these libraries use the `stdcall` calling convention, and are assumed to return the windows specific [`HRESULT`](#ctypes.HRESULT "ctypes.HRESULT") code. [`HRESULT`](#ctypes.HRESULT "ctypes.HRESULT")values contain information specifying whether the function call failed or succeeded, together with additional error code. If the return value signals a failure, an [`OSError`](exceptions.xhtml#OSError "OSError") is automatically raised.
在 3.3 版更改: [`WindowsError`](exceptions.xhtml#WindowsError "WindowsError") used to be raised.
*class* `ctypes.``WinDLL`(*name*, *mode=DEFAULT\_MODE*, *handle=None*, *use\_errno=False*, *use\_last\_error=False*)Windows only: Instances of this class represent loaded shared libraries, functions in these libraries use the `stdcall` calling convention, and are assumed to return `int` by default.
On Windows CE only the standard calling convention is used, for convenience the [`WinDLL`](#ctypes.WinDLL "ctypes.WinDLL") and [`OleDLL`](#ctypes.OleDLL "ctypes.OleDLL") use the standard calling convention on this platform.
The Python [global interpreter lock](../glossary.xhtml#term-global-interpreter-lock) is released before calling any function exported by these libraries, and reacquired afterwards.
*class* `ctypes.``PyDLL`(*name*, *mode=DEFAULT\_MODE*, *handle=None*)Instances of this class behave like [`CDLL`](#ctypes.CDLL "ctypes.CDLL") instances, except that the Python GIL is *not* released during the function call, and after the function execution the Python error flag is checked. If the error flag is set, a Python exception is raised.
Thus, this is only useful to call Python C api functions directly.
All these classes can be instantiated by calling them with at least one argument, the pathname of the shared library. If you have an existing handle to an already loaded shared library, it can be passed as the `handle` named parameter, otherwise the underlying platforms `dlopen` or `LoadLibrary`function is used to load the library into the process, and to get a handle to it.
The *mode* parameter can be used to specify how the library is loaded. For details, consult the *dlopen(3)* manpage. On Windows, *mode* is ignored. On posix systems, RTLD\_NOW is always added, and is not configurable.
The *use\_errno* parameter, when set to true, enables a ctypes mechanism that allows accessing the system [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.") error number in a safe way. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") maintains a thread-local copy of the systems [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.")variable; if you call foreign functions created with `use_errno=True` then the [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.") value before the function call is swapped with the ctypes private copy, the same happens immediately after the function call.
The function [`ctypes.get_errno()`](#ctypes.get_errno "ctypes.get_errno") returns the value of the ctypes private copy, and the function [`ctypes.set_errno()`](#ctypes.set_errno "ctypes.set_errno") changes the ctypes private copy to a new value and returns the former value.
The *use\_last\_error* parameter, when set to true, enables the same mechanism for the Windows error code which is managed by the [`GetLastError()`](#ctypes.GetLastError "ctypes.GetLastError") and `SetLastError()` Windows API functions; [`ctypes.get_last_error()`](#ctypes.get_last_error "ctypes.get_last_error") and [`ctypes.set_last_error()`](#ctypes.set_last_error "ctypes.set_last_error") are used to request and change the ctypes private copy of the windows error code.
`ctypes.``RTLD_GLOBAL`Flag to use as *mode* parameter. On platforms where this flag is not available, it is defined as the integer zero.
`ctypes.``RTLD_LOCAL`Flag to use as *mode* parameter. On platforms where this is not available, it is the same as *RTLD\_GLOBAL*.
`ctypes.``DEFAULT_MODE`The default mode which is used to load shared libraries. On OSX 10.3, this is *RTLD\_GLOBAL*, otherwise it is the same as *RTLD\_LOCAL*.
Instances of these classes have no public methods. Functions exported by the shared library can be accessed as attributes or by index. Please note that accessing the function through an attribute caches the result and therefore accessing it repeatedly returns the same object each time. On the other hand, accessing it through an index returns a new object each time:
```
>>> from ctypes import CDLL
>>> libc = CDLL("libc.so.6") # On Linux
>>> libc.time == libc.time
True
>>> libc['time'] == libc['time']
False
```
The following public attributes are available, their name starts with an underscore to not clash with exported function names:
`PyDLL.``_handle`The system handle used to access the library.
`PyDLL.``_name`The name of the library passed in the constructor.
Shared libraries can also be loaded by using one of the prefabricated objects, which are instances of the [`LibraryLoader`](#ctypes.LibraryLoader "ctypes.LibraryLoader") class, either by calling the `LoadLibrary()` method, or by retrieving the library as attribute of the loader instance.
*class* `ctypes.``LibraryLoader`(*dlltype*)Class which loads shared libraries. *dlltype* should be one of the [`CDLL`](#ctypes.CDLL "ctypes.CDLL"), [`PyDLL`](#ctypes.PyDLL "ctypes.PyDLL"), [`WinDLL`](#ctypes.WinDLL "ctypes.WinDLL"), or [`OleDLL`](#ctypes.OleDLL "ctypes.OleDLL") types.
[`__getattr__()`](../reference/datamodel.xhtml#object.__getattr__ "object.__getattr__") has special behavior: It allows loading a shared library by accessing it as attribute of a library loader instance. The result is cached, so repeated attribute accesses return the same library each time.
`LoadLibrary`(*name*)Load a shared library into the process and return it. This method always returns a new instance of the library.
These prefabricated library loaders are available:
`ctypes.``cdll`Creates [`CDLL`](#ctypes.CDLL "ctypes.CDLL") instances.
`ctypes.``windll`仅Windows中: 创建 [`WinDLL`](#ctypes.WinDLL "ctypes.WinDLL") 实例.
`ctypes.``oledll`仅Windows中: 创建 [`OleDLL`](#ctypes.OleDLL "ctypes.OleDLL") 实例。
`ctypes.``pydll`创建 [`PyDLL`](#ctypes.PyDLL "ctypes.PyDLL") 实例。
For accessing the C Python api directly, a ready-to-use Python shared library object is available:
`ctypes.``pythonapi`An instance of [`PyDLL`](#ctypes.PyDLL "ctypes.PyDLL") that exposes Python C API functions as attributes. Note that all these functions are assumed to return C `int`, which is of course not always the truth, so you have to assign the correct `restype` attribute to use these functions.
### Foreign functions
As explained in the previous section, foreign functions can be accessed as attributes of loaded shared libraries. The function objects created in this way by default accept any number of arguments, accept any ctypes data instances as arguments, and return the default result type specified by the library loader. They are instances of a private class:
*class* `ctypes.``_FuncPtr`Base class for C callable foreign functions.
Instances of foreign functions are also C compatible data types; they represent C function pointers.
This behavior can be customized by assigning to special attributes of the foreign function object.
`restype`Assign a ctypes type to specify the result type of the foreign function. Use `None` for `void`, a function not returning anything.
It is possible to assign a callable Python object that is not a ctypes type, in this case the function is assumed to return a C `int`, and the callable will be called with this integer, allowing further processing or error checking. Using this is deprecated, for more flexible post processing or error checking use a ctypes data type as [`restype`](#ctypes._FuncPtr.restype "ctypes._FuncPtr.restype") and assign a callable to the [`errcheck`](#ctypes._FuncPtr.errcheck "ctypes._FuncPtr.errcheck") attribute.
`argtypes`Assign a tuple of ctypes types to specify the argument types that the function accepts. Functions using the `stdcall` calling convention can only be called with the same number of arguments as the length of this tuple; functions using the C calling convention accept additional, unspecified arguments as well.
When a foreign function is called, each actual argument is passed to the `from_param()` class method of the items in the [`argtypes`](#ctypes._FuncPtr.argtypes "ctypes._FuncPtr.argtypes")tuple, this method allows adapting the actual argument to an object that the foreign function accepts. For example, a [`c_char_p`](#ctypes.c_char_p "ctypes.c_char_p") item in the [`argtypes`](#ctypes._FuncPtr.argtypes "ctypes._FuncPtr.argtypes") tuple will convert a string passed as argument into a bytes object using ctypes conversion rules.
New: It is now possible to put items in argtypes which are not ctypes types, but each item must have a `from_param()` method which returns a value usable as argument (integer, string, ctypes instance). This allows defining adapters that can adapt custom objects as function parameters.
`errcheck`Assign a Python function or another callable to this attribute. The callable will be called with three or more arguments:
`callable`(*result*, *func*, *arguments*)*result* is what the foreign function returns, as specified by the `restype` attribute.
*func* is the foreign function object itself, this allows reusing the same callable object to check or post process the results of several functions.
*arguments* is a tuple containing the parameters originally passed to the function call, this allows specializing the behavior on the arguments used.
The object that this function returns will be returned from the foreign function call, but it can also check the result value and raise an exception if the foreign function call failed.
*exception* `ctypes.``ArgumentError`This exception is raised when a foreign function call cannot convert one of the passed arguments.
### Function prototypes
Foreign functions can also be created by instantiating function prototypes. Function prototypes are similar to function prototypes in C; they describe a function (return type, argument types, calling convention) without defining an implementation. The factory functions must be called with the desired result type and the argument types of the function, and can be used as decorator factories, and as such, be applied to functions through the `@wrapper` syntax. See [Callback functions](#ctypes-callback-functions) for examples.
`ctypes.``CFUNCTYPE`(*restype*, *\*argtypes*, *use\_errno=False*, *use\_last\_error=False*)The returned function prototype creates functions that use the standard C calling convention. The function will release the GIL during the call. If *use\_errno* is set to true, the ctypes private copy of the system [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.") variable is exchanged with the real [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.") value before and after the call; *use\_last\_error* does the same for the Windows error code.
`ctypes.``WINFUNCTYPE`(*restype*, *\*argtypes*, *use\_errno=False*, *use\_last\_error=False*)Windows only: The returned function prototype creates functions that use the `stdcall` calling convention, except on Windows CE where [`WINFUNCTYPE()`](#ctypes.WINFUNCTYPE "ctypes.WINFUNCTYPE") is the same as [`CFUNCTYPE()`](#ctypes.CFUNCTYPE "ctypes.CFUNCTYPE"). The function will release the GIL during the call. *use\_errno* and *use\_last\_error* have the same meaning as above.
`ctypes.``PYFUNCTYPE`(*restype*, *\*argtypes*)The returned function prototype creates functions that use the Python calling convention. The function will *not* release the GIL during the call.
Function prototypes created by these factory functions can be instantiated in different ways, depending on the type and number of the parameters in the call:
> `prototype`(*address*)Returns a foreign function at the specified address which must be an integer.
>
> `prototype`(*callable*)Create a C callable function (a callback function) from a Python *callable*.
>
> `prototype`(*func\_spec*\[, *paramflags*\])Returns a foreign function exported by a shared library. *func\_spec* must be a 2-tuple `(name_or_ordinal, library)`. The first item is the name of the exported function as string, or the ordinal of the exported function as small integer. The second item is the shared library instance.
>
> `prototype`(*vtbl\_index*, *name*\[, *paramflags*\[, *iid*\]\])Returns a foreign function that will call a COM method. *vtbl\_index* is the index into the virtual function table, a small non-negative integer. *name* is name of the COM method. *iid* is an optional pointer to the interface identifier which is used in extended error reporting.
>
> COM methods use a special calling convention: They require a pointer to the COM interface as first argument, in addition to those parameters that are specified in the `argtypes` tuple.
>
> The optional *paramflags* parameter creates foreign function wrappers with much more functionality than the features described above.
>
> *paramflags* must be a tuple of the same length as `argtypes`.
>
> Each item in this tuple contains further information about a parameter, it must be a tuple containing one, two, or three items.
>
> The first item is an integer containing a combination of direction flags for the parameter:
>
> > 1Specifies an input parameter to the function.
> >
> > 2Output parameter. The foreign function fills in a value.
> >
> > 4Input parameter which defaults to the integer zero.
>
> The optional second item is the parameter name as string. If this is specified, the foreign function can be called with named parameters.
>
> The optional third item is the default value for this parameter.
This example demonstrates how to wrap the Windows `MessageBoxW` function so that it supports default parameters and named arguments. The C declaration from the windows header file is this:
```
WINUSERAPI int WINAPI
MessageBoxW(
HWND hWnd,
LPCWSTR lpText,
LPCWSTR lpCaption,
UINT uType);
```
Here is the wrapping with [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python."):
```
>>> from ctypes import c_int, WINFUNCTYPE, windll
>>> from ctypes.wintypes import HWND, LPCWSTR, UINT
>>> prototype = WINFUNCTYPE(c_int, HWND, LPCWSTR, LPCWSTR, UINT)
>>> paramflags = (1, "hwnd", 0), (1, "text", "Hi"), (1, "caption", "Hello from ctypes"), (1, "flags", 0)
>>> MessageBox = prototype(("MessageBoxW", windll.user32), paramflags)
```
The `MessageBox` foreign function can now be called in these ways:
```
>>> MessageBox()
>>> MessageBox(text="Spam, spam, spam")
>>> MessageBox(flags=2, text="foo bar")
```
A second example demonstrates output parameters. The win32 `GetWindowRect`function retrieves the dimensions of a specified window by copying them into `RECT` structure that the caller has to supply. Here is the C declaration:
```
WINUSERAPI BOOL WINAPI
GetWindowRect(
HWND hWnd,
LPRECT lpRect);
```
Here is the wrapping with [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python."):
```
>>> from ctypes import POINTER, WINFUNCTYPE, windll, WinError
>>> from ctypes.wintypes import BOOL, HWND, RECT
>>> prototype = WINFUNCTYPE(BOOL, HWND, POINTER(RECT))
>>> paramflags = (1, "hwnd"), (2, "lprect")
>>> GetWindowRect = prototype(("GetWindowRect", windll.user32), paramflags)
>>>
```
Functions with output parameters will automatically return the output parameter value if there is a single one, or a tuple containing the output parameter values when there are more than one, so the GetWindowRect function now returns a RECT instance, when called.
Output parameters can be combined with the `errcheck` protocol to do further output processing and error checking. The win32 `GetWindowRect` api function returns a `BOOL` to signal success or failure, so this function could do the error checking, and raises an exception when the api call failed:
```
>>> def errcheck(result, func, args):
... if not result:
... raise WinError()
... return args
...
>>> GetWindowRect.errcheck = errcheck
>>>
```
If the `errcheck` function returns the argument tuple it receives unchanged, [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") continues the normal processing it does on the output parameters. If you want to return a tuple of window coordinates instead of a `RECT` instance, you can retrieve the fields in the function and return them instead, the normal processing will no longer take place:
```
>>> def errcheck(result, func, args):
... if not result:
... raise WinError()
... rc = args[1]
... return rc.left, rc.top, rc.bottom, rc.right
...
>>> GetWindowRect.errcheck = errcheck
>>>
```
### Utility functions
`ctypes.``addressof`(*obj*)Returns the address of the memory buffer as integer. *obj* must be an instance of a ctypes type.
`ctypes.``alignment`(*obj\_or\_type*)Returns the alignment requirements of a ctypes type. *obj\_or\_type* must be a ctypes type or instance.
`ctypes.``byref`(*obj*\[, *offset*\])Returns a light-weight pointer to *obj*, which must be an instance of a ctypes type. *offset* defaults to zero, and must be an integer that will be added to the internal pointer value.
`byref(obj, offset)` corresponds to this C code:
```
(((char *)&obj) + offset)
```
The returned object can only be used as a foreign function call parameter. It behaves similar to `pointer(obj)`, but the construction is a lot faster.
`ctypes.``cast`(*obj*, *type*)This function is similar to the cast operator in C. It returns a new instance of *type* which points to the same memory block as *obj*. *type* must be a pointer type, and *obj* must be an object that can be interpreted as a pointer.
`ctypes.``create_string_buffer`(*init\_or\_size*, *size=None*)This function creates a mutable character buffer. The returned object is a ctypes array of [`c_char`](#ctypes.c_char "ctypes.c_char").
*init\_or\_size* must be an integer which specifies the size of the array, or a bytes object which will be used to initialize the array items.
If a bytes object is specified as first argument, the buffer is made one item larger than its length so that the last element in the array is a NUL termination character. An integer can be passed as second argument which allows specifying the size of the array if the length of the bytes should not be used.
`ctypes.``create_unicode_buffer`(*init\_or\_size*, *size=None*)This function creates a mutable unicode character buffer. The returned object is a ctypes array of [`c_wchar`](#ctypes.c_wchar "ctypes.c_wchar").
*init\_or\_size* must be an integer which specifies the size of the array, or a string which will be used to initialize the array items.
If a string is specified as first argument, the buffer is made one item larger than the length of the string so that the last element in the array is a NUL termination character. An integer can be passed as second argument which allows specifying the size of the array if the length of the string should not be used.
`ctypes.``DllCanUnloadNow`()Windows only: This function is a hook which allows implementing in-process COM servers with ctypes. It is called from the DllCanUnloadNow function that the \_ctypes extension dll exports.
`ctypes.``DllGetClassObject`()Windows only: This function is a hook which allows implementing in-process COM servers with ctypes. It is called from the DllGetClassObject function that the `_ctypes` extension dll exports.
`ctypes.util.``find_library`(*name*)Try to find a library and return a pathname. *name* is the library name without any prefix like `lib`, suffix like `.so`, `.dylib` or version number (this is the form used for the posix linker option `-l`). If no library can be found, returns `None`.
The exact functionality is system dependent.
`ctypes.util.``find_msvcrt`()Windows only: return the filename of the VC runtime library used by Python, and by the extension modules. If the name of the library cannot be determined, `None` is returned.
If you need to free memory, for example, allocated by an extension module with a call to the `free(void *)`, it is important that you use the function in the same library that allocated the memory.
`ctypes.``FormatError`(\[*code*\])Windows only: Returns a textual description of the error code *code*. If no error code is specified, the last error code is used by calling the Windows api function GetLastError.
`ctypes.``GetLastError`()Windows only: Returns the last error code set by Windows in the calling thread. This function calls the Windows GetLastError() function directly, it does not return the ctypes-private copy of the error code.
`ctypes.``get_errno`()Returns the current value of the ctypes-private copy of the system [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.") variable in the calling thread.
`ctypes.``get_last_error`()Windows only: returns the current value of the ctypes-private copy of the system `LastError` variable in the calling thread.
`ctypes.``memmove`(*dst*, *src*, *count*)Same as the standard C memmove library function: copies *count* bytes from *src* to *dst*. *dst* and *src* must be integers or ctypes instances that can be converted to pointers.
`ctypes.``memset`(*dst*, *c*, *count*)Same as the standard C memset library function: fills the memory block at address *dst* with *count* bytes of value *c*. *dst* must be an integer specifying an address, or a ctypes instance.
`ctypes.``POINTER`(*type*)This factory function creates and returns a new ctypes pointer type. Pointer types are cached and reused internally, so calling this function repeatedly is cheap. *type* must be a ctypes type.
`ctypes.``pointer`(*obj*)This function creates a new pointer instance, pointing to *obj*. The returned object is of the type `POINTER(type(obj))`.
Note: If you just want to pass a pointer to an object to a foreign function call, you should use `byref(obj)` which is much faster.
`ctypes.``resize`(*obj*, *size*)This function resizes the internal memory buffer of *obj*, which must be an instance of a ctypes type. It is not possible to make the buffer smaller than the native size of the objects type, as given by `sizeof(type(obj))`, but it is possible to enlarge the buffer.
`ctypes.``set_errno`(*value*)Set the current value of the ctypes-private copy of the system [`errno`](errno.xhtml#module-errno "errno: Standard errno system symbols.")variable in the calling thread to *value* and return the previous value.
`ctypes.``set_last_error`(*value*)Windows only: set the current value of the ctypes-private copy of the system `LastError` variable in the calling thread to *value* and return the previous value.
`ctypes.``sizeof`(*obj\_or\_type*)Returns the size in bytes of a ctypes type or instance memory buffer. Does the same as the C `sizeof` operator.
`ctypes.``string_at`(*address*, *size=-1*)This function returns the C string starting at memory address *address* as a bytes object. If size is specified, it is used as size, otherwise the string is assumed to be zero-terminated.
`ctypes.``WinError`(*code=None*, *descr=None*)Windows only: this function is probably the worst-named thing in ctypes. It creates an instance of OSError. If *code* is not specified, `GetLastError` is called to determine the error code. If *descr* is not specified, [`FormatError()`](#ctypes.FormatError "ctypes.FormatError") is called to get a textual description of the error.
在 3.3 版更改: An instance of [`WindowsError`](exceptions.xhtml#WindowsError "WindowsError") used to be created.
`ctypes.``wstring_at`(*address*, *size=-1*)This function returns the wide character string starting at memory address *address* as a string. If *size* is specified, it is used as the number of characters of the string, otherwise the string is assumed to be zero-terminated.
### Data types
*class* `ctypes.``_CData`This non-public class is the common base class of all ctypes data types. Among other things, all ctypes type instances contain a memory block that hold C compatible data; the address of the memory block is returned by the [`addressof()`](#ctypes.addressof "ctypes.addressof") helper function. Another instance variable is exposed as [`_objects`](#ctypes._CData._objects "ctypes._CData._objects"); this contains other Python objects that need to be kept alive in case the memory block contains pointers.
Common methods of ctypes data types, these are all class methods (to be exact, they are methods of the [metaclass](../glossary.xhtml#term-metaclass)):
`from_buffer`(*source*\[, *offset*\])This method returns a ctypes instance that shares the buffer of the *source* object. The *source* object must support the writeable buffer interface. The optional *offset* parameter specifies an offset into the source buffer in bytes; the default is zero. If the source buffer is not large enough a [`ValueError`](exceptions.xhtml#ValueError "ValueError") is raised.
`from_buffer_copy`(*source*\[, *offset*\])This method creates a ctypes instance, copying the buffer from the *source* object buffer which must be readable. The optional *offset*parameter specifies an offset into the source buffer in bytes; the default is zero. If the source buffer is not large enough a [`ValueError`](exceptions.xhtml#ValueError "ValueError") is raised.
`from_address`(*address*)This method returns a ctypes type instance using the memory specified by *address* which must be an integer.
`from_param`(*obj*)This method adapts *obj* to a ctypes type. It is called with the actual object used in a foreign function call when the type is present in the foreign function's `argtypes` tuple; it must return an object that can be used as a function call parameter.
All ctypes data types have a default implementation of this classmethod that normally returns *obj* if that is an instance of the type. Some types accept other objects as well.
`in_dll`(*library*, *name*)This method returns a ctypes type instance exported by a shared library. *name* is the name of the symbol that exports the data, *library*is the loaded shared library.
Common instance variables of ctypes data types:
`_b_base_`Sometimes ctypes data instances do not own the memory block they contain, instead they share part of the memory block of a base object. The [`_b_base_`](#ctypes._CData._b_base_ "ctypes._CData._b_base_") read-only member is the root ctypes object that owns the memory block.
`_b_needsfree_`This read-only variable is true when the ctypes data instance has allocated the memory block itself, false otherwise.
`_objects`This member is either `None` or a dictionary containing Python objects that need to be kept alive so that the memory block contents is kept valid. This object is only exposed for debugging; never modify the contents of this dictionary.
### 基础数据类型
*class* `ctypes.``_SimpleCData`This non-public class is the base class of all fundamental ctypes data types. It is mentioned here because it contains the common attributes of the fundamental ctypes data types. [`_SimpleCData`](#ctypes._SimpleCData "ctypes._SimpleCData") is a subclass of [`_CData`](#ctypes._CData "ctypes._CData"), so it inherits their methods and attributes. ctypes data types that are not and do not contain pointers can now be pickled.
Instances have a single attribute:
`value`This attribute contains the actual value of the instance. For integer and pointer types, it is an integer, for character types, it is a single character bytes object or string, for character pointer types it is a Python bytes object or string.
When the `value` attribute is retrieved from a ctypes instance, usually a new object is returned each time. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") does *not* implement original object return, always a new object is constructed. The same is true for all other ctypes object instances.
Fundamental data types, when returned as foreign function call results, or, for example, by retrieving structure field members or array items, are transparently converted to native Python types. In other words, if a foreign function has a `restype` of [`c_char_p`](#ctypes.c_char_p "ctypes.c_char_p"), you will always receive a Python bytes object, *not* a [`c_char_p`](#ctypes.c_char_p "ctypes.c_char_p") instance.
Subclasses of fundamental data types do *not* inherit this behavior. So, if a foreign functions `restype` is a subclass of [`c_void_p`](#ctypes.c_void_p "ctypes.c_void_p"), you will receive an instance of this subclass from the function call. Of course, you can get the value of the pointer by accessing the `value` attribute.
These are the fundamental ctypes data types:
*class* `ctypes.``c_byte`Represents the C `signed char` datatype, and interprets the value as small integer. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_char`Represents the C `char` datatype, and interprets the value as a single character. The constructor accepts an optional string initializer, the length of the string must be exactly one character.
*class* `ctypes.``c_char_p`Represents the C `char *` datatype when it points to a zero-terminated string. For a general character pointer that may also point to binary data, `POINTER(c_char)` must be used. The constructor accepts an integer address, or a bytes object.
*class* `ctypes.``c_double`Represents the C `double` datatype. The constructor accepts an optional float initializer.
*class* `ctypes.``c_longdouble`Represents the C `long double` datatype. The constructor accepts an optional float initializer. On platforms where
```
sizeof(long double) ==
sizeof(double)
```
it is an alias to [`c_double`](#ctypes.c_double "ctypes.c_double").
*class* `ctypes.``c_float`Represents the C `float` datatype. The constructor accepts an optional float initializer.
*class* `ctypes.``c_int`Represents the C `signed int` datatype. The constructor accepts an optional integer initializer; no overflow checking is done. On platforms where `sizeof(int) == sizeof(long)` it is an alias to [`c_long`](#ctypes.c_long "ctypes.c_long").
*class* `ctypes.``c_int8`Represents the C 8-bit `signed int` datatype. Usually an alias for [`c_byte`](#ctypes.c_byte "ctypes.c_byte").
*class* `ctypes.``c_int16`Represents the C 16-bit `signed int` datatype. Usually an alias for [`c_short`](#ctypes.c_short "ctypes.c_short").
*class* `ctypes.``c_int32`Represents the C 32-bit `signed int` datatype. Usually an alias for [`c_int`](#ctypes.c_int "ctypes.c_int").
*class* `ctypes.``c_int64`Represents the C 64-bit `signed int` datatype. Usually an alias for [`c_longlong`](#ctypes.c_longlong "ctypes.c_longlong").
*class* `ctypes.``c_long`Represents the C `signed long` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_longlong`Represents the C `signed long long` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_short`Represents the C `signed short` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_size_t`Represents the C `size_t` datatype.
*class* `ctypes.``c_ssize_t`Represents the C `ssize_t` datatype.
3\.2 新版功能.
*class* `ctypes.``c_ubyte`Represents the C `unsigned char` datatype, it interprets the value as small integer. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_uint`Represents the C `unsigned int` datatype. The constructor accepts an optional integer initializer; no overflow checking is done. On platforms where `sizeof(int) == sizeof(long)` it is an alias for [`c_ulong`](#ctypes.c_ulong "ctypes.c_ulong").
*class* `ctypes.``c_uint8`Represents the C 8-bit `unsigned int` datatype. Usually an alias for [`c_ubyte`](#ctypes.c_ubyte "ctypes.c_ubyte").
*class* `ctypes.``c_uint16`Represents the C 16-bit `unsigned int` datatype. Usually an alias for [`c_ushort`](#ctypes.c_ushort "ctypes.c_ushort").
*class* `ctypes.``c_uint32`Represents the C 32-bit `unsigned int` datatype. Usually an alias for [`c_uint`](#ctypes.c_uint "ctypes.c_uint").
*class* `ctypes.``c_uint64`Represents the C 64-bit `unsigned int` datatype. Usually an alias for [`c_ulonglong`](#ctypes.c_ulonglong "ctypes.c_ulonglong").
*class* `ctypes.``c_ulong`Represents the C `unsigned long` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_ulonglong`Represents the C `unsigned long long` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_ushort`Represents the C `unsigned short` datatype. The constructor accepts an optional integer initializer; no overflow checking is done.
*class* `ctypes.``c_void_p`Represents the C `void *` type. The value is represented as integer. The constructor accepts an optional integer initializer.
*class* `ctypes.``c_wchar`Represents the C `wchar_t` datatype, and interprets the value as a single character unicode string. The constructor accepts an optional string initializer, the length of the string must be exactly one character.
*class* `ctypes.``c_wchar_p`Represents the C `wchar_t *` datatype, which must be a pointer to a zero-terminated wide character string. The constructor accepts an integer address, or a string.
*class* `ctypes.``c_bool`Represent the C `bool` datatype (more accurately, `_Bool` from C99). Its value can be `True` or `False`, and the constructor accepts any object that has a truth value.
*class* `ctypes.``HRESULT`Windows only: Represents a `HRESULT` value, which contains success or error information for a function or method call.
*class* `ctypes.``py_object`Represents the C [`PyObject *`](../c-api/structures.xhtml#c.PyObject "PyObject") datatype. Calling this without an argument creates a `NULL` [`PyObject *`](../c-api/structures.xhtml#c.PyObject "PyObject") pointer.
The `ctypes.wintypes` module provides quite some other Windows specific data types, for example `HWND`, `WPARAM`, or `DWORD`. Some useful structures like `MSG` or `RECT` are also defined.
### Structured data types
*class* `ctypes.``Union`(*\*args*, *\*\*kw*)Abstract base class for unions in native byte order.
*class* `ctypes.``BigEndianStructure`(*\*args*, *\*\*kw*)Abstract base class for structures in *big endian* byte order.
*class* `ctypes.``LittleEndianStructure`(*\*args*, *\*\*kw*)Abstract base class for structures in *little endian* byte order.
Structures with non-native byte order cannot contain pointer type fields, or any other data types containing pointer type fields.
*class* `ctypes.``Structure`(*\*args*, *\*\*kw*)Abstract base class for structures in *native* byte order.
Concrete structure and union types must be created by subclassing one of these types, and at least define a [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") class variable. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") will create [descriptor](../glossary.xhtml#term-descriptor)s which allow reading and writing the fields by direct attribute accesses. These are the
`_fields_`A sequence defining the structure fields. The items must be 2-tuples or 3-tuples. The first item is the name of the field, the second item specifies the type of the field; it can be any ctypes data type.
For integer type fields like [`c_int`](#ctypes.c_int "ctypes.c_int"), a third optional item can be given. It must be a small positive integer defining the bit width of the field.
Field names must be unique within one structure or union. This is not checked, only one field can be accessed when names are repeated.
It is possible to define the [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") class variable *after* the class statement that defines the Structure subclass, this allows creating data types that directly or indirectly reference themselves:
```
class List(Structure):
pass
List._fields_ = [("pnext", POINTER(List)),
...
]
```
The [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") class variable must, however, be defined before the type is first used (an instance is created, [`sizeof()`](#ctypes.sizeof "ctypes.sizeof") is called on it, and so on). Later assignments to the [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") class variable will raise an AttributeError.
It is possible to define sub-subclasses of structure types, they inherit the fields of the base class plus the [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") defined in the sub-subclass, if any.
`_pack_`An optional small integer that allows overriding the alignment of structure fields in the instance. [`_pack_`](#ctypes.Structure._pack_ "ctypes.Structure._pack_") must already be defined when [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") is assigned, otherwise it will have no effect.
`_anonymous_`An optional sequence that lists the names of unnamed (anonymous) fields. [`_anonymous_`](#ctypes.Structure._anonymous_ "ctypes.Structure._anonymous_") must be already defined when [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") is assigned, otherwise it will have no effect.
The fields listed in this variable must be structure or union type fields. [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") will create descriptors in the structure type that allows accessing the nested fields directly, without the need to create the structure or union field.
Here is an example type (Windows):
```
class _U(Union):
_fields_ = [("lptdesc", POINTER(TYPEDESC)),
("lpadesc", POINTER(ARRAYDESC)),
("hreftype", HREFTYPE)]
class TYPEDESC(Structure):
_anonymous_ = ("u",)
_fields_ = [("u", _U),
("vt", VARTYPE)]
```
The `TYPEDESC` structure describes a COM data type, the `vt` field specifies which one of the union fields is valid. Since the `u` field is defined as anonymous field, it is now possible to access the members directly off the TYPEDESC instance. `td.lptdesc` and `td.u.lptdesc`are equivalent, but the former is faster since it does not need to create a temporary union instance:
```
td = TYPEDESC()
td.vt = VT_PTR
td.lptdesc = POINTER(some_type)
td.u.lptdesc = POINTER(some_type)
```
It is possible to define sub-subclasses of structures, they inherit the fields of the base class. If the subclass definition has a separate [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") variable, the fields specified in this are appended to the fields of the base class.
Structure and union constructors accept both positional and keyword arguments. Positional arguments are used to initialize member fields in the same order as they are appear in [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_"). Keyword arguments in the constructor are interpreted as attribute assignments, so they will initialize [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_") with the same name, or create new attributes for names not present in [`_fields_`](#ctypes.Structure._fields_ "ctypes.Structure._fields_").
### Arrays and pointers
*class* `ctypes.``Array`(*\*args*)Abstract base class for arrays.
The recommended way to create concrete array types is by multiplying any [`ctypes`](#module-ctypes "ctypes: A foreign function library for Python.") data type with a positive integer. Alternatively, you can subclass this type and define [`_length_`](#ctypes.Array._length_ "ctypes.Array._length_") and [`_type_`](#ctypes.Array._type_ "ctypes.Array._type_") class variables. Array elements can be read and written using standard subscript and slice accesses; for slice reads, the resulting object is *not* itself an [`Array`](#ctypes.Array "ctypes.Array").
`_length_`A positive integer specifying the number of elements in the array. Out-of-range subscripts result in an [`IndexError`](exceptions.xhtml#IndexError "IndexError"). Will be returned by [`len()`](functions.xhtml#len "len").
`_type_`Specifies the type of each element in the array.
Array subclass constructors accept positional arguments, used to initialize the elements in order.
*class* `ctypes.``_Pointer`Private, abstract base class for pointers.
Concrete pointer types are created by calling [`POINTER()`](#ctypes.POINTER "ctypes.POINTER") with the type that will be pointed to; this is done automatically by [`pointer()`](#ctypes.pointer "ctypes.pointer").
If a pointer points to an array, its elements can be read and written using standard subscript and slice accesses. Pointer objects have no size, so [`len()`](functions.xhtml#len "len") will raise [`TypeError`](exceptions.xhtml#TypeError "TypeError"). Negative subscripts will read from the memory *before* the pointer (as in C), and out-of-range subscripts will probably crash with an access violation (if you're lucky).
`_type_`Specifies the type pointed to.
`contents`Returns the object to which to pointer points. Assigning to this attribute changes the pointer to point to the assigned object.
### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](concurrency.xhtml "并发执行") |
- [上一页](errno.xhtml "errno --- Standard errno system symbols") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 标准库](index.xhtml) »
- [通用操作系统服务](allos.xhtml) »
- $('.inline-search').show(0); |
© [版权所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 软件基金会是一个非盈利组织。 [请捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [发现了问题](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 创建。
- Python文档内容
- Python 有什么新变化?
- Python 3.7 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- C API 的改变
- 构建的改变
- 性能优化
- 其他 CPython 实现的改变
- 已弃用的 Python 行为
- 已弃用的 Python 模块、函数和方法
- 已弃用的 C API 函数和类型
- 平台支持的移除
- API 与特性的移除
- 移除的模块
- Windows 专属的改变
- 移植到 Python 3.7
- Python 3.7.1 中的重要变化
- Python 3.7.2 中的重要变化
- Python 3.6 有什么新变化A
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 其他改进
- 弃用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要变化
- Python 3.6.4 中的重要变化
- Python 3.6.5 中的重要变化
- Python 3.6.7 中的重要变化
- Python 3.5 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- Other module-level changes
- 性能优化
- Build and C API Changes
- 弃用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 发布重点
- 新的特性
- 新增模块
- 改进的模块
- CPython Implementation Changes
- 弃用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 发布重点
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他语言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 弃用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 多线程
- 性能优化
- Unicode
- Codecs
- 文档
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 性能优化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他语言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新变化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他语言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他语言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推导式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最终版
- Python 3.7.3 发布候选版 1
- Python 3.7.2 最终版
- Python 3.7.2 发布候选版 1
- Python 3.7.1 最终版
- Python 3.7.1 RC 2版本
- Python 3.7.1 发布候选版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 课前甜点
- 使用 Python 解释器
- 调用解释器
- 解释器的运行环境
- Python 的非正式介绍
- Python 作为计算器使用
- 走向编程的第一步
- 其他流程控制工具
- if 语句
- for 语句
- range() 函数
- break 和 continue 语句,以及循环中的 else 子句
- pass 语句
- 定义函数
- 函数定义的更多形式
- 小插曲:编码风格
- 数据结构
- 列表的更多特性
- del 语句
- 元组和序列
- 集合
- 字典
- 循环的技巧
- 深入条件控制
- 序列和其它类型的比较
- 模块
- 有关模块的更多信息
- 标准模块
- dir() 函数
- 包
- 输入输出
- 更漂亮的输出格式
- 读写文件
- 错误和异常
- 语法错误
- 异常
- 处理异常
- 抛出异常
- 用户自定义异常
- 定义清理操作
- 预定义的清理操作
- 类
- 名称和对象
- Python 作用域和命名空间
- 初探类
- 补充说明
- 继承
- 私有变量
- 杂项说明
- 迭代器
- 生成器
- 生成器表达式
- 标准库简介
- 操作系统接口
- 文件通配符
- 命令行参数
- 错误输出重定向和程序终止
- 字符串模式匹配
- 数学
- 互联网访问
- 日期和时间
- 数据压缩
- 性能测量
- 质量控制
- 自带电池
- 标准库简介 —— 第二部分
- 格式化输出
- 模板
- 使用二进制数据记录格式
- 多线程
- 日志
- 弱引用
- 用于操作列表的工具
- 十进制浮点运算
- 虚拟环境和包
- 概述
- 创建虚拟环境
- 使用pip管理包
- 接下来?
- 交互式编辑和编辑历史
- Tab 补全和编辑历史
- 默认交互式解释器的替代品
- 浮点算术:争议和限制
- 表示性错误
- 附录
- 交互模式
- 安装和使用 Python
- 命令行与环境
- 命令行
- 环境变量
- 在Unix平台中使用Python
- 获取最新版本的Python
- 构建Python
- 与Python相关的路径和文件
- 杂项
- 编辑器和集成开发环境
- 在Windows上使用 Python
- 完整安装程序
- Microsoft Store包
- nuget.org 安装包
- 可嵌入的包
- 替代捆绑包
- 配置Python
- 适用于Windows的Python启动器
- 查找模块
- 附加模块
- 在Windows上编译Python
- 其他平台
- 在苹果系统上使用 Python
- 获取和安装 MacPython
- IDE
- 安装额外的 Python 包
- Mac 上的图形界面编程
- 在 Mac 上分发 Python 应用程序
- 其他资源
- Python 语言参考
- 概述
- 其他实现
- 标注
- 词法分析
- 行结构
- 其他形符
- 标识符和关键字
- 字面值
- 运算符
- 分隔符
- 数据模型
- 对象、值与类型
- 标准类型层级结构
- 特殊方法名称
- 协程
- 执行模型
- 程序的结构
- 命名与绑定
- 异常
- 导入系统
- importlib
- 包
- 搜索
- 加载
- 基于路径的查找器
- 替换标准导入系统
- Package Relative Imports
- 有关 main 的特殊事项
- 开放问题项
- 参考文献
- 表达式
- 算术转换
- 原子
- 原型
- await 表达式
- 幂运算符
- 一元算术和位运算
- 二元算术运算符
- 移位运算
- 二元位运算
- 比较运算
- 布尔运算
- 条件表达式
- lambda 表达式
- 表达式列表
- 求值顺序
- 运算符优先级
- 简单语句
- 表达式语句
- 赋值语句
- assert 语句
- pass 语句
- del 语句
- return 语句
- yield 语句
- raise 语句
- break 语句
- continue 语句
- import 语句
- global 语句
- nonlocal 语句
- 复合语句
- if 语句
- while 语句
- for 语句
- try 语句
- with 语句
- 函数定义
- 类定义
- 协程
- 最高层级组件
- 完整的 Python 程序
- 文件输入
- 交互式输入
- 表达式输入
- 完整的语法规范
- Python 标准库
- 概述
- 可用性注释
- 内置函数
- 内置常量
- 由 site 模块添加的常量
- 内置类型
- 逻辑值检测
- 布尔运算 — and, or, not
- 比较
- 数字类型 — int, float, complex
- 迭代器类型
- 序列类型 — list, tuple, range
- 文本序列类型 — str
- 二进制序列类型 — bytes, bytearray, memoryview
- 集合类型 — set, frozenset
- 映射类型 — dict
- 上下文管理器类型
- 其他内置类型
- 特殊属性
- 内置异常
- 基类
- 具体异常
- 警告
- 异常层次结构
- 文本处理服务
- string — 常见的字符串操作
- re — 正则表达式操作
- 模块 difflib 是一个计算差异的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 数据库
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函数
- 二进制数据服务
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 数据类型
- datetime — 基础日期/时间数据类型
- calendar — General calendar-related functions
- collections — 容器数据类型
- collections.abc — 容器的抽象基类
- heapq — 堆队列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 浅层 (shallow) 和深层 (deep) 复制操作
- pprint — 数据美化输出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 数字和数学模块
- numbers — 数字的抽象基类
- math — 数学函数
- cmath — Mathematical functions for complex numbers
- decimal — 十进制定点和浮点运算
- fractions — 分数
- random — 生成伪随机数
- statistics — Mathematical statistics functions
- 函数式编程模块
- itertools — 为高效循环而创建迭代器的函数
- functools — 高阶函数和可调用对象上的操作
- operator — 标准运算符替代函数
- 文件和目录访问
- pathlib — 面向对象的文件系统路径
- os.path — 常见路径操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路径操作函数
- 数据持久化
- pickle —— Python 对象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 数据库 DB-API 2.0 接口模块
- 数据压缩和存档
- zlib — 与 gzip 兼容的压缩
- gzip — 对 gzip 格式的支持
- bz2 — 对 bzip2 压缩算法的支持
- lzma — 用 LZMA 算法压缩
- zipfile — 在 ZIP 归档中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件读写
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服务
- hashlib — 安全哈希与消息摘要
- hmac — 基于密钥的消息验证
- secrets — Generate secure random numbers for managing secrets
- 通用操作系统服务
- os — 操作系统接口模块
- io — 处理流的核心工具
- time — 时间的访问和转换
- argparse — 命令行选项、参数和子命令解析器
- getopt — C-style parser for command line options
- 模块 logging — Python 的日志记录工具
- logging.config — 日志记录配置
- logging.handlers — Logging handlers
- getpass — 便携式密码输入工具
- curses — 终端字符单元显示的处理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函数库
- 并发执行
- threading — 基于线程的并行
- multiprocessing — 基于进程的并行
- concurrent 包
- concurrent.futures — 启动并行任务
- subprocess — 子进程管理
- sched — 事件调度器
- queue — 一个同步的队列类
- _thread — 底层多线程 API
- _dummy_thread — _thread 的替代模块
- dummy_threading — 可直接替代 threading 模块。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 网络和进程间通信
- asyncio — 异步 I/O
- socket — 底层网络接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高级 I/O 复用库
- asyncore — 异步socket处理器
- asynchat — 异步 socket 指令/响应 处理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互联网数据处理
- email — 电子邮件与 MIME 处理包
- json — JSON 编码和解码器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 数据编码
- binhex — 对binhex4文件进行编码和解码
- binascii — 二进制和 ASCII 码互转
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 结构化标记处理工具
- html — 超文本标记语言支持
- html.parser — 简单的 HTML 和 XHTML 解析器
- html.entities — HTML 一般实体的定义
- XML处理模块
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互联网协议和支持
- webbrowser — 方便的Web浏览器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 处理模块
- urllib.request — 用于打开 URL 的可扩展库
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模块
- http.client — HTTP协议客户端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP协议客户端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服务器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服务端与客户端模块
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒体服务
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 读写 Sun AU 文件
- wave — 读写WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推测图像类型
- sndhdr — 推测声音文件的类型
- ossaudiodev — Access to OSS-compatible audio devices
- 国际化
- gettext — 多语种国际化服务
- locale — 国际化服务
- 程序框架
- turtle — 海龟绘图
- cmd — 支持面向行的命令解释器
- shlex — Simple lexical analysis
- Tk图形用户界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滚动文字控件
- IDLE
- 其他图形用户界面(GUI)包
- 开发工具
- typing — 类型标注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 单元测试框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自动将 Python 2 代码转为 Python 3 代码
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 调试和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 测量小代码片段的执行时间
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 软件打包和分发
- distutils — 构建和安装 Python 模块
- ensurepip — Bootstrapping the pip installer
- venv — 创建虚拟环境
- zipapp — Manage executable Python zip archives
- Python运行时服务
- sys — 系统相关的参数和函数
- sysconfig — Provide access to Python's configuration information
- builtins — 内建对象
- main — 顶层脚本环境
- warnings — Warning control
- dataclasses — 数据类
- contextlib — Utilities for with-statement contexts
- abc — 抽象基类
- atexit — 退出处理器
- traceback — Print or retrieve a stack traceback
- future — Future 语句定义
- gc — 垃圾回收器接口
- inspect — 检查对象
- site — Site-specific configuration hook
- 自定义 Python 解释器
- code — Interpreter base classes
- codeop — Compile Python code
- 导入模块
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找脚本使用的模块
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 语言服务
- parser — Access Python parse trees
- ast — 抽象语法树
- symtable — Access to the compiler's symbol tables
- symbol — 与 Python 解析树一起使用的常量
- token — 与Python解析树一起使用的常量
- keyword — 检验Python关键字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊缩进检测
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字节码反汇编器
- pickletools — Tools for pickle developers
- 杂项服务
- formatter — Generic output formatting
- Windows系统相关模块
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注册表访问
- winsound — Sound-playing interface for Windows
- Unix 专有服务
- posix — The most common POSIX system calls
- pwd — 用户密码数据库
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 终端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 库例程
- 被取代的模块
- optparse — Parser for command line options
- imp — Access the import internals
- 未创建文档的模块
- 平台特定模块
- 扩展和嵌入 Python 解释器
- 推荐的第三方工具
- 不使用第三方工具创建扩展
- 使用 C 或 C++ 扩展 Python
- 自定义扩展类型:教程
- 定义扩展类型:已分类主题
- 构建C/C++扩展
- 在Windows平台编译C和C++扩展
- 在更大的应用程序中嵌入 CPython 运行时
- Embedding Python in Another Application
- Python/C API 参考手册
- 概述
- 代码标准
- 包含文件
- 有用的宏
- 对象、类型和引用计数
- 异常
- 嵌入Python
- 调试构建
- 稳定的应用程序二进制接口
- The Very High Level Layer
- Reference Counting
- 异常处理
- Printing and clearing
- 抛出异常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 标准异常
- 标准警告类别
- 工具
- 操作系统实用程序
- 系统功能
- 过程控制
- 导入模块
- Data marshalling support
- 语句解释及变量编译
- 字符串转换与格式化
- 反射
- 编解码器注册与支持功能
- 抽象对象层
- Object Protocol
- 数字协议
- Sequence Protocol
- Mapping Protocol
- 迭代器协议
- 缓冲协议
- Old Buffer Protocol
- 具体的对象层
- 基本对象
- 数值对象
- 序列对象
- 容器对象
- 函数对象
- 其他对象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置变量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 内存管理
- 概述
- 原始内存接口
- Memory Interface
- 对象分配器
- 默认内存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 对象实现支持
- 在堆中分配对象
- Common Object Structures
- Type 对象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使对象类型支持循环垃圾回收
- API 和 ABI 版本管理
- 分发 Python 模块
- 关键术语
- 开源许可与协作
- 安装工具
- 阅读指南
- 我该如何...?
- ...为我的项目选择一个名字?
- ...创建和分发二进制扩展?
- 安装 Python 模块
- 关键术语
- 基本使用
- 我应如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安装 pip ?
- ... 只为当前用户安装软件包?
- ... 安装科学计算类 Python 软件包?
- ... 使用并行安装的多个 Python 版本?
- 常见的安装问题
- 在 Linux 的系统 Python 版本上安装
- 未安装 pip
- 安装二进制编译扩展
- Python 常用指引
- 将 Python 2 代码迁移到 Python 3
- 简要说明
- 详情
- 将扩展模块移植到 Python 3
- 条件编译
- 对象API的更改
- 模块初始化和状态
- CObject 替换为 Capsule
- 其他选项
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 实现描述器
- 摘要
- 定义和简介
- 描述器协议
- 发起调用描述符
- 描述符示例
- Properties
- 函数和方法
- Static Methods and Class Methods
- 函数式编程指引
- 概述
- 迭代器
- 生成器表达式和列表推导式
- 生成器
- 内置函数
- itertools 模块
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文献
- 日志 HOWTO
- 日志基础教程
- 进阶日志教程
- 日志级别
- 有用的处理程序
- 记录日志中引发的异常
- 使用任意对象作为消息
- 优化
- 日志操作手册
- 在多个模块中使用日志
- 在多线程中使用日志
- 使用多个日志处理器和多种格式化
- 在多个地方记录日志
- 日志服务器配置示例
- 处理日志处理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正则表达式HOWTO
- 概述
- 简单模式
- 使用正则表达式
- 更多模式能力
- 修改字符串
- 常见问题
- 反馈
- 套接字编程指南
- 套接字
- 创建套接字
- 使用一个套接字
- 断开连接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 关键函数
- Operator 模块函数
- 升序和降序
- 排序稳定性和排序复杂度
- 使用装饰-排序-去装饰的旧方法
- 使用 cmp 参数的旧方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包获取网络资源
- 概述
- Fetching URLs
- 处理异常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 脚注
- Argparse 教程
- 概念
- 基础
- 位置参数介绍
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模块介绍
- 创建 Address/Network/Interface 对象
- 审查 Address/Network/Interface 对象
- Network 作为 Address 列表
- 比较
- 将IP地址与其他模块一起使用
- 实例创建失败时获取更多详细信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 检测CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常见问题
- Python常见问题
- 一般信息
- 现实世界中的 Python
- 编程常见问题
- 一般问题
- 核心语言
- 数字和字符串
- 性能
- 序列(元组/列表)
- 对象
- 模块
- 设计和历史常见问题
- 为什么Python使用缩进来分组语句?
- 为什么简单的算术运算得到奇怪的结果?
- 为什么浮点计算不准确?
- 为什么Python字符串是不可变的?
- 为什么必须在方法定义和调用中显式使用“self”?
- 为什么不能在表达式中赋值?
- 为什么Python对某些功能(例如list.index())使用方法来实现,而其他功能(例如len(List))使用函数实现?
- 为什么 join()是一个字符串方法而不是列表或元组方法?
- 异常有多快?
- 为什么Python中没有switch或case语句?
- 难道不能在解释器中模拟线程,而非得依赖特定于操作系统的线程实现吗?
- 为什么lambda表达式不能包含语句?
- 可以将Python编译为机器代码,C或其他语言吗?
- Python如何管理内存?
- 为什么CPython不使用更传统的垃圾回收方案?
- CPython退出时为什么不释放所有内存?
- 为什么有单独的元组和列表数据类型?
- 列表是如何在CPython中实现的?
- 字典是如何在CPython中实现的?
- 为什么字典key必须是不可变的?
- 为什么 list.sort() 没有返回排序列表?
- 如何在Python中指定和实施接口规范?
- 为什么没有goto?
- 为什么原始字符串(r-strings)不能以反斜杠结尾?
- 为什么Python没有属性赋值的“with”语句?
- 为什么 if/while/def/class语句需要冒号?
- 为什么Python在列表和元组的末尾允许使用逗号?
- 代码库和插件 FAQ
- 通用的代码库问题
- 通用任务
- 线程相关
- 输入输出
- 网络 / Internet 编程
- 数据库
- 数学和数字
- 扩展/嵌入常见问题
- 可以使用C语言中创建自己的函数吗?
- 可以使用C++语言中创建自己的函数吗?
- C很难写,有没有其他选择?
- 如何从C执行任意Python语句?
- 如何从C中评估任意Python表达式?
- 如何从Python对象中提取C的值?
- 如何使用Py_BuildValue()创建任意长度的元组?
- 如何从C调用对象的方法?
- 如何捕获PyErr_Print()(或打印到stdout / stderr的任何内容)的输出?
- 如何从C访问用Python编写的模块?
- 如何从Python接口到C ++对象?
- 我使用Setup文件添加了一个模块,为什么make失败了?
- 如何调试扩展?
- 我想在Linux系统上编译一个Python模块,但是缺少一些文件。为什么?
- 如何区分“输入不完整”和“输入无效”?
- 如何找到未定义的g++符号__builtin_new或__pure_virtual?
- 能否创建一个对象类,其中部分方法在C中实现,而其他方法在Python中实现(例如通过继承)?
- Python在Windows上的常见问题
- 我怎样在Windows下运行一个Python程序?
- 我怎么让 Python 脚本可执行?
- 为什么有时候 Python 程序会启动缓慢?
- 我怎样使用Python脚本制作可执行文件?
- *.pyd 文件和DLL文件相同吗?
- 我怎样将Python嵌入一个Windows程序?
- 如何让编辑器不要在我的 Python 源代码中插入 tab ?
- 如何在不阻塞的情况下检查按键?
- 图形用户界面(GUI)常见问题
- 图形界面常见问题
- Python 是否有平台无关的图形界面工具包?
- 有哪些Python的GUI工具是某个平台专用的?
- 有关Tkinter的问题
- “为什么我的电脑上安装了 Python ?”
- 什么是Python?
- 为什么我的电脑上安装了 Python ?
- 我能删除 Python 吗?
- 术语对照表
- 文档说明
- Python 文档贡献者
- 解决 Bug
- 文档错误
- 使用 Python 的错误追踪系统
- 开始为 Python 贡献您的知识
- 版权
- 历史和许可证
- 软件历史
- 访问Python或以其他方式使用Python的条款和条件
- Python 3.7.3 的 PSF 许可协议
- Python 2.0 的 BeOpen.com 许可协议
- Python 1.6.1 的 CNRI 许可协议
- Python 0.9.0 至 1.2 的 CWI 许可协议
- 集成软件的许可和认可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec