### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](memory.xhtml "内存管理") |
- [上一页](datetime.xhtml "DateTime 对象") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python/C API 参考手册](index.xhtml) »
- $('.inline-search').show(0); |
# Initialization, Finalization, and Threads
## 在Python初始化之前
In an application embedding Python, the [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") function must be called before using any other Python/C API functions; with the exception of a few functions and the [global configuration variables](#global-conf-vars).
在初始化Python之前,可以安全地调用以下函数:
- 配置函数:
- [`PyImport_AppendInittab()`](import.xhtml#c.PyImport_AppendInittab "PyImport_AppendInittab")
- [`PyImport_ExtendInittab()`](import.xhtml#c.PyImport_ExtendInittab "PyImport_ExtendInittab")
- `PyInitFrozenExtensions()`
- [`PyMem_SetAllocator()`](memory.xhtml#c.PyMem_SetAllocator "PyMem_SetAllocator")
- [`PyMem_SetupDebugHooks()`](memory.xhtml#c.PyMem_SetupDebugHooks "PyMem_SetupDebugHooks")
- [`PyObject_SetArenaAllocator()`](memory.xhtml#c.PyObject_SetArenaAllocator "PyObject_SetArenaAllocator")
- [`Py_SetPath()`](#c.Py_SetPath "Py_SetPath")
- [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName")
- [`Py_SetPythonHome()`](#c.Py_SetPythonHome "Py_SetPythonHome")
- [`Py_SetStandardStreamEncoding()`](#c.Py_SetStandardStreamEncoding "Py_SetStandardStreamEncoding")
- [`PySys_AddWarnOption()`](sys.xhtml#c.PySys_AddWarnOption "PySys_AddWarnOption")
- [`PySys_AddXOption()`](sys.xhtml#c.PySys_AddXOption "PySys_AddXOption")
- [`PySys_ResetWarnOptions()`](sys.xhtml#c.PySys_ResetWarnOptions "PySys_ResetWarnOptions")
- 信息函数:
- [`Py_IsInitialized()`](#c.Py_IsInitialized "Py_IsInitialized")
- [`PyMem_GetAllocator()`](memory.xhtml#c.PyMem_GetAllocator "PyMem_GetAllocator")
- [`PyObject_GetArenaAllocator()`](memory.xhtml#c.PyObject_GetArenaAllocator "PyObject_GetArenaAllocator")
- [`Py_GetBuildInfo()`](#c.Py_GetBuildInfo "Py_GetBuildInfo")
- [`Py_GetCompiler()`](#c.Py_GetCompiler "Py_GetCompiler")
- [`Py_GetCopyright()`](#c.Py_GetCopyright "Py_GetCopyright")
- [`Py_GetPlatform()`](#c.Py_GetPlatform "Py_GetPlatform")
- [`Py_GetVersion()`](#c.Py_GetVersion "Py_GetVersion")
- 公用
- [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale")
- 内存分配器:
- [`PyMem_RawMalloc()`](memory.xhtml#c.PyMem_RawMalloc "PyMem_RawMalloc")
- [`PyMem_RawRealloc()`](memory.xhtml#c.PyMem_RawRealloc "PyMem_RawRealloc")
- [`PyMem_RawCalloc()`](memory.xhtml#c.PyMem_RawCalloc "PyMem_RawCalloc")
- [`PyMem_RawFree()`](memory.xhtml#c.PyMem_RawFree "PyMem_RawFree")
注解
以下函数 **不应该** 在 [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"): [`Py_EncodeLocale()`](sys.xhtml#c.Py_EncodeLocale "Py_EncodeLocale"), [`Py_GetPath()`](#c.Py_GetPath "Py_GetPath"), [`Py_GetPrefix()`](#c.Py_GetPrefix "Py_GetPrefix"), [`Py_GetExecPrefix()`](#c.Py_GetExecPrefix "Py_GetExecPrefix"), [`Py_GetProgramFullPath()`](#c.Py_GetProgramFullPath "Py_GetProgramFullPath"), [`Py_GetPythonHome()`](#c.Py_GetPythonHome "Py_GetPythonHome"), [`Py_GetProgramName()`](#c.Py_GetProgramName "Py_GetProgramName") 和 [`PyEval_InitThreads()`](#c.PyEval_InitThreads "PyEval_InitThreads") 前调用。
## 全局配置变量
Python has variables for the global configuration to control different features and options. By default, these flags are controlled by [command line options](../using/cmdline.xhtml#using-on-interface-options).
When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, `-b` sets [`Py_BytesWarningFlag`](#c.Py_BytesWarningFlag "Py_BytesWarningFlag")to 1 and `-bb` sets [`Py_BytesWarningFlag`](#c.Py_BytesWarningFlag "Py_BytesWarningFlag") to 2.
`Py_BytesWarningFlag`Issue a warning when comparing [`bytes`](../library/stdtypes.xhtml#bytes "bytes") or [`bytearray`](../library/stdtypes.xhtml#bytearray "bytearray") with [`str`](../library/stdtypes.xhtml#str "str") or [`bytes`](../library/stdtypes.xhtml#bytes "bytes") with [`int`](../library/functions.xhtml#int "int"). Issue an error if greater or equal to `2`.
由 [`-b`](../using/cmdline.xhtml#cmdoption-b) 选项设置。
`Py_DebugFlag`Turn on parser debugging output (for expert only, depending on compilation options).
Set by the [`-d`](../using/cmdline.xhtml#cmdoption-d) option and the [`PYTHONDEBUG`](../using/cmdline.xhtml#envvar-PYTHONDEBUG) environment variable.
`Py_DontWriteBytecodeFlag`If set to non-zero, Python won't try to write `.pyc` files on the import of source modules.
Set by the [`-B`](../using/cmdline.xhtml#id1) option and the [`PYTHONDONTWRITEBYTECODE`](../using/cmdline.xhtml#envvar-PYTHONDONTWRITEBYTECODE)environment variable.
`Py_FrozenFlag`Suppress error messages when calculating the module search path in [`Py_GetPath()`](#c.Py_GetPath "Py_GetPath").
Private flag used by `_freeze_importlib` and `frozenmain` programs.
`Py_HashRandomizationFlag`Set to `1` if the [`PYTHONHASHSEED`](../using/cmdline.xhtml#envvar-PYTHONHASHSEED) environment variable is set to a non-empty string.
If the flag is non-zero, read the [`PYTHONHASHSEED`](../using/cmdline.xhtml#envvar-PYTHONHASHSEED) environment variable to initialize the secret hash seed.
`Py_IgnoreEnvironmentFlag`忽略所有 `PYTHON*` 环境变量,例如可能已设置的 [`PYTHONPATH`](../using/cmdline.xhtml#envvar-PYTHONPATH) 和 [`PYTHONHOME`](../using/cmdline.xhtml#envvar-PYTHONHOME)。
由 [`-E`](../using/cmdline.xhtml#cmdoption-e) 和 [`-I`](../using/cmdline.xhtml#id2) 选项设置。
`Py_InspectFlag`When a script is passed as first argument or the [`-c`](../using/cmdline.xhtml#cmdoption-c) option is used, enter interactive mode after executing the script or the command, even when [`sys.stdin`](../library/sys.xhtml#sys.stdin "sys.stdin") does not appear to be a terminal.
Set by the [`-i`](../using/cmdline.xhtml#cmdoption-i) option and the [`PYTHONINSPECT`](../using/cmdline.xhtml#envvar-PYTHONINSPECT) environment variable.
`Py_InteractiveFlag`由 [`-i`](../using/cmdline.xhtml#cmdoption-i) 选项设置。
`Py_IsolatedFlag`Run Python in isolated mode. In isolated mode [`sys.path`](../library/sys.xhtml#sys.path "sys.path") contains neither the script's directory nor the user's site-packages directory.
由 [`-I`](../using/cmdline.xhtml#id2) 选项设置。
3\.4 新版功能.
`Py_LegacyWindowsFSEncodingFlag`If the flag is non-zero, use the `mbcs` encoding instead of the UTF-8 encoding for the filesystem encoding.
Set to `1` if the [`PYTHONLEGACYWINDOWSFSENCODING`](../using/cmdline.xhtml#envvar-PYTHONLEGACYWINDOWSFSENCODING) environment variable is set to a non-empty string.
有关更多详细信息,请参阅 [**PEP 529**](https://www.python.org/dev/peps/pep-0529) \[https://www.python.org/dev/peps/pep-0529\]。
[可用性](../library/intro.xhtml#availability): Windows。
`Py_LegacyWindowsStdioFlag`If the flag is non-zero, use [`io.FileIO`](../library/io.xhtml#io.FileIO "io.FileIO") instead of `WindowsConsoleIO` for [`sys`](../library/sys.xhtml#module-sys "sys: Access system-specific parameters and functions.") standard streams.
Set to `1` if the [`PYTHONLEGACYWINDOWSSTDIO`](../using/cmdline.xhtml#envvar-PYTHONLEGACYWINDOWSSTDIO) environment variable is set to a non-empty string.
See [**PEP 528**](https://www.python.org/dev/peps/pep-0528) \[https://www.python.org/dev/peps/pep-0528\] for more details.
[可用性](../library/intro.xhtml#availability): Windows。
`Py_NoSiteFlag`禁用 [`site`](../library/site.xhtml#module-site "site: Module responsible for site-specific configuration.") 的导入及其所附带的基于站点对 [`sys.path`](../library/sys.xhtml#sys.path "sys.path") 的操作。 如果 [`site`](../library/site.xhtml#module-site "site: Module responsible for site-specific configuration.") 会在稍后被显式地导入也会禁用这些操作 (如果你希望触发它们则应调用 [`site.main()`](../library/site.xhtml#site.main "site.main"))。
Set by the [`-S`](../using/cmdline.xhtml#id3) option.
`Py_NoUserSiteDirectory`不要将 [`用户 site-packages 目录`](../library/site.xhtml#site.USER_SITE "site.USER_SITE") 添加到 [`sys.path`](../library/sys.xhtml#sys.path "sys.path")。
Set by the [`-s`](../using/cmdline.xhtml#cmdoption-s) and [`-I`](../using/cmdline.xhtml#id2) options, and the [`PYTHONNOUSERSITE`](../using/cmdline.xhtml#envvar-PYTHONNOUSERSITE) environment variable.
`Py_OptimizeFlag`Set by the [`-O`](../using/cmdline.xhtml#cmdoption-o) option and the [`PYTHONOPTIMIZE`](../using/cmdline.xhtml#envvar-PYTHONOPTIMIZE) environment variable.
`Py_QuietFlag`即使在交互模式下也不显示版权和版本信息。
Set by the [`-q`](../using/cmdline.xhtml#cmdoption-q) option.
3\.2 新版功能.
`Py_UnbufferedStdioFlag`Force the stdout and stderr streams to be unbuffered.
Set by the [`-u`](../using/cmdline.xhtml#cmdoption-u) option and the [`PYTHONUNBUFFERED`](../using/cmdline.xhtml#envvar-PYTHONUNBUFFERED)environment variable.
`Py_VerboseFlag`Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is loaded. If greater or equal to `2`, print a message for each file that is checked for when searching for a module. Also provides information on module cleanup at exit.
Set by the [`-v`](../using/cmdline.xhtml#id4) option and the [`PYTHONVERBOSE`](../using/cmdline.xhtml#envvar-PYTHONVERBOSE) environment variable.
## Initializing and finalizing the interpreter
void `Py_Initialize`()Initialize the Python interpreter. In an application embedding Python, this should be called before using any other Python/C API functions; see [Before Python Initialization](#pre-init-safe) for the few exceptions.
This initializes the table of loaded modules (`sys.modules`), and creates the fundamental modules [`builtins`](../library/builtins.xhtml#module-builtins "builtins: The module that provides the built-in namespace."), [`__main__`](../library/__main__.xhtml#module-__main__ "__main__: The environment where the top-level script is run.") and [`sys`](../library/sys.xhtml#module-sys "sys: Access system-specific parameters and functions."). It also initializes the module search path (`sys.path`). It does not set `sys.argv`; use [`PySys_SetArgvEx()`](#c.PySys_SetArgvEx "PySys_SetArgvEx") for that. This is a no-op when called for a second time (without calling [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") first). There is no return value; it is a fatal error if the initialization fails.
注解
On Windows, changes the console mode from `O_TEXT` to `O_BINARY`, which will also affect non-Python uses of the console using the C Runtime.
void `Py_InitializeEx`(int *initsigs*)This function works like [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") if *initsigs* is `1`. If *initsigs* is `0`, it skips initialization registration of signal handlers, which might be useful when Python is embedded.
int `Py_IsInitialized`()Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") is called, this returns false until [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") is called again.
int `Py_FinalizeEx`()Undo all initializations made by [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") and subsequent use of Python/C API functions, and destroy all sub-interpreters (see [`Py_NewInterpreter()`](#c.Py_NewInterpreter "Py_NewInterpreter") below) that were created and not yet destroyed since the last call to [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op when called for a second time (without calling [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") again first). Normally the return value is `0`. If there were errors during finalization (flushing buffered data), `-1` is returned.
This function is provided for a number of reasons. An embedding application might want to restart Python without having to restart the application itself. An application that has loaded the Python interpreter from a dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before exiting from the application.
**Bugs and caveats:** The destruction of modules and objects in modules is done in random order; this may cause destructors ([`__del__()`](../reference/datamodel.xhtml#object.__del__ "object.__del__") methods) to fail when they depend on other objects (even functions) or modules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions may not work properly if their initialization routine is called more than once; this can happen if an application calls [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") and [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") more than once.
3\.6 新版功能.
void `Py_Finalize`()This is a backwards-compatible version of [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") that disregards the return value.
## Process-wide parameters
int `Py_SetStandardStreamEncoding`(const char *\*encoding*, const char *\*errors*)This function should be called before [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"), if it is called at all. It specifies which encoding and error handling to use with standard IO, with the same meanings as in [`str.encode()`](../library/stdtypes.xhtml#str.encode "str.encode").
It overrides [`PYTHONIOENCODING`](../using/cmdline.xhtml#envvar-PYTHONIOENCODING) values, and allows embedding code to control IO encoding when the environment variable does not work.
`encoding` and/or `errors` may be NULL to use [`PYTHONIOENCODING`](../using/cmdline.xhtml#envvar-PYTHONIOENCODING) and/or default values (depending on other settings).
Note that [`sys.stderr`](../library/sys.xhtml#sys.stderr "sys.stderr") always uses the "backslashreplace" error handler, regardless of this (or any other) setting.
If [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") is called, this function will need to be called again in order to affect subsequent calls to [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize").
Returns `0` if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
3\.4 新版功能.
void `Py_SetProgramName`(const wchar\_t *\*name*)This function should be called before [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") is called for the first time, if it is called at all. It tells the interpreter the value of the `argv[0]` argument to the `main()` function of the program (converted to wide characters). This is used by [`Py_GetPath()`](#c.Py_GetPath "Py_GetPath") and some other functions below to find the Python run-time libraries relative to the interpreter executable. The default value is `'python'`. The argument should point to a zero-terminated wide character string in static storage whose contents will not change for the duration of the program's execution. No code in the Python interpreter will change the contents of this storage.
Use [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale") to decode a bytes string to get a `wchar_*` string.
wchar\* `Py_GetProgramName`()Return the program name set with [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName"), or the default. The returned string points into static storage; the caller should not modify its value.
wchar\_t\* `Py_GetPrefix`()Return the *prefix* for installed platform-independent files. This is derived through a number of complicated rules from the program name set with [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName") and some environment variables; for example, if the program name is `'/usr/local/bin/python'`, the prefix is `'/usr/local'`. The returned string points into static storage; the caller should not modify its value. This corresponds to the **prefix** variable in the top-level `Makefile` and the `--prefix` argument to the **configure**script at build time. The value is available to Python code as `sys.prefix`. It is only useful on Unix. See also the next function.
wchar\_t\* `Py_GetExecPrefix`()Return the *exec-prefix* for installed platform-*dependent* files. This is derived through a number of complicated rules from the program name set with [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName") and some environment variables; for example, if the program name is `'/usr/local/bin/python'`, the exec-prefix is `'/usr/local'`. The returned string points into static storage; the caller should not modify its value. This corresponds to the **exec\_prefix**variable in the top-level `Makefile` and the `--exec-prefix`argument to the **configure** script at build time. The value is available to Python code as `sys.exec_prefix`. It is only useful on Unix.
Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed in the `/usr/local/plat` subtree while platform independent may be installed in `/usr/local`.
Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are another platform, and Intel machines running Linux are yet another platform. Different major revisions of the same operating system generally also form different platforms. Non-Unix operating systems are a different story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from the Python version by which they were compiled!).
System administrators will know how to configure the **mount** or **automount** programs to share `/usr/local` between platforms while having `/usr/local/plat` be a different filesystem for each platform.
wchar\_t\* `Py_GetProgramFullPath`()Return the full program name of the Python executable; this is computed as a side-effect of deriving the default module search path from the program name (set by [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName") above). The returned string points into static storage; the caller should not modify its value. The value is available to Python code as `sys.executable`.
wchar\_t\* `Py_GetPath`()Return the default module search path; this is computed from the program name (set by [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName") above) and some environment variables. The returned string consists of a series of directory names separated by a platform dependent delimiter character. The delimiter character is `':'`on Unix and Mac OS X, `';'` on Windows. The returned string points into static storage; the caller should not modify its value. The list [`sys.path`](../library/sys.xhtml#sys.path "sys.path") is initialized with this value on interpreter startup; it can be (and usually is) modified later to change the search path for loading modules.
void `Py_SetPath`(const wchar\_t *\**)Set the default module search path. If this function is called before [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"), then [`Py_GetPath()`](#c.Py_GetPath "Py_GetPath") won't attempt to compute a default search path but uses the one provided instead. This is useful if Python is embedded by an application that has full knowledge of the location of all modules. The path components should be separated by the platform dependent delimiter character, which is `':'` on Unix and Mac OS X, `';'`on Windows.
This also causes [`sys.executable`](../library/sys.xhtml#sys.executable "sys.executable") to be set only to the raw program name (see [`Py_SetProgramName()`](#c.Py_SetProgramName "Py_SetProgramName")) and for [`sys.prefix`](../library/sys.xhtml#sys.prefix "sys.prefix") and [`sys.exec_prefix`](../library/sys.xhtml#sys.exec_prefix "sys.exec_prefix") to be empty. It is up to the caller to modify these if required after calling [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize").
Use [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale") to decode a bytes string to get a `wchar_*` string.
The path argument is copied internally, so the caller may free it after the call completes.
const char\* `Py_GetVersion`()Return the version of this Python interpreter. This is a string that looks something like
```
"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"
```
The first word (up to the first space character) is the current Python version; the first three characters are the major and minor version separated by a period. The returned string points into static storage; the caller should not modify its value. The value is available to Python code as [`sys.version`](../library/sys.xhtml#sys.version "sys.version").
const char\* `Py_GetPlatform`()Return the platform identifier for the current platform. On Unix, this is formed from the "official" name of the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is `'sunos5'`. On Mac OS X, it is `'darwin'`. On Windows, it is `'win'`. The returned string points into static storage; the caller should not modify its value. The value is available to Python code as `sys.platform`.
const char\* `Py_GetCopyright`()Return the official copyright string for the current Python version, for example
`'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'`
The returned string points into static storage; the caller should not modify its value. The value is available to Python code as `sys.copyright`.
const char\* `Py_GetCompiler`()Return an indication of the compiler used to build the current Python version, in square brackets, for example:
```
"[GCC 2.7.2.2]"
```
The returned string points into static storage; the caller should not modify its value. The value is available to Python code as part of the variable `sys.version`.
const char\* `Py_GetBuildInfo`()Return information about the sequence number and build date and time of the current Python interpreter instance, for example
```
"#67, Aug 1 1997, 22:34:28"
```
The returned string points into static storage; the caller should not modify its value. The value is available to Python code as part of the variable `sys.version`.
void `PySys_SetArgvEx`(int *argc*, wchar\_t *\*\*argv*, int *updatepath*)Set [`sys.argv`](../library/sys.xhtml#sys.argv "sys.argv") based on *argc* and *argv*. These parameters are similar to those passed to the program's `main()` function with the difference that the first entry should refer to the script file to be executed rather than the executable hosting the Python interpreter. If there isn't a script that will be run, the first entry in *argv* can be an empty string. If this function fails to initialize [`sys.argv`](../library/sys.xhtml#sys.argv "sys.argv"), a fatal condition is signalled using [`Py_FatalError()`](sys.xhtml#c.Py_FatalError "Py_FatalError").
If *updatepath* is zero, this is all the function does. If *updatepath*is non-zero, the function also modifies [`sys.path`](../library/sys.xhtml#sys.path "sys.path") according to the following algorithm:
- If the name of an existing script is passed in `argv[0]`, the absolute path of the directory where the script is located is prepended to [`sys.path`](../library/sys.xhtml#sys.path "sys.path").
- Otherwise (that is, if *argc* is `0` or `argv[0]` doesn't point to an existing file name), an empty string is prepended to [`sys.path`](../library/sys.xhtml#sys.path "sys.path"), which is the same as prepending the current working directory (`"."`).
Use [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale") to decode a bytes string to get a `wchar_*` string.
注解
It is recommended that applications embedding the Python interpreter for purposes other than executing a single script pass `0` as *updatepath*, and update [`sys.path`](../library/sys.xhtml#sys.path "sys.path") themselves if desired. See [CVE-2008-5983](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983) \[https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983\].
On versions before 3.1.3, you can achieve the same effect by manually popping the first [`sys.path`](../library/sys.xhtml#sys.path "sys.path") element after having called [`PySys_SetArgv()`](#c.PySys_SetArgv "PySys_SetArgv"), for example using:
```
PyRun_SimpleString("import sys; sys.path.pop(0)\n");
```
3\.1.3 新版功能.
void `PySys_SetArgv`(int *argc*, wchar\_t *\*\*argv*)This function works like [`PySys_SetArgvEx()`](#c.PySys_SetArgvEx "PySys_SetArgvEx") with *updatepath* set to `1` unless the **python** interpreter was started with the [`-I`](../using/cmdline.xhtml#id2).
Use [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale") to decode a bytes string to get a `wchar_*` string.
在 3.4 版更改: The *updatepath* value depends on [`-I`](../using/cmdline.xhtml#id2).
void `Py_SetPythonHome`(const wchar\_t *\*home*)Set the default "home" directory, that is, the location of the standard Python libraries. See [`PYTHONHOME`](../using/cmdline.xhtml#envvar-PYTHONHOME) for the meaning of the argument string.
The argument should point to a zero-terminated character string in static storage whose contents will not change for the duration of the program's execution. No code in the Python interpreter will change the contents of this storage.
Use [`Py_DecodeLocale()`](sys.xhtml#c.Py_DecodeLocale "Py_DecodeLocale") to decode a bytes string to get a `wchar_*` string.
w\_char\* `Py_GetPythonHome`()Return the default "home", that is, the value set by a previous call to [`Py_SetPythonHome()`](#c.Py_SetPythonHome "Py_SetPythonHome"), or the value of the [`PYTHONHOME`](../using/cmdline.xhtml#envvar-PYTHONHOME)environment variable if it is set.
## Thread State and the Global Interpreter Lock
The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there's a global lock, called the [global interpreter lock](../glossary.xhtml#term-global-interpreter-lock) or [GIL](../glossary.xhtml#term-gil), that must be held by the current thread before it can safely access Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when two threads simultaneously increment the reference count of the same object, the reference count could end up being incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired the [GIL](../glossary.xhtml#term-gil) may operate on Python objects or call Python/C API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see [`sys.setswitchinterval()`](../library/sys.xhtml#sys.setswitchinterval "sys.setswitchinterval")). The lock is also released around potentially blocking I/O operations like reading or writing a file, so that other Python threads can run in the meantime.
The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called [`PyThreadState`](#c.PyThreadState "PyThreadState"). There's also one global variable pointing to the current [`PyThreadState`](#c.PyThreadState "PyThreadState"): it can be retrieved using [`PyThreadState_Get()`](#c.PyThreadState_Get "PyThreadState_Get").
### Releasing the GIL from extension code
Most extension code manipulating the [GIL](../glossary.xhtml#term-gil) has the following simple structure:
```
Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.
```
This is so common that a pair of macros exists to simplify it:
```
Py_BEGIN_ALLOW_THREADS
... Do some blocking I/O operation ...
Py_END_ALLOW_THREADS
```
The [`Py_BEGIN_ALLOW_THREADS`](#c.Py_BEGIN_ALLOW_THREADS "Py_BEGIN_ALLOW_THREADS") macro opens a new block and declares a hidden local variable; the [`Py_END_ALLOW_THREADS`](#c.Py_END_ALLOW_THREADS "Py_END_ALLOW_THREADS") macro closes the block.
The block above expands to the following code:
```
PyThreadState *_save;
_save = PyEval_SaveThread();
... Do some blocking I/O operation ...
PyEval_RestoreThread(_save);
```
Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is released (since another thread could immediately acquire the lock and store its own thread state in the global variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.
注解
Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before calling long-running computations which don't need access to Python objects, such as compression or cryptographic functions operating over memory buffers. For example, the standard [`zlib`](../library/zlib.xhtml#module-zlib "zlib: Low-level interface to compression and decompression routines compatible with gzip.") and [`hashlib`](../library/hashlib.xhtml#module-hashlib "hashlib: Secure hash and message digest algorithms.") modules release the GIL when compressing or hashing data.
### Non-Python created threads
When threads are created using the dedicated Python APIs (such as the [`threading`](../library/threading.xhtml#module-threading "threading: Thread-based parallelism.") module), a thread state is automatically associated to them and the code showed above is therefore correct. However, when threads are created from C (for example by a third-party library with its own thread management), they don't hold the GIL, nor is there a thread state structure for them.
If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.
The [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") and [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release") functions do all of the above automatically. The typical idiom for calling into Python from a C thread is:
```
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */
/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);
```
Note that the `PyGILState_*()` functions assume there is only one global interpreter (created automatically by [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize")). Python supports the creation of additional interpreters (using [`Py_NewInterpreter()`](#c.Py_NewInterpreter "Py_NewInterpreter")), but mixing multiple interpreters and the `PyGILState_*()` API is unsupported.
Another important thing to note about threads is their behaviour in the face of the C `fork()` call. On most systems with `fork()`, after a process forks only the thread that issued the fork will exist. That also means any locks held by other threads will never be released. Python solves this for [`os.fork()`](../library/os.xhtml#os.fork "os.fork") by acquiring the locks it uses internally before the fork, and releasing them afterwards. In addition, it resets any [锁对象](../library/threading.xhtml#lock-objects) in the child. When extending or embedding Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such as `pthread_atfork()` would need to be used to accomplish the same thing. Additionally, when extending or embedding Python, calling `fork()`directly rather than through [`os.fork()`](../library/os.xhtml#os.fork "os.fork") (and returning to or calling into Python) may result in a deadlock by one of Python's internal locks being held by a thread that is defunct after the fork. [`PyOS_AfterFork_Child()`](sys.xhtml#c.PyOS_AfterFork_Child "PyOS_AfterFork_Child") tries to reset the necessary locks, but is not always able to.
### High-level API
These are the most commonly used types and functions when writing C extension code, or when embedding the Python interpreter:
`PyInterpreterState`This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same interpreter share their module administration and a few other internal items. There are no public members in this structure.
Threads belonging to different interpreters initially share nothing, except process state like available memory, open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter they belong.
`PyThreadState`This data structure represents the state of a single thread. The only public data member is [`PyInterpreterState *`](#c.PyInterpreterState "PyInterpreterState")`interp`, which points to this thread's interpreter state.
void `PyEval_InitThreads`()Initialize and acquire the global interpreter lock. It should be called in the main thread before creating a second thread or engaging in any other thread operations such as `PyEval_ReleaseThread(tstate)`. It is not needed before calling [`PyEval_SaveThread()`](#c.PyEval_SaveThread "PyEval_SaveThread") or [`PyEval_RestoreThread()`](#c.PyEval_RestoreThread "PyEval_RestoreThread").
This is a no-op when called for a second time.
在 3.7 版更改: This function is now called by [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"), so you don't have to call it yourself anymore.
在 3.2 版更改: This function cannot be called before [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") anymore.
int `PyEval_ThreadsInitialized`()Returns a non-zero value if [`PyEval_InitThreads()`](#c.PyEval_InitThreads "PyEval_InitThreads") has been called. This function can be called without holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.
在 3.7 版更改: The [GIL](../glossary.xhtml#term-gil) is now initialized by [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize").
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyEval_SaveThread`()Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread state to *NULL*, returning the previous thread state (which is not *NULL*). If the lock has been created, the current thread must have acquired it.
void `PyEval_RestoreThread`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state to *tstate*, which must not be *NULL*. If the lock has been created, the current thread must not have acquired it, otherwise deadlock ensues.
注解
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use `_Py_IsFinalizing()` or [`sys.is_finalizing()`](../library/sys.xhtml#sys.is_finalizing "sys.is_finalizing") to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyThreadState_Get`()Return the current thread state. The global interpreter lock must be held. When the current thread state is *NULL*, this issues a fatal error (so that the caller needn't check for *NULL*).
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyThreadState_Swap`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Swap the current thread state with the thread state given by the argument *tstate*, which may be *NULL*. The global interpreter lock must be held and is not released.
void `PyEval_ReInitThreads`()This function is called from [`PyOS_AfterFork_Child()`](sys.xhtml#c.PyOS_AfterFork_Child "PyOS_AfterFork_Child") to ensure that newly created child processes don't hold locks referring to threads which are not running in the child process.
The following functions use thread-local storage, and are not compatible with sub-interpreters:
PyGILState\_STATE `PyGILState_Ensure`()Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is matched with a call to [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release"). In general, other thread-related APIs may be used between [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") and [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release") calls as long as the thread state is restored to its previous state before the Release(). For example, normal usage of the [`Py_BEGIN_ALLOW_THREADS`](#c.Py_BEGIN_ALLOW_THREADS "Py_BEGIN_ALLOW_THREADS") and [`Py_END_ALLOW_THREADS`](#c.Py_END_ALLOW_THREADS "Py_END_ALLOW_THREADS") macros is acceptable.
The return value is an opaque "handle" to the thread state when [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") was called, and must be passed to [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release") to ensure Python is left in the same state. Even though recursive calls are allowed, these handles *cannot* be shared - each unique call to [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") must save the handle for its call to [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release").
When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure is a fatal error.
注解
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use `_Py_IsFinalizing()` or [`sys.is_finalizing()`](../library/sys.xhtml#sys.is_finalizing "sys.is_finalizing") to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.
void `PyGILState_Release`(PyGILState\_STATE)Release any resources previously acquired. After this call, Python's state will be the same as it was prior to the corresponding [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") call (but generally this state will be unknown to the caller, hence the use of the GILState API).
Every call to [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") must be matched by a call to [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release") on the same thread.
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyGILState_GetThisThreadState`()Get the current thread state for this thread. May return `NULL` if no GILState API has been used on the current thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made on the main thread. This is mainly a helper/diagnostic function.
int `PyGILState_Check`()Return `1` if the current thread is holding the GIL and `0` otherwise. This function can be called from any thread at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return `1`. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave differently.
3\.4 新版功能.
The following macros are normally used without a trailing semicolon; look for example usage in the Python source distribution.
`Py_BEGIN_ALLOW_THREADS`This macro expands to `{ PyThreadState *_save; _save = PyEval_SaveThread();`. Note that it contains an opening brace; it must be matched with a following [`Py_END_ALLOW_THREADS`](#c.Py_END_ALLOW_THREADS "Py_END_ALLOW_THREADS") macro. See above for further discussion of this macro.
`Py_END_ALLOW_THREADS`This macro expands to `PyEval_RestoreThread(_save); }`. Note that it contains a closing brace; it must be matched with an earlier [`Py_BEGIN_ALLOW_THREADS`](#c.Py_BEGIN_ALLOW_THREADS "Py_BEGIN_ALLOW_THREADS") macro. See above for further discussion of this macro.
`Py_BLOCK_THREADS`This macro expands to `PyEval_RestoreThread(_save);`: it is equivalent to [`Py_END_ALLOW_THREADS`](#c.Py_END_ALLOW_THREADS "Py_END_ALLOW_THREADS") without the closing brace.
`Py_UNBLOCK_THREADS`This macro expands to `_save = PyEval_SaveThread();`: it is equivalent to [`Py_BEGIN_ALLOW_THREADS`](#c.Py_BEGIN_ALLOW_THREADS "Py_BEGIN_ALLOW_THREADS") without the opening brace and variable declaration.
### Low-level API
All of the following functions must be called after [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize").
在 3.7 版更改: [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize") now initializes the [GIL](../glossary.xhtml#term-gil).
[PyInterpreterState](#c.PyInterpreterState "PyInterpreterState")\* `PyInterpreterState_New`()Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.
void `PyInterpreterState_Clear`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Reset all information in an interpreter state object. The global interpreter lock must be held.
void `PyInterpreterState_Delete`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have been reset with a previous call to [`PyInterpreterState_Clear()`](#c.PyInterpreterState_Clear "PyInterpreterState_Clear").
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyThreadState_New`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.
void `PyThreadState_Clear`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Reset all information in a thread state object. The global interpreter lock must be held.
void `PyThreadState_Delete`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset with a previous call to [`PyThreadState_Clear()`](#c.PyThreadState_Clear "PyThreadState_Clear").
PY\_INT64\_T `PyInterpreterState_GetID`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Return the interpreter's unique ID. If there was any error in doing so then `-1` is returned and an error is set.
3\.7 新版功能.
[PyObject](structures.xhtml#c.PyObject "PyObject")\* `PyThreadState_GetDict`()*Return value: Borrowed reference.*Return a dictionary in which extensions can store thread-specific state information. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function when no current thread state is available. If this function returns *NULL*, no exception has been raised and the caller should assume no current thread state is available.
int `PyThreadState_SetAsyncExc`(unsigned long *id*, [PyObject](structures.xhtml#c.PyObject "PyObject") *\*exc*)Asynchronously raise an exception in a thread. The *id* argument is the thread id of the target thread; *exc* is the exception object to be raised. This function does not steal any references to *exc*. To prevent naive misuse, you must write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states modified; this is normally one, but will be zero if the thread id isn't found. If *exc* is `NULL`, the pending exception (if any) for the thread is cleared. This raises no exceptions.
在 3.7 版更改: The type of the *id* parameter changed from `long` to `unsigned long`.
void `PyEval_AcquireThread`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Acquire the global interpreter lock and set the current thread state to *tstate*, which should not be *NULL*. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.
[`PyEval_RestoreThread()`](#c.PyEval_RestoreThread "PyEval_RestoreThread") is a higher-level function which is always available (even when threads have not been initialized).
void `PyEval_ReleaseThread`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Reset the current thread state to *NULL* and release the global interpreter lock. The lock must have been created earlier and must be held by the current thread. The *tstate* argument, which must not be *NULL*, is only used to check that it represents the current thread state --- if it isn't, a fatal error is reported.
[`PyEval_SaveThread()`](#c.PyEval_SaveThread "PyEval_SaveThread") is a higher-level function which is always available (even when threads have not been initialized).
void `PyEval_AcquireLock`()Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a deadlock ensues.
3\.2 版后已移除: This function does not update the current thread state. Please use [`PyEval_RestoreThread()`](#c.PyEval_RestoreThread "PyEval_RestoreThread") or [`PyEval_AcquireThread()`](#c.PyEval_AcquireThread "PyEval_AcquireThread")instead.
void `PyEval_ReleaseLock`()Release the global interpreter lock. The lock must have been created earlier.
3\.2 版后已移除: This function does not update the current thread state. Please use [`PyEval_SaveThread()`](#c.PyEval_SaveThread "PyEval_SaveThread") or [`PyEval_ReleaseThread()`](#c.PyEval_ReleaseThread "PyEval_ReleaseThread")instead.
## Sub-interpreter support
While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that. You can switch between sub-interpreters using the [`PyThreadState_Swap()`](#c.PyThreadState_Swap "PyThreadState_Swap") function. You can create and destroy them using the following functions:
[PyThreadState](#c.PyThreadState "PyThreadState")\* `Py_NewInterpreter`()Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code. In particular, the new interpreter has separate, independent versions of all imported modules, including the fundamental modules [`builtins`](../library/builtins.xhtml#module-builtins "builtins: The module that provides the built-in namespace."), [`__main__`](../library/__main__.xhtml#module-__main__ "__main__: The environment where the top-level script is run.") and [`sys`](../library/sys.xhtml#module-sys "sys: Access system-specific parameters and functions."). The table of loaded modules (`sys.modules`) and the module search path (`sys.path`) are also separate. The new environment has no `sys.argv`variable. It has new standard I/O stream file objects `sys.stdin`, `sys.stdout` and `sys.stderr` (however these refer to the same underlying file descriptors).
The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation of the new interpreter is unsuccessful, *NULL* is returned; no exception is set since the exception state is stored in the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the global interpreter lock must be held before calling this function and is still held when it returns; however, unlike most other Python/C API functions, there needn't be a current thread state on entry.)
Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is imported, it is initialized normally, and a (shallow) copy of its module's dictionary is squirreled away. When the same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents of this copy; the extension's `init` function is not called. Note that this is different from what happens when an extension is imported after the interpreter has been completely re-initialized by calling [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") and [`Py_Initialize()`](#c.Py_Initialize "Py_Initialize"); in that case, the extension's `initmodule` function *is* called again.
void `Py_EndInterpreter`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current thread state. See the discussion of thread states below. When the call returns, the current thread state is *NULL*. All thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling this function and is still held when it returns.) [`Py_FinalizeEx()`](#c.Py_FinalizeEx "Py_FinalizeEx") will destroy all sub-interpreters that haven't been explicitly destroyed at that point.
### Bugs and caveats
Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn't perfect --- for example, using low-level file operations like [`os.close()`](../library/os.xhtml#os.close "os.close") they can (accidentally or maliciously) affect each other's open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not work properly; this is especially likely when the extension makes use of (static) global variables, or when the extension manipulates its module's dictionary after its initialization. It is possible to insert objects created in one sub-interpreter into a namespace of another sub-interpreter; this should be done with great care to avoid sharing user-defined functions, methods, instances or classes between sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter's dictionary of loaded modules.
Also note that combining this functionality with `PyGILState_*()` APIs is delicate, because these APIs assume a bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters. It is highly recommended that you don't switch sub-interpreters between a pair of matching [`PyGILState_Ensure()`](#c.PyGILState_Ensure "PyGILState_Ensure") and [`PyGILState_Release()`](#c.PyGILState_Release "PyGILState_Release") calls. Furthermore, extensions (such as [`ctypes`](../library/ctypes.xhtml#module-ctypes "ctypes: A foreign function library for Python.")) using these APIs to allow calling of Python code from non-Python created threads will probably be broken when using sub-interpreters.
## Asynchronous Notifications
A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the form of a function pointer and a void pointer argument.
int `Py_AddPendingCall`(int (*\*func*)(void \*), void *\*arg*)Schedule a function to be called from the main interpreter thread. On success, `0` is returned and *func* is queued for being called in the main thread. On failure, `-1` is returned without setting any exception.
When successfully queued, *func* will be *eventually* called from the main interpreter thread with the argument *arg*. It will be called asynchronously with respect to normally running Python code, but with both these conditions met:
- on a [bytecode](../glossary.xhtml#term-bytecode) boundary;
- with the main thread holding the [global interpreter lock](../glossary.xhtml#term-global-interpreter-lock)(*func* can therefore use the full C API).
*func* must return `0` on success, or `-1` on failure with an exception set. *func* won't be interrupted to perform another asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock is released.
This function doesn't need a current thread state to run, and it doesn't need the global interpreter lock.
警告
This is a low-level function, only useful for very special cases. There is no guarantee that *func* will be called as quick as possible. If the main thread is busy executing a system call, *func* won't be called before the system call returns. This function is generally **not** suitable for calling Python code from arbitrary C threads. Instead, use the [PyGILState API](#gilstate).
3\.1 新版功能.
## Profiling and Tracing
The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are used for profiling, debugging, and coverage analysis tools.
This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported to the Python-level trace functions in previous versions.
int `(*Py_tracefunc)`([PyObject](structures.xhtml#c.PyObject "PyObject") *\*obj*, [PyFrameObject](veryhigh.xhtml#c.PyFrameObject "PyFrameObject") *\*frame*, int *what*, [PyObject](structures.xhtml#c.PyObject "PyObject") *\*arg*)The type of the trace function registered using [`PyEval_SetProfile()`](#c.PyEval_SetProfile "PyEval_SetProfile") and [`PyEval_SetTrace()`](#c.PyEval_SetTrace "PyEval_SetTrace"). The first parameter is the object passed to the registration function as *obj*, *frame* is the frame object to which the event pertains, *what* is one of the constants `PyTrace_CALL`, `PyTrace_EXCEPTION`, `PyTrace_LINE`, `PyTrace_RETURN`, `PyTrace_C_CALL`, `PyTrace_C_EXCEPTION`, `PyTrace_C_RETURN`, or `PyTrace_OPCODE`, and *arg* depends on the value of *what*:
*what* 的值
*arg* 的含义
`PyTrace_CALL`
总是 [`Py_None`](none.xhtml#c.Py_None "Py_None").
`PyTrace_EXCEPTION`
[`sys.exc_info()`](../library/sys.xhtml#sys.exc_info "sys.exc_info") 返回的异常信息。
`PyTrace_LINE`
总是 [`Py_None`](none.xhtml#c.Py_None "Py_None").
`PyTrace_RETURN`
返回给调用方的值,如果由异常引起,则返回NULL。
`PyTrace_C_CALL`
正在调用函数对象。
`PyTrace_C_EXCEPTION`
正在调用函数对象。
`PyTrace_C_RETURN`
正在调用函数对象。
`PyTrace_OPCODE`
总是 [`Py_None`](none.xhtml#c.Py_None "Py_None").
int `PyTrace_CALL`The value of the *what* parameter to a [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") function when a new call to a function or method is being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not reported as there is no control transfer to the Python bytecode in the corresponding frame.
int `PyTrace_EXCEPTION`The value of the *what* parameter to a [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") function when an exception has been raised. The callback function is called with this value for *what* when after any bytecode is processed after which the exception becomes set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives these events; they are not needed by the profiler.
int `PyTrace_LINE`The value passed as the *what* parameter to a [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") function (but not a profiling function) when a line-number event is being reported. It may be disabled for a frame by setting `f_trace_lines` to on that frame.
int `PyTrace_RETURN`The value for the *what* parameter to [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") functions when a call is about to return.
int `PyTrace_C_CALL`The value for the *what* parameter to [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") functions when a C function is about to be called.
int `PyTrace_C_EXCEPTION`The value for the *what* parameter to [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") functions when a C function has raised an exception.
int `PyTrace_C_RETURN`The value for the *what* parameter to [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") functions when a C function has returned.
int `PyTrace_OPCODE`The value for the *what* parameter to [`Py_tracefunc`](#c.Py_tracefunc "Py_tracefunc") functions (but not profiling functions) when a new opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by setting `f_trace_opcodes` to *1* on the frame.
void `PyEval_SetProfile`([Py\_tracefunc](#c.Py_tracefunc "Py_tracefunc") *func*, [PyObject](structures.xhtml#c.PyObject "PyObject") *\*obj*)Set the profiler function to *func*. The *obj* parameter is passed to the function as its first parameter, and may be any Python object, or *NULL*. If the profile function needs to maintain state, using a different value for *obj*for each thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events except `PyTrace_LINE``PyTrace_OPCODE` and `PyTrace_EXCEPTION`.
void `PyEval_SetTrace`([Py\_tracefunc](#c.Py_tracefunc "Py_tracefunc") *func*, [PyObject](structures.xhtml#c.PyObject "PyObject") *\*obj*)Set the tracing function to *func*. This is similar to [`PyEval_SetProfile()`](#c.PyEval_SetProfile "PyEval_SetProfile"), except the tracing function does receive line-number events and per-opcode events, but does not receive any event related to C function objects being called. Any trace function registered using [`PyEval_SetTrace()`](#c.PyEval_SetTrace "PyEval_SetTrace")will not receive `PyTrace_C_CALL`, `PyTrace_C_EXCEPTION` or `PyTrace_C_RETURN` as a value for the *what* parameter.
## Advanced Debugger Support
These functions are only intended to be used by advanced debugging tools.
[PyInterpreterState](#c.PyInterpreterState "PyInterpreterState")\* `PyInterpreterState_Head`()Return the interpreter state object at the head of the list of all such objects.
[PyInterpreterState](#c.PyInterpreterState "PyInterpreterState")\* `PyInterpreterState_Main`()Return the main interpreter state object.
[PyInterpreterState](#c.PyInterpreterState "PyInterpreterState")\* `PyInterpreterState_Next`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Return the next interpreter state object after *interp* from the list of all such objects.
[PyThreadState](#c.PyThreadState "PyThreadState") \* `PyInterpreterState_ThreadHead`([PyInterpreterState](#c.PyInterpreterState "PyInterpreterState") *\*interp*)Return the pointer to the first [`PyThreadState`](#c.PyThreadState "PyThreadState") object in the list of threads associated with the interpreter *interp*.
[PyThreadState](#c.PyThreadState "PyThreadState")\* `PyThreadState_Next`([PyThreadState](#c.PyThreadState "PyThreadState") *\*tstate*)Return the next thread state object after *tstate* from the list of all such objects belonging to the same [`PyInterpreterState`](#c.PyInterpreterState "PyInterpreterState") object.
## Thread Local Storage Support
The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native TLS implementation to support the Python-level thread local storage API ([`threading.local`](../library/threading.xhtml#threading.local "threading.local")). The CPython C level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a `void*` value per thread.
The GIL does *not* need to be held when calling these functions; they supply their own locking.
Note that `Python.h` does not include the declaration of the TLS APIs, you need to include `pythread.h` to use thread-local storage.
注解
None of these API functions handle memory management on behalf of the `void*` values. You need to allocate and deallocate them yourself. If the `void*` values happen to be [`PyObject*`](structures.xhtml#c.PyObject "PyObject"), these functions don't do refcount operations on them either.
### Thread Specific Storage (TSS) API
TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses a new type [`Py_tss_t`](#c.Py_tss_t "Py_tss_t") instead of `int` to represent thread keys.
3\.7 新版功能.
参见
"A New C-API for Thread-Local Storage in CPython" ([**PEP 539**](https://www.python.org/dev/peps/pep-0539) \[https://www.python.org/dev/peps/pep-0539\])
`Py_tss_t`This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS implementation, and it has an internal field representing the key's initialization state. There are no public members in this structure.
When [Py\_LIMITED\_API](stable.xhtml#stable) is not defined, static allocation of this type by [`Py_tss_NEEDS_INIT`](#c.Py_tss_NEEDS_INIT "Py_tss_NEEDS_INIT") is allowed.
`Py_tss_NEEDS_INIT`This macro expands to the initializer for [`Py_tss_t`](#c.Py_tss_t "Py_tss_t") variables. Note that this macro won't be defined with [Py\_LIMITED\_API](stable.xhtml#stable).
#### Dynamic Allocation
Dynamic allocation of the [`Py_tss_t`](#c.Py_tss_t "Py_tss_t"), required in extension modules built with [Py\_LIMITED\_API](stable.xhtml#stable), where static allocation of this type is not possible due to its implementation being opaque at build time.
[Py\_tss\_t](#c.Py_tss_t "Py_tss_t")\* `PyThread_tss_alloc`()Return a value which is the same state as a value initialized with [`Py_tss_NEEDS_INIT`](#c.Py_tss_NEEDS_INIT "Py_tss_NEEDS_INIT"), or *NULL* in the case of dynamic allocation failure.
void `PyThread_tss_free`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*)Free the given *key* allocated by [`PyThread_tss_alloc()`](#c.PyThread_tss_alloc "PyThread_tss_alloc"), after first calling [`PyThread_tss_delete()`](#c.PyThread_tss_delete "PyThread_tss_delete") to ensure any associated thread locals have been unassigned. This is a no-op if the *key*argument is NULL.
注解
A freed key becomes a dangling pointer, you should reset the key to NULL.
#### 方法
The parameter *key* of these functions must not be *NULL*. Moreover, the behaviors of [`PyThread_tss_set()`](#c.PyThread_tss_set "PyThread_tss_set") and [`PyThread_tss_get()`](#c.PyThread_tss_get "PyThread_tss_get") are undefined if the given [`Py_tss_t`](#c.Py_tss_t "Py_tss_t") has not been initialized by [`PyThread_tss_create()`](#c.PyThread_tss_create "PyThread_tss_create").
int `PyThread_tss_is_created`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*)Return a non-zero value if the given [`Py_tss_t`](#c.Py_tss_t "Py_tss_t") has been initialized by [`PyThread_tss_create()`](#c.PyThread_tss_create "PyThread_tss_create").
int `PyThread_tss_create`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*)Return a zero value on successful initialization of a TSS key. The behavior is undefined if the value pointed to by the *key* argument is not initialized by [`Py_tss_NEEDS_INIT`](#c.Py_tss_NEEDS_INIT "Py_tss_NEEDS_INIT"). This function can be called repeatedly on the same key -- calling it on an already initialized key is a no-op and immediately returns success.
void `PyThread_tss_delete`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*)Destroy a TSS key to forget the values associated with the key across all threads, and change the key's initialization state to uninitialized. A destroyed key is able to be initialized again by [`PyThread_tss_create()`](#c.PyThread_tss_create "PyThread_tss_create"). This function can be called repeatedly on the same key -- calling it on an already destroyed key is a no-op.
int `PyThread_tss_set`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*, void *\*value*)Return a zero value to indicate successfully associating a `void*`value with a TSS key in the current thread. Each thread has a distinct mapping of the key to a `void*` value.
void\* `PyThread_tss_get`([Py\_tss\_t](#c.Py_tss_t "Py_tss_t") *\*key*)Return the `void*` value associated with a TSS key in the current thread. This returns *NULL* if no value is associated with the key in the current thread.
### Thread Local Storage (TLS) API
3\.7 版后已移除: This API is superseded by [Thread Specific Storage (TSS) API](#thread-specific-storage-api).
注解
This version of the API does not support platforms where the native TLS key is defined in a way that cannot be safely cast to `int`. On such platforms, [`PyThread_create_key()`](#c.PyThread_create_key "PyThread_create_key") will return immediately with a failure status, and the other TLS functions will all be no-ops on such platforms.
由于上面提到的兼容性问题,不应在新代码中使用此版本的API。
int `PyThread_create_key`()void `PyThread_delete_key`(int *key*)int `PyThread_set_key_value`(int *key*, void *\*value*)void\* `PyThread_get_key_value`(int *key*)void `PyThread_delete_key_value`(int *key*)void `PyThread_ReInitTLS`()
### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](memory.xhtml "内存管理") |
- [上一页](datetime.xhtml "DateTime 对象") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python/C API 参考手册](index.xhtml) »
- $('.inline-search').show(0); |
© [版权所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 软件基金会是一个非盈利组织。 [请捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [发现了问题](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 创建。
- Python文档内容
- Python 有什么新变化?
- Python 3.7 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- C API 的改变
- 构建的改变
- 性能优化
- 其他 CPython 实现的改变
- 已弃用的 Python 行为
- 已弃用的 Python 模块、函数和方法
- 已弃用的 C API 函数和类型
- 平台支持的移除
- API 与特性的移除
- 移除的模块
- Windows 专属的改变
- 移植到 Python 3.7
- Python 3.7.1 中的重要变化
- Python 3.7.2 中的重要变化
- Python 3.6 有什么新变化A
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 其他改进
- 弃用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要变化
- Python 3.6.4 中的重要变化
- Python 3.6.5 中的重要变化
- Python 3.6.7 中的重要变化
- Python 3.5 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- Other module-level changes
- 性能优化
- Build and C API Changes
- 弃用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 发布重点
- 新的特性
- 新增模块
- 改进的模块
- CPython Implementation Changes
- 弃用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 发布重点
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他语言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 弃用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 多线程
- 性能优化
- Unicode
- Codecs
- 文档
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 性能优化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他语言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新变化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他语言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他语言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推导式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最终版
- Python 3.7.3 发布候选版 1
- Python 3.7.2 最终版
- Python 3.7.2 发布候选版 1
- Python 3.7.1 最终版
- Python 3.7.1 RC 2版本
- Python 3.7.1 发布候选版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 课前甜点
- 使用 Python 解释器
- 调用解释器
- 解释器的运行环境
- Python 的非正式介绍
- Python 作为计算器使用
- 走向编程的第一步
- 其他流程控制工具
- if 语句
- for 语句
- range() 函数
- break 和 continue 语句,以及循环中的 else 子句
- pass 语句
- 定义函数
- 函数定义的更多形式
- 小插曲:编码风格
- 数据结构
- 列表的更多特性
- del 语句
- 元组和序列
- 集合
- 字典
- 循环的技巧
- 深入条件控制
- 序列和其它类型的比较
- 模块
- 有关模块的更多信息
- 标准模块
- dir() 函数
- 包
- 输入输出
- 更漂亮的输出格式
- 读写文件
- 错误和异常
- 语法错误
- 异常
- 处理异常
- 抛出异常
- 用户自定义异常
- 定义清理操作
- 预定义的清理操作
- 类
- 名称和对象
- Python 作用域和命名空间
- 初探类
- 补充说明
- 继承
- 私有变量
- 杂项说明
- 迭代器
- 生成器
- 生成器表达式
- 标准库简介
- 操作系统接口
- 文件通配符
- 命令行参数
- 错误输出重定向和程序终止
- 字符串模式匹配
- 数学
- 互联网访问
- 日期和时间
- 数据压缩
- 性能测量
- 质量控制
- 自带电池
- 标准库简介 —— 第二部分
- 格式化输出
- 模板
- 使用二进制数据记录格式
- 多线程
- 日志
- 弱引用
- 用于操作列表的工具
- 十进制浮点运算
- 虚拟环境和包
- 概述
- 创建虚拟环境
- 使用pip管理包
- 接下来?
- 交互式编辑和编辑历史
- Tab 补全和编辑历史
- 默认交互式解释器的替代品
- 浮点算术:争议和限制
- 表示性错误
- 附录
- 交互模式
- 安装和使用 Python
- 命令行与环境
- 命令行
- 环境变量
- 在Unix平台中使用Python
- 获取最新版本的Python
- 构建Python
- 与Python相关的路径和文件
- 杂项
- 编辑器和集成开发环境
- 在Windows上使用 Python
- 完整安装程序
- Microsoft Store包
- nuget.org 安装包
- 可嵌入的包
- 替代捆绑包
- 配置Python
- 适用于Windows的Python启动器
- 查找模块
- 附加模块
- 在Windows上编译Python
- 其他平台
- 在苹果系统上使用 Python
- 获取和安装 MacPython
- IDE
- 安装额外的 Python 包
- Mac 上的图形界面编程
- 在 Mac 上分发 Python 应用程序
- 其他资源
- Python 语言参考
- 概述
- 其他实现
- 标注
- 词法分析
- 行结构
- 其他形符
- 标识符和关键字
- 字面值
- 运算符
- 分隔符
- 数据模型
- 对象、值与类型
- 标准类型层级结构
- 特殊方法名称
- 协程
- 执行模型
- 程序的结构
- 命名与绑定
- 异常
- 导入系统
- importlib
- 包
- 搜索
- 加载
- 基于路径的查找器
- 替换标准导入系统
- Package Relative Imports
- 有关 main 的特殊事项
- 开放问题项
- 参考文献
- 表达式
- 算术转换
- 原子
- 原型
- await 表达式
- 幂运算符
- 一元算术和位运算
- 二元算术运算符
- 移位运算
- 二元位运算
- 比较运算
- 布尔运算
- 条件表达式
- lambda 表达式
- 表达式列表
- 求值顺序
- 运算符优先级
- 简单语句
- 表达式语句
- 赋值语句
- assert 语句
- pass 语句
- del 语句
- return 语句
- yield 语句
- raise 语句
- break 语句
- continue 语句
- import 语句
- global 语句
- nonlocal 语句
- 复合语句
- if 语句
- while 语句
- for 语句
- try 语句
- with 语句
- 函数定义
- 类定义
- 协程
- 最高层级组件
- 完整的 Python 程序
- 文件输入
- 交互式输入
- 表达式输入
- 完整的语法规范
- Python 标准库
- 概述
- 可用性注释
- 内置函数
- 内置常量
- 由 site 模块添加的常量
- 内置类型
- 逻辑值检测
- 布尔运算 — and, or, not
- 比较
- 数字类型 — int, float, complex
- 迭代器类型
- 序列类型 — list, tuple, range
- 文本序列类型 — str
- 二进制序列类型 — bytes, bytearray, memoryview
- 集合类型 — set, frozenset
- 映射类型 — dict
- 上下文管理器类型
- 其他内置类型
- 特殊属性
- 内置异常
- 基类
- 具体异常
- 警告
- 异常层次结构
- 文本处理服务
- string — 常见的字符串操作
- re — 正则表达式操作
- 模块 difflib 是一个计算差异的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 数据库
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函数
- 二进制数据服务
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 数据类型
- datetime — 基础日期/时间数据类型
- calendar — General calendar-related functions
- collections — 容器数据类型
- collections.abc — 容器的抽象基类
- heapq — 堆队列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 浅层 (shallow) 和深层 (deep) 复制操作
- pprint — 数据美化输出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 数字和数学模块
- numbers — 数字的抽象基类
- math — 数学函数
- cmath — Mathematical functions for complex numbers
- decimal — 十进制定点和浮点运算
- fractions — 分数
- random — 生成伪随机数
- statistics — Mathematical statistics functions
- 函数式编程模块
- itertools — 为高效循环而创建迭代器的函数
- functools — 高阶函数和可调用对象上的操作
- operator — 标准运算符替代函数
- 文件和目录访问
- pathlib — 面向对象的文件系统路径
- os.path — 常见路径操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路径操作函数
- 数据持久化
- pickle —— Python 对象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 数据库 DB-API 2.0 接口模块
- 数据压缩和存档
- zlib — 与 gzip 兼容的压缩
- gzip — 对 gzip 格式的支持
- bz2 — 对 bzip2 压缩算法的支持
- lzma — 用 LZMA 算法压缩
- zipfile — 在 ZIP 归档中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件读写
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服务
- hashlib — 安全哈希与消息摘要
- hmac — 基于密钥的消息验证
- secrets — Generate secure random numbers for managing secrets
- 通用操作系统服务
- os — 操作系统接口模块
- io — 处理流的核心工具
- time — 时间的访问和转换
- argparse — 命令行选项、参数和子命令解析器
- getopt — C-style parser for command line options
- 模块 logging — Python 的日志记录工具
- logging.config — 日志记录配置
- logging.handlers — Logging handlers
- getpass — 便携式密码输入工具
- curses — 终端字符单元显示的处理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函数库
- 并发执行
- threading — 基于线程的并行
- multiprocessing — 基于进程的并行
- concurrent 包
- concurrent.futures — 启动并行任务
- subprocess — 子进程管理
- sched — 事件调度器
- queue — 一个同步的队列类
- _thread — 底层多线程 API
- _dummy_thread — _thread 的替代模块
- dummy_threading — 可直接替代 threading 模块。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 网络和进程间通信
- asyncio — 异步 I/O
- socket — 底层网络接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高级 I/O 复用库
- asyncore — 异步socket处理器
- asynchat — 异步 socket 指令/响应 处理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互联网数据处理
- email — 电子邮件与 MIME 处理包
- json — JSON 编码和解码器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 数据编码
- binhex — 对binhex4文件进行编码和解码
- binascii — 二进制和 ASCII 码互转
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 结构化标记处理工具
- html — 超文本标记语言支持
- html.parser — 简单的 HTML 和 XHTML 解析器
- html.entities — HTML 一般实体的定义
- XML处理模块
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互联网协议和支持
- webbrowser — 方便的Web浏览器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 处理模块
- urllib.request — 用于打开 URL 的可扩展库
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模块
- http.client — HTTP协议客户端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP协议客户端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服务器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服务端与客户端模块
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒体服务
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 读写 Sun AU 文件
- wave — 读写WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推测图像类型
- sndhdr — 推测声音文件的类型
- ossaudiodev — Access to OSS-compatible audio devices
- 国际化
- gettext — 多语种国际化服务
- locale — 国际化服务
- 程序框架
- turtle — 海龟绘图
- cmd — 支持面向行的命令解释器
- shlex — Simple lexical analysis
- Tk图形用户界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滚动文字控件
- IDLE
- 其他图形用户界面(GUI)包
- 开发工具
- typing — 类型标注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 单元测试框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自动将 Python 2 代码转为 Python 3 代码
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 调试和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 测量小代码片段的执行时间
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 软件打包和分发
- distutils — 构建和安装 Python 模块
- ensurepip — Bootstrapping the pip installer
- venv — 创建虚拟环境
- zipapp — Manage executable Python zip archives
- Python运行时服务
- sys — 系统相关的参数和函数
- sysconfig — Provide access to Python's configuration information
- builtins — 内建对象
- main — 顶层脚本环境
- warnings — Warning control
- dataclasses — 数据类
- contextlib — Utilities for with-statement contexts
- abc — 抽象基类
- atexit — 退出处理器
- traceback — Print or retrieve a stack traceback
- future — Future 语句定义
- gc — 垃圾回收器接口
- inspect — 检查对象
- site — Site-specific configuration hook
- 自定义 Python 解释器
- code — Interpreter base classes
- codeop — Compile Python code
- 导入模块
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找脚本使用的模块
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 语言服务
- parser — Access Python parse trees
- ast — 抽象语法树
- symtable — Access to the compiler's symbol tables
- symbol — 与 Python 解析树一起使用的常量
- token — 与Python解析树一起使用的常量
- keyword — 检验Python关键字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊缩进检测
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字节码反汇编器
- pickletools — Tools for pickle developers
- 杂项服务
- formatter — Generic output formatting
- Windows系统相关模块
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注册表访问
- winsound — Sound-playing interface for Windows
- Unix 专有服务
- posix — The most common POSIX system calls
- pwd — 用户密码数据库
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 终端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 库例程
- 被取代的模块
- optparse — Parser for command line options
- imp — Access the import internals
- 未创建文档的模块
- 平台特定模块
- 扩展和嵌入 Python 解释器
- 推荐的第三方工具
- 不使用第三方工具创建扩展
- 使用 C 或 C++ 扩展 Python
- 自定义扩展类型:教程
- 定义扩展类型:已分类主题
- 构建C/C++扩展
- 在Windows平台编译C和C++扩展
- 在更大的应用程序中嵌入 CPython 运行时
- Embedding Python in Another Application
- Python/C API 参考手册
- 概述
- 代码标准
- 包含文件
- 有用的宏
- 对象、类型和引用计数
- 异常
- 嵌入Python
- 调试构建
- 稳定的应用程序二进制接口
- The Very High Level Layer
- Reference Counting
- 异常处理
- Printing and clearing
- 抛出异常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 标准异常
- 标准警告类别
- 工具
- 操作系统实用程序
- 系统功能
- 过程控制
- 导入模块
- Data marshalling support
- 语句解释及变量编译
- 字符串转换与格式化
- 反射
- 编解码器注册与支持功能
- 抽象对象层
- Object Protocol
- 数字协议
- Sequence Protocol
- Mapping Protocol
- 迭代器协议
- 缓冲协议
- Old Buffer Protocol
- 具体的对象层
- 基本对象
- 数值对象
- 序列对象
- 容器对象
- 函数对象
- 其他对象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置变量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 内存管理
- 概述
- 原始内存接口
- Memory Interface
- 对象分配器
- 默认内存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 对象实现支持
- 在堆中分配对象
- Common Object Structures
- Type 对象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使对象类型支持循环垃圾回收
- API 和 ABI 版本管理
- 分发 Python 模块
- 关键术语
- 开源许可与协作
- 安装工具
- 阅读指南
- 我该如何...?
- ...为我的项目选择一个名字?
- ...创建和分发二进制扩展?
- 安装 Python 模块
- 关键术语
- 基本使用
- 我应如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安装 pip ?
- ... 只为当前用户安装软件包?
- ... 安装科学计算类 Python 软件包?
- ... 使用并行安装的多个 Python 版本?
- 常见的安装问题
- 在 Linux 的系统 Python 版本上安装
- 未安装 pip
- 安装二进制编译扩展
- Python 常用指引
- 将 Python 2 代码迁移到 Python 3
- 简要说明
- 详情
- 将扩展模块移植到 Python 3
- 条件编译
- 对象API的更改
- 模块初始化和状态
- CObject 替换为 Capsule
- 其他选项
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 实现描述器
- 摘要
- 定义和简介
- 描述器协议
- 发起调用描述符
- 描述符示例
- Properties
- 函数和方法
- Static Methods and Class Methods
- 函数式编程指引
- 概述
- 迭代器
- 生成器表达式和列表推导式
- 生成器
- 内置函数
- itertools 模块
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文献
- 日志 HOWTO
- 日志基础教程
- 进阶日志教程
- 日志级别
- 有用的处理程序
- 记录日志中引发的异常
- 使用任意对象作为消息
- 优化
- 日志操作手册
- 在多个模块中使用日志
- 在多线程中使用日志
- 使用多个日志处理器和多种格式化
- 在多个地方记录日志
- 日志服务器配置示例
- 处理日志处理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正则表达式HOWTO
- 概述
- 简单模式
- 使用正则表达式
- 更多模式能力
- 修改字符串
- 常见问题
- 反馈
- 套接字编程指南
- 套接字
- 创建套接字
- 使用一个套接字
- 断开连接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 关键函数
- Operator 模块函数
- 升序和降序
- 排序稳定性和排序复杂度
- 使用装饰-排序-去装饰的旧方法
- 使用 cmp 参数的旧方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包获取网络资源
- 概述
- Fetching URLs
- 处理异常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 脚注
- Argparse 教程
- 概念
- 基础
- 位置参数介绍
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模块介绍
- 创建 Address/Network/Interface 对象
- 审查 Address/Network/Interface 对象
- Network 作为 Address 列表
- 比较
- 将IP地址与其他模块一起使用
- 实例创建失败时获取更多详细信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 检测CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常见问题
- Python常见问题
- 一般信息
- 现实世界中的 Python
- 编程常见问题
- 一般问题
- 核心语言
- 数字和字符串
- 性能
- 序列(元组/列表)
- 对象
- 模块
- 设计和历史常见问题
- 为什么Python使用缩进来分组语句?
- 为什么简单的算术运算得到奇怪的结果?
- 为什么浮点计算不准确?
- 为什么Python字符串是不可变的?
- 为什么必须在方法定义和调用中显式使用“self”?
- 为什么不能在表达式中赋值?
- 为什么Python对某些功能(例如list.index())使用方法来实现,而其他功能(例如len(List))使用函数实现?
- 为什么 join()是一个字符串方法而不是列表或元组方法?
- 异常有多快?
- 为什么Python中没有switch或case语句?
- 难道不能在解释器中模拟线程,而非得依赖特定于操作系统的线程实现吗?
- 为什么lambda表达式不能包含语句?
- 可以将Python编译为机器代码,C或其他语言吗?
- Python如何管理内存?
- 为什么CPython不使用更传统的垃圾回收方案?
- CPython退出时为什么不释放所有内存?
- 为什么有单独的元组和列表数据类型?
- 列表是如何在CPython中实现的?
- 字典是如何在CPython中实现的?
- 为什么字典key必须是不可变的?
- 为什么 list.sort() 没有返回排序列表?
- 如何在Python中指定和实施接口规范?
- 为什么没有goto?
- 为什么原始字符串(r-strings)不能以反斜杠结尾?
- 为什么Python没有属性赋值的“with”语句?
- 为什么 if/while/def/class语句需要冒号?
- 为什么Python在列表和元组的末尾允许使用逗号?
- 代码库和插件 FAQ
- 通用的代码库问题
- 通用任务
- 线程相关
- 输入输出
- 网络 / Internet 编程
- 数据库
- 数学和数字
- 扩展/嵌入常见问题
- 可以使用C语言中创建自己的函数吗?
- 可以使用C++语言中创建自己的函数吗?
- C很难写,有没有其他选择?
- 如何从C执行任意Python语句?
- 如何从C中评估任意Python表达式?
- 如何从Python对象中提取C的值?
- 如何使用Py_BuildValue()创建任意长度的元组?
- 如何从C调用对象的方法?
- 如何捕获PyErr_Print()(或打印到stdout / stderr的任何内容)的输出?
- 如何从C访问用Python编写的模块?
- 如何从Python接口到C ++对象?
- 我使用Setup文件添加了一个模块,为什么make失败了?
- 如何调试扩展?
- 我想在Linux系统上编译一个Python模块,但是缺少一些文件。为什么?
- 如何区分“输入不完整”和“输入无效”?
- 如何找到未定义的g++符号__builtin_new或__pure_virtual?
- 能否创建一个对象类,其中部分方法在C中实现,而其他方法在Python中实现(例如通过继承)?
- Python在Windows上的常见问题
- 我怎样在Windows下运行一个Python程序?
- 我怎么让 Python 脚本可执行?
- 为什么有时候 Python 程序会启动缓慢?
- 我怎样使用Python脚本制作可执行文件?
- *.pyd 文件和DLL文件相同吗?
- 我怎样将Python嵌入一个Windows程序?
- 如何让编辑器不要在我的 Python 源代码中插入 tab ?
- 如何在不阻塞的情况下检查按键?
- 图形用户界面(GUI)常见问题
- 图形界面常见问题
- Python 是否有平台无关的图形界面工具包?
- 有哪些Python的GUI工具是某个平台专用的?
- 有关Tkinter的问题
- “为什么我的电脑上安装了 Python ?”
- 什么是Python?
- 为什么我的电脑上安装了 Python ?
- 我能删除 Python 吗?
- 术语对照表
- 文档说明
- Python 文档贡献者
- 解决 Bug
- 文档错误
- 使用 Python 的错误追踪系统
- 开始为 Python 贡献您的知识
- 版权
- 历史和许可证
- 软件历史
- 访问Python或以其他方式使用Python的条款和条件
- Python 3.7.3 的 PSF 许可协议
- Python 2.0 的 BeOpen.com 许可协议
- Python 1.6.1 的 CNRI 许可协议
- Python 0.9.0 至 1.2 的 CWI 许可协议
- 集成软件的许可和认可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec