### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](netrc.xhtml "netrc --- netrc file processing") |
- [上一页](csv.xhtml "csv --- CSV 文件读写") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 标准库](index.xhtml) »
- [文件格式](fileformats.xhtml) »
- $('.inline-search').show(0); |
# [`configparser`](#module-configparser "configparser: Configuration file parser.") --- Configuration file parser
**Source code:** [Lib/configparser.py](https://github.com/python/cpython/tree/3.7/Lib/configparser.py) \[https://github.com/python/cpython/tree/3.7/Lib/configparser.py\]
- - - - - -
This module provides the [`ConfigParser`](#configparser.ConfigParser "configparser.ConfigParser") class which implements a basic configuration language which provides a structure similar to what's found in Microsoft Windows INI files. You can use this to write Python programs which can be customized by end users easily.
注解
This library does *not* interpret or write the value-type prefixes used in the Windows Registry extended version of INI syntax.
参见
模块 [`shlex`](shlex.xhtml#module-shlex "shlex: Simple lexical analysis for Unix shell-like languages.")Support for creating Unix shell-like mini-languages which can be used as an alternate format for application configuration files.
模块 [`json`](json.xhtml#module-json "json: Encode and decode the JSON format.")The json module implements a subset of JavaScript syntax which can also be used for this purpose.
## Quick Start
Let's take a very basic configuration file that looks like this:
```
[DEFAULT]
ServerAliveInterval = 45
Compression = yes
CompressionLevel = 9
ForwardX11 = yes
[bitbucket.org]
User = hg
[topsecret.server.com]
Port = 50022
ForwardX11 = no
```
The structure of INI files is described [in the following section](#supported-ini-file-structure). Essentially, the file consists of sections, each of which contains keys with values. [`configparser`](#module-configparser "configparser: Configuration file parser.") classes can read and write such files. Let's start by creating the above configuration file programmatically.
```
>>> import configparser
>>> config = configparser.ConfigParser()
>>> config['DEFAULT'] = {'ServerAliveInterval': '45',
... 'Compression': 'yes',
... 'CompressionLevel': '9'}
>>> config['bitbucket.org'] = {}
>>> config['bitbucket.org']['User'] = 'hg'
>>> config['topsecret.server.com'] = {}
>>> topsecret = config['topsecret.server.com']
>>> topsecret['Port'] = '50022' # mutates the parser
>>> topsecret['ForwardX11'] = 'no' # same here
>>> config['DEFAULT']['ForwardX11'] = 'yes'
>>> with open('example.ini', 'w') as configfile:
... config.write(configfile)
...
```
As you can see, we can treat a config parser much like a dictionary. There are differences, [outlined later](#mapping-protocol-access), but the behavior is very close to what you would expect from a dictionary.
Now that we have created and saved a configuration file, let's read it back and explore the data it holds.
```
>>> config = configparser.ConfigParser()
>>> config.sections()
[]
>>> config.read('example.ini')
['example.ini']
>>> config.sections()
['bitbucket.org', 'topsecret.server.com']
>>> 'bitbucket.org' in config
True
>>> 'bytebong.com' in config
False
>>> config['bitbucket.org']['User']
'hg'
>>> config['DEFAULT']['Compression']
'yes'
>>> topsecret = config['topsecret.server.com']
>>> topsecret['ForwardX11']
'no'
>>> topsecret['Port']
'50022'
>>> for key in config['bitbucket.org']:
... print(key)
user
compressionlevel
serveraliveinterval
compression
forwardx11
>>> config['bitbucket.org']['ForwardX11']
'yes'
```
As we can see above, the API is pretty straightforward. The only bit of magic involves the `DEFAULT` section which provides default values for all other sections [1](#id14). Note also that keys in sections are case-insensitive and stored in lowercase [1](#id14).
## Supported Datatypes
Config parsers do not guess datatypes of values in configuration files, always storing them internally as strings. This means that if you need other datatypes, you should convert on your own:
```
>>> int(topsecret['Port'])
50022
>>> float(topsecret['CompressionLevel'])
9.0
```
Since this task is so common, config parsers provide a range of handy getter methods to handle integers, floats and booleans. The last one is the most interesting because simply passing the value to `bool()` would do no good since `bool('False')` is still `True`. This is why config parsers also provide [`getboolean()`](#configparser.ConfigParser.getboolean "configparser.ConfigParser.getboolean"). This method is case-insensitive and recognizes Boolean values from `'yes'`/`'no'`, `'on'`/`'off'`, `'true'`/`'false'` and `'1'`/`'0'` [1](#id14). For example:
```
>>> topsecret.getboolean('ForwardX11')
False
>>> config['bitbucket.org'].getboolean('ForwardX11')
True
>>> config.getboolean('bitbucket.org', 'Compression')
True
```
Apart from [`getboolean()`](#configparser.ConfigParser.getboolean "configparser.ConfigParser.getboolean"), config parsers also provide equivalent [`getint()`](#configparser.ConfigParser.getint "configparser.ConfigParser.getint") and [`getfloat()`](#configparser.ConfigParser.getfloat "configparser.ConfigParser.getfloat") methods. You can register your own converters and customize the provided ones. [1](#id14)
## Fallback Values
As with a dictionary, you can use a section's `get()` method to provide fallback values:
```
>>> topsecret.get('Port')
'50022'
>>> topsecret.get('CompressionLevel')
'9'
>>> topsecret.get('Cipher')
>>> topsecret.get('Cipher', '3des-cbc')
'3des-cbc'
```
Please note that default values have precedence over fallback values. For instance, in our example the `'CompressionLevel'` key was specified only in the `'DEFAULT'` section. If we try to get it from the section `'topsecret.server.com'`, we will always get the default, even if we specify a fallback:
```
>>> topsecret.get('CompressionLevel', '3')
'9'
```
One more thing to be aware of is that the parser-level `get()` method provides a custom, more complex interface, maintained for backwards compatibility. When using this method, a fallback value can be provided via the `fallback` keyword-only argument:
```
>>> config.get('bitbucket.org', 'monster',
... fallback='No such things as monsters')
'No such things as monsters'
```
The same `fallback` argument can be used with the [`getint()`](#configparser.ConfigParser.getint "configparser.ConfigParser.getint"), [`getfloat()`](#configparser.ConfigParser.getfloat "configparser.ConfigParser.getfloat") and [`getboolean()`](#configparser.ConfigParser.getboolean "configparser.ConfigParser.getboolean") methods, for example:
```
>>> 'BatchMode' in topsecret
False
>>> topsecret.getboolean('BatchMode', fallback=True)
True
>>> config['DEFAULT']['BatchMode'] = 'no'
>>> topsecret.getboolean('BatchMode', fallback=True)
False
```
## Supported INI File Structure
A configuration file consists of sections, each led by a `[section]` header, followed by key/value entries separated by a specific string (`=` or `:` by default [1](#id14)). By default, section names are case sensitive but keys are not [1](#id14). Leading and trailing whitespace is removed from keys and values. Values can be omitted, in which case the key/value delimiter may also be left out. Values can also span multiple lines, as long as they are indented deeper than the first line of the value. Depending on the parser's mode, blank lines may be treated as parts of multiline values or ignored.
Configuration files may include comments, prefixed by specific characters (`#` and `;` by default [1](#id14)). Comments may appear on their own on an otherwise empty line, possibly indented. [1](#id14)
例如:
```
[Simple Values]
key=value
spaces in keys=allowed
spaces in values=allowed as well
spaces around the delimiter = obviously
you can also use : to delimit keys from values
[All Values Are Strings]
values like this: 1000000
or this: 3.14159265359
are they treated as numbers? : no
integers, floats and booleans are held as: strings
can use the API to get converted values directly: true
[Multiline Values]
chorus: I'm a lumberjack, and I'm okay
I sleep all night and I work all day
[No Values]
key_without_value
empty string value here =
[You can use comments]
# like this
; or this
# By default only in an empty line.
# Inline comments can be harmful because they prevent users
# from using the delimiting characters as parts of values.
# That being said, this can be customized.
[Sections Can Be Indented]
can_values_be_as_well = True
does_that_mean_anything_special = False
purpose = formatting for readability
multiline_values = are
handled just fine as
long as they are indented
deeper than the first line
of a value
# Did I mention we can indent comments, too?
```
## Interpolation of values
On top of the core functionality, [`ConfigParser`](#configparser.ConfigParser "configparser.ConfigParser") supports interpolation. This means values can be preprocessed before returning them from `get()` calls.
*class* `configparser.``BasicInterpolation`The default implementation used by [`ConfigParser`](#configparser.ConfigParser "configparser.ConfigParser"). It enables values to contain format strings which refer to other values in the same section, or values in the special default section [1](#id14). Additional default values can be provided on initialization.
例如:
```
[Paths]
home_dir: /Users
my_dir: %(home_dir)s/lumberjack
my_pictures: %(my_dir)s/Pictures
```
In the example above, [`ConfigParser`](#configparser.ConfigParser "configparser.ConfigParser") with *interpolation* set to `BasicInterpolation()` would resolve `%(home_dir)s` to the value of `home_dir` (`/Users` in this case). `%(my_dir)s` in effect would resolve to `/Users/lumberjack`. All interpolations are done on demand so keys used in the chain of references do not have to be specified in any specific order in the configuration file.
With `interpolation` set to `None`, the parser would simply return `%(my_dir)s/Pictures` as the value of `my_pictures` and `%(home_dir)s/lumberjack` as the value of `my_dir`.
*class* `configparser.``ExtendedInterpolation`An alternative handler for interpolation which implements a more advanced syntax, used for instance in `zc.buildout`. Extended interpolation is using `${section:option}` to denote a value from a foreign section. Interpolation can span multiple levels. For convenience, if the `section:` part is omitted, interpolation defaults to the current section (and possibly the default values from the special section).
For example, the configuration specified above with basic interpolation, would look like this with extended interpolation:
```
[Paths]
home_dir: /Users
my_dir: ${home_dir}/lumberjack
my_pictures: ${my_dir}/Pictures
```
Values from other sections can be fetched as well:
```
[Common]
home_dir: /Users
library_dir: /Library
system_dir: /System
macports_dir: /opt/local
[Frameworks]
Python: 3.2
path: ${Common:system_dir}/Library/Frameworks/
[Arthur]
nickname: Two Sheds
last_name: Jackson
my_dir: ${Common:home_dir}/twosheds
my_pictures: ${my_dir}/Pictures
python_dir: ${Frameworks:path}/Python/Versions/${Frameworks:Python}
```
## Mapping Protocol Access
3\.2 新版功能.
Mapping protocol access is a generic name for functionality that enables using custom objects as if they were dictionaries. In case of [`configparser`](#module-configparser "configparser: Configuration file parser."), the mapping interface implementation is using the `parser['section']['option']` notation.
`parser['section']` in particular returns a proxy for the section's data in the parser. This means that the values are not copied but they are taken from the original parser on demand. What's even more important is that when values are changed on a section proxy, they are actually mutated in the original parser.
[`configparser`](#module-configparser "configparser: Configuration file parser.") objects behave as close to actual dictionaries as possible. The mapping interface is complete and adheres to the [`MutableMapping`](collections.abc.xhtml#collections.abc.MutableMapping "collections.abc.MutableMapping") ABC. However, there are a few differences that should be taken into account:
- By default, all keys in sections are accessible in a case-insensitive manner [1](#id14). E.g. `for option in parser["section"]` yields only `optionxform`'ed option key names. This means lowercased keys by default. At the same time, for a section that holds the key `'a'`, both expressions return `True`:
```
"a" in parser["section"]
"A" in parser["section"]
```
- All sections include `DEFAULTSECT` values as well which means that `.clear()` on a section may not leave the section visibly empty. This is because default values cannot be deleted from the section (because technically they are not there). If they are overridden in the section, deleting causes the default value to be visible again. Trying to delete a default value causes a [`KeyError`](exceptions.xhtml#KeyError "KeyError").
- `DEFAULTSECT` cannot be removed from the parser:
- trying to delete it raises [`ValueError`](exceptions.xhtml#ValueError "ValueError"),
- `parser.clear()` leaves it intact,
- `parser.popitem()` never returns it.
- `parser.get(section, option, **kwargs)` - the second argument is **not**a fallback value. Note however that the section-level `get()` methods are compatible both with the mapping protocol and the classic configparser API.
- `parser.items()` is compatible with the mapping protocol (returns a list of *section\_name*, *section\_proxy* pairs including the DEFAULTSECT). However, this method can also be invoked with arguments:
```
parser.items(section, raw,
vars)
```
. The latter call returns a list of *option*, *value* pairs for a specified `section`, with all interpolations expanded (unless `raw=True` is provided).
The mapping protocol is implemented on top of the existing legacy API so that subclasses overriding the original interface still should have mappings working as expected.
## Customizing Parser Behaviour
There are nearly as many INI format variants as there are applications using it. [`configparser`](#module-configparser "configparser: Configuration file parser.") goes a long way to provide support for the largest sensible set of INI styles available. The default functionality is mainly dictated by historical background and it's very likely that you will want to customize some of the features.
The most common way to change the way a specific config parser works is to use the [`__init__()`](../reference/datamodel.xhtml#object.__init__ "object.__init__") options:
- *defaults*, default value: `None`
This option accepts a dictionary of key-value pairs which will be initially put in the `DEFAULT` section. This makes for an elegant way to support concise configuration files that don't specify values which are the same as the documented default.
Hint: if you want to specify default values for a specific section, use `read_dict()` before you read the actual file.
- *dict\_type*, default value: [`collections.OrderedDict`](collections.xhtml#collections.OrderedDict "collections.OrderedDict")
This option has a major impact on how the mapping protocol will behave and how the written configuration files look. With the default ordered dictionary, every section is stored in the order they were added to the parser. Same goes for options within sections.
An alternative dictionary type can be used for example to sort sections and options on write-back. You can also use a regular dictionary for performance reasons.
Please note: there are ways to add a set of key-value pairs in a single operation. When you use a regular dictionary in those operations, the order of the keys will be ordered because dict preserves order from Python 3.7. For example:
```
>>> parser = configparser.ConfigParser()
>>> parser.read_dict({'section1': {'key1': 'value1',
... 'key2': 'value2',
... 'key3': 'value3'},
... 'section2': {'keyA': 'valueA',
... 'keyB': 'valueB',
... 'keyC': 'valueC'},
... 'section3': {'foo': 'x',
... 'bar': 'y',
... 'baz': 'z'}
... })
>>> parser.sections()
['section1', 'section2', 'section3']
>>> [option for option in parser['section3']]
['foo', 'bar', 'baz']
```
- *allow\_no\_value*, default value: `False`
Some configuration files are known to include settings without values, but which otherwise conform to the syntax supported by [`configparser`](#module-configparser "configparser: Configuration file parser."). The *allow\_no\_value* parameter to the constructor can be used to indicate that such values should be accepted:
```
>>> import configparser
>>> sample_config = """
... [mysqld]
... user = mysql
... pid-file = /var/run/mysqld/mysqld.pid
... skip-external-locking
... old_passwords = 1
... skip-bdb
... # we don't need ACID today
... skip-innodb
... """
>>> config = configparser.ConfigParser(allow_no_value=True)
>>> config.read_string(sample_config)
>>> # Settings with values are treated as before:
>>> config["mysqld"]["user"]
'mysql'
>>> # Settings without values provide None:
>>> config["mysqld"]["skip-bdb"]
>>> # Settings which aren't specified still raise an error:
>>> config["mysqld"]["does-not-exist"]
Traceback (most recent call last):
...
KeyError: 'does-not-exist'
```
- *delimiters*, default value: `('=', ':')`
Delimiters are substrings that delimit keys from values within a section. The first occurrence of a delimiting substring on a line is considered a delimiter. This means values (but not keys) can contain the delimiters.
See also the *space\_around\_delimiters* argument to [`ConfigParser.write()`](#configparser.ConfigParser.write "configparser.ConfigParser.write").
- *comment\_prefixes*, default value: `('#', ';')`
- *inline\_comment\_prefixes*, default value: `None`
Comment prefixes are strings that indicate the start of a valid comment within a config file. *comment\_prefixes* are used only on otherwise empty lines (optionally indented) whereas *inline\_comment\_prefixes* can be used after every valid value (e.g. section names, options and empty lines as well). By default inline comments are disabled and `'#'` and `';'` are used as prefixes for whole line comments.
在 3.2 版更改: In previous versions of [`configparser`](#module-configparser "configparser: Configuration file parser.") behaviour matched `comment_prefixes=('#',';')` and `inline_comment_prefixes=(';',)`.
Please note that config parsers don't support escaping of comment prefixes so using *inline\_comment\_prefixes* may prevent users from specifying option values with characters used as comment prefixes. When in doubt, avoid setting *inline\_comment\_prefixes*. In any circumstances, the only way of storing comment prefix characters at the beginning of a line in multiline values is to interpolate the prefix, for example:
```
>>> from configparser import ConfigParser, ExtendedInterpolation
>>> parser = ConfigParser(interpolation=ExtendedInterpolation())
>>> # the default BasicInterpolation could be used as well
>>> parser.read_string("""
... [DEFAULT]
... hash = #
...
... [hashes]
... shebang =
... ${hash}!/usr/bin/env python
... ${hash} -*- coding: utf-8 -*-
...
... extensions =
... enabled_extension
... another_extension
... #disabled_by_comment
... yet_another_extension
...
... interpolation not necessary = if # is not at line start
... even in multiline values = line #1
... line #2
... line #3
... """)
>>> print(parser['hashes']['shebang'])
#!/usr/bin/env python
# -*- coding: utf-8 -*-
>>> print(parser['hashes']['extensions'])
enabled_extension
another_extension
yet_another_extension
>>> print(parser['hashes']['interpolation not necessary'])
if # is not at line start
>>> print(parser['hashes']['even in multiline values'])
line #1
line #2
line #3
```
- *strict*, default value: `True`
When set to `True`, the parser will not allow for any section or option duplicates while reading from a single source (using `read_file()`, `read_string()` or `read_dict()`). It is recommended to use strict parsers in new applications.
在 3.2 版更改: In previous versions of [`configparser`](#module-configparser "configparser: Configuration file parser.") behaviour matched `strict=False`.
- *empty\_lines\_in\_values*, default value: `True`
In config parsers, values can span multiple lines as long as they are indented more than the key that holds them. By default parsers also let empty lines to be parts of values. At the same time, keys can be arbitrarily indented themselves to improve readability. In consequence, when configuration files get big and complex, it is easy for the user to lose track of the file structure. Take for instance:
```
[Section]
key = multiline
value with a gotcha
this = is still a part of the multiline value of 'key'
```
This can be especially problematic for the user to see if she's using a proportional font to edit the file. That is why when your application does not need values with empty lines, you should consider disallowing them. This will make empty lines split keys every time. In the example above, it would produce two keys, `key` and `this`.
- *default\_section*, default value: `configparser.DEFAULTSECT` (that is: `"DEFAULT"`)
The convention of allowing a special section of default values for other sections or interpolation purposes is a powerful concept of this library, letting users create complex declarative configurations. This section is normally called `"DEFAULT"` but this can be customized to point to any other valid section name. Some typical values include: `"general"` or `"common"`. The name provided is used for recognizing default sections when reading from any source and is used when writing configuration back to a file. Its current value can be retrieved using the `parser_instance.default_section` attribute and may be modified at runtime (i.e. to convert files from one format to another).
- *interpolation*, default value: `configparser.BasicInterpolation`
Interpolation behaviour may be customized by providing a custom handler through the *interpolation* argument. `None` can be used to turn off interpolation completely, `ExtendedInterpolation()` provides a more advanced variant inspired by `zc.buildout`. More on the subject in the [dedicated documentation section](#interpolation-of-values). [`RawConfigParser`](#configparser.RawConfigParser "configparser.RawConfigParser") has a default value of `None`.
- *converters*, default value: not set
Config parsers provide option value getters that perform type conversion. By default [`getint()`](#configparser.ConfigParser.getint "configparser.ConfigParser.getint"), [`getfloat()`](#configparser.ConfigParser.getfloat "configparser.ConfigParser.getfloat"), and [`getboolean()`](#configparser.ConfigParser.getboolean "configparser.ConfigParser.getboolean") are implemented. Should other getters be desirable, users may define them in a subclass or pass a dictionary where each key is a name of the converter and each value is a callable implementing said conversion. For instance, passing `{'decimal': decimal.Decimal}` would add `getdecimal()` on both the parser object and all section proxies. In other words, it will be possible to write both `parser_instance.getdecimal('section', 'key', fallback=0)` and `parser_instance['section'].getdecimal('key', 0)`.
If the converter needs to access the state of the parser, it can be implemented as a method on a config parser subclass. If the name of this method starts with `get`, it will be available on all section proxies, in the dict-compatible form (see the `getdecimal()` example above).
More advanced customization may be achieved by overriding default values of these parser attributes. The defaults are defined on the classes, so they may be overridden by subclasses or by attribute assignment.
`ConfigParser.``BOOLEAN_STATES`By default when using [`getboolean()`](#configparser.ConfigParser.getboolean "configparser.ConfigParser.getboolean"), config parsers consider the following values `True`: `'1'`, `'yes'`, `'true'`, `'on'` and the following values `False`: `'0'`, `'no'`, `'false'`, `'off'`. You can override this by specifying a custom dictionary of strings and their Boolean outcomes. For example:
```
>>> custom = configparser.ConfigParser()
>>> custom['section1'] = {'funky': 'nope'}
>>> custom['section1'].getboolean('funky')
Traceback (most recent call last):
...
ValueError: Not a boolean: nope
>>> custom.BOOLEAN_STATES = {'sure': True, 'nope': False}
>>> custom['section1'].getboolean('funky')
False
```
Other typical Boolean pairs include `accept`/`reject` or `enabled`/`disabled`.
`ConfigParser.``optionxform`(*option*)This method transforms option names on every read, get, or set operation. The default converts the name to lowercase. This also means that when a configuration file gets written, all keys will be lowercase. Override this method if that's unsuitable. For example:
```
>>> config = """
... [Section1]
... Key = Value
...
... [Section2]
... AnotherKey = Value
... """
>>> typical = configparser.ConfigParser()
>>> typical.read_string(config)
>>> list(typical['Section1'].keys())
['key']
>>> list(typical['Section2'].keys())
['anotherkey']
>>> custom = configparser.RawConfigParser()
>>> custom.optionxform = lambda option: option
>>> custom.read_string(config)
>>> list(custom['Section1'].keys())
['Key']
>>> list(custom['Section2'].keys())
['AnotherKey']
```
注解
The optionxform function transforms option names to a canonical form. This should be an idempotent function: if the name is already in canonical form, it should be returned unchanged.
`ConfigParser.``SECTCRE`A compiled regular expression used to parse section headers. The default matches `[section]` to the name `"section"`. Whitespace is considered part of the section name, thus `[ larch ]` will be read as a section of name `" larch "`. Override this attribute if that's unsuitable. For example:
```
>>> import re
>>> config = """
... [Section 1]
... option = value
...
... [ Section 2 ]
... another = val
... """
>>> typical = configparser.ConfigParser()
>>> typical.read_string(config)
>>> typical.sections()
['Section 1', ' Section 2 ']
>>> custom = configparser.ConfigParser()
>>> custom.SECTCRE = re.compile(r"\[ *(?P<header>[^]]+?) *\]")
>>> custom.read_string(config)
>>> custom.sections()
['Section 1', 'Section 2']
```
注解
While ConfigParser objects also use an `OPTCRE` attribute for recognizing option lines, it's not recommended to override it because that would interfere with constructor options *allow\_no\_value* and *delimiters*.
## Legacy API Examples
Mainly because of backwards compatibility concerns, [`configparser`](#module-configparser "configparser: Configuration file parser.")provides also a legacy API with explicit `get`/`set` methods. While there are valid use cases for the methods outlined below, mapping protocol access is preferred for new projects. The legacy API is at times more advanced, low-level and downright counterintuitive.
An example of writing to a configuration file:
```
import configparser
config = configparser.RawConfigParser()
# Please note that using RawConfigParser's set functions, you can assign
# non-string values to keys internally, but will receive an error when
# attempting to write to a file or when you get it in non-raw mode. Setting
# values using the mapping protocol or ConfigParser's set() does not allow
# such assignments to take place.
config.add_section('Section1')
config.set('Section1', 'an_int', '15')
config.set('Section1', 'a_bool', 'true')
config.set('Section1', 'a_float', '3.1415')
config.set('Section1', 'baz', 'fun')
config.set('Section1', 'bar', 'Python')
config.set('Section1', 'foo', '%(bar)s is %(baz)s!')
# Writing our configuration file to 'example.cfg'
with open('example.cfg', 'w') as configfile:
config.write(configfile)
```
An example of reading the configuration file again:
```
import configparser
config = configparser.RawConfigParser()
config.read('example.cfg')
# getfloat() raises an exception if the value is not a float
# getint() and getboolean() also do this for their respective types
a_float = config.getfloat('Section1', 'a_float')
an_int = config.getint('Section1', 'an_int')
print(a_float + an_int)
# Notice that the next output does not interpolate '%(bar)s' or '%(baz)s'.
# This is because we are using a RawConfigParser().
if config.getboolean('Section1', 'a_bool'):
print(config.get('Section1', 'foo'))
```
To get interpolation, use [`ConfigParser`](#configparser.ConfigParser "configparser.ConfigParser"):
```
import configparser
cfg = configparser.ConfigParser()
cfg.read('example.cfg')
# Set the optional *raw* argument of get() to True if you wish to disable
# interpolation in a single get operation.
print(cfg.get('Section1', 'foo', raw=False)) # -> "Python is fun!"
print(cfg.get('Section1', 'foo', raw=True)) # -> "%(bar)s is %(baz)s!"
# The optional *vars* argument is a dict with members that will take
# precedence in interpolation.
print(cfg.get('Section1', 'foo', vars={'bar': 'Documentation',
'baz': 'evil'}))
# The optional *fallback* argument can be used to provide a fallback value
print(cfg.get('Section1', 'foo'))
# -> "Python is fun!"
print(cfg.get('Section1', 'foo', fallback='Monty is not.'))
# -> "Python is fun!"
print(cfg.get('Section1', 'monster', fallback='No such things as monsters.'))
# -> "No such things as monsters."
# A bare print(cfg.get('Section1', 'monster')) would raise NoOptionError
# but we can also use:
print(cfg.get('Section1', 'monster', fallback=None))
# -> None
```
Default values are available in both types of ConfigParsers. They are used in interpolation if an option used is not defined elsewhere.
```
import configparser
# New instance with 'bar' and 'baz' defaulting to 'Life' and 'hard' each
config = configparser.ConfigParser({'bar': 'Life', 'baz': 'hard'})
config.read('example.cfg')
print(config.get('Section1', 'foo')) # -> "Python is fun!"
config.remove_option('Section1', 'bar')
config.remove_option('Section1', 'baz')
print(config.get('Section1', 'foo')) # -> "Life is hard!"
```
## ConfigParser Objects
*class* `configparser.``ConfigParser`(*defaults=None*, *dict\_type=collections.OrderedDict*, *allow\_no\_value=False*, *delimiters=('='*, *':')*, *comment\_prefixes=('#'*, *';')*, *inline\_comment\_prefixes=None*, *strict=True*, *empty\_lines\_in\_values=True*, *default\_section=configparser.DEFAULTSECT*, *interpolation=BasicInterpolation()*, *converters={}*)The main configuration parser. When *defaults* is given, it is initialized into the dictionary of intrinsic defaults. When *dict\_type* is given, it will be used to create the dictionary objects for the list of sections, for the options within a section, and for the default values.
When *delimiters* is given, it is used as the set of substrings that divide keys from values. When *comment\_prefixes* is given, it will be used as the set of substrings that prefix comments in otherwise empty lines. Comments can be indented. When *inline\_comment\_prefixes* is given, it will be used as the set of substrings that prefix comments in non-empty lines.
When *strict* is `True` (the default), the parser won't allow for any section or option duplicates while reading from a single source (file, string or dictionary), raising [`DuplicateSectionError`](#configparser.DuplicateSectionError "configparser.DuplicateSectionError") or [`DuplicateOptionError`](#configparser.DuplicateOptionError "configparser.DuplicateOptionError"). When *empty\_lines\_in\_values* is `False`(default: `True`), each empty line marks the end of an option. Otherwise, internal empty lines of a multiline option are kept as part of the value. When *allow\_no\_value* is `True` (default: `False`), options without values are accepted; the value held for these is `None` and they are serialized without the trailing delimiter.
When *default\_section* is given, it specifies the name for the special section holding default values for other sections and interpolation purposes (normally named `"DEFAULT"`). This value can be retrieved and changed on runtime using the `default_section` instance attribute.
Interpolation behaviour may be customized by providing a custom handler through the *interpolation* argument. `None` can be used to turn off interpolation completely, `ExtendedInterpolation()` provides a more advanced variant inspired by `zc.buildout`. More on the subject in the [dedicated documentation section](#interpolation-of-values).
All option names used in interpolation will be passed through the [`optionxform()`](#configparser.ConfigParser.optionxform "configparser.ConfigParser.optionxform") method just like any other option name reference. For example, using the default implementation of [`optionxform()`](#configparser.ConfigParser.optionxform "configparser.ConfigParser.optionxform") (which converts option names to lower case), the values `foo %(bar)s` and
```
foo
%(BAR)s
```
are equivalent.
When *converters* is given, it should be a dictionary where each key represents the name of a type converter and each value is a callable implementing the conversion from string to the desired datatype. Every converter gets its own corresponding `get*()` method on the parser object and section proxies.
在 3.1 版更改: The default *dict\_type* is [`collections.OrderedDict`](collections.xhtml#collections.OrderedDict "collections.OrderedDict").
在 3.2 版更改: *allow\_no\_value*, *delimiters*, *comment\_prefixes*, *strict*, *empty\_lines\_in\_values*, *default\_section* and *interpolation* were added.
在 3.5 版更改: The *converters* argument was added.
在 3.7 版更改: The *defaults* argument is read with [`read_dict()`](#configparser.ConfigParser.read_dict "configparser.ConfigParser.read_dict"), providing consistent behavior across the parser: non-string keys and values are implicitly converted to strings.
`defaults`()Return a dictionary containing the instance-wide defaults.
`sections`()Return a list of the sections available; the *default section* is not included in the list.
`add_section`(*section*)Add a section named *section* to the instance. If a section by the given name already exists, [`DuplicateSectionError`](#configparser.DuplicateSectionError "configparser.DuplicateSectionError") is raised. If the *default section* name is passed, [`ValueError`](exceptions.xhtml#ValueError "ValueError") is raised. The name of the section must be a string; if not, [`TypeError`](exceptions.xhtml#TypeError "TypeError") is raised.
在 3.2 版更改: Non-string section names raise [`TypeError`](exceptions.xhtml#TypeError "TypeError").
`has_section`(*section*)Indicates whether the named *section* is present in the configuration. The *default section* is not acknowledged.
`options`(*section*)Return a list of options available in the specified *section*.
`has_option`(*section*, *option*)If the given *section* exists, and contains the given *option*, return [`True`](constants.xhtml#True "True"); otherwise return [`False`](constants.xhtml#False "False"). If the specified *section* is [`None`](constants.xhtml#None "None") or an empty string, DEFAULT is assumed.
`read`(*filenames*, *encoding=None*)Attempt to read and parse an iterable of filenames, returning a list of filenames which were successfully parsed.
If *filenames* is a string, a [`bytes`](stdtypes.xhtml#bytes "bytes") object or a [path-like object](../glossary.xhtml#term-path-like-object), it is treated as a single filename. If a file named in *filenames* cannot be opened, that file will be ignored. This is designed so that you can specify an iterable of potential configuration file locations (for example, the current directory, the user's home directory, and some system-wide directory), and all existing configuration files in the iterable will be read.
If none of the named files exist, the [`ConfigParser`](#configparser.ConfigParser "configparser.ConfigParser")instance will contain an empty dataset. An application which requires initial values to be loaded from a file should load the required file or files using [`read_file()`](#configparser.ConfigParser.read_file "configparser.ConfigParser.read_file") before calling [`read()`](#configparser.ConfigParser.read "configparser.ConfigParser.read") for any optional files:
```
import configparser, os
config = configparser.ConfigParser()
config.read_file(open('defaults.cfg'))
config.read(['site.cfg', os.path.expanduser('~/.myapp.cfg')],
encoding='cp1250')
```
3\.2 新版功能: The *encoding* parameter. Previously, all files were read using the default encoding for [`open()`](functions.xhtml#open "open").
3\.6.1 新版功能: The *filenames* parameter accepts a [path-like object](../glossary.xhtml#term-path-like-object).
3\.7 新版功能: The *filenames* parameter accepts a [`bytes`](stdtypes.xhtml#bytes "bytes") object.
`read_file`(*f*, *source=None*)Read and parse configuration data from *f* which must be an iterable yielding Unicode strings (for example files opened in text mode).
Optional argument *source* specifies the name of the file being read. If not given and *f* has a `name` attribute, that is used for *source*; the default is `'<???>'`.
3\.2 新版功能: Replaces [`readfp()`](#configparser.ConfigParser.readfp "configparser.ConfigParser.readfp").
`read_string`(*string*, *source='<string>'*)Parse configuration data from a string.
Optional argument *source* specifies a context-specific name of the string passed. If not given, `'<string>'` is used. This should commonly be a filesystem path or a URL.
3\.2 新版功能.
`read_dict`(*dictionary*, *source='<dict>'*)Load configuration from any object that provides a dict-like `items()`method. Keys are section names, values are dictionaries with keys and values that should be present in the section. If the used dictionary type preserves order, sections and their keys will be added in order. Values are automatically converted to strings.
Optional argument *source* specifies a context-specific name of the dictionary passed. If not given, `<dict>` is used.
This method can be used to copy state between parsers.
3\.2 新版功能.
`get`(*section*, *option*, *\**, *raw=False*, *vars=None*\[, *fallback*\])Get an *option* value for the named *section*. If *vars* is provided, it must be a dictionary. The *option* is looked up in *vars* (if provided), *section*, and in *DEFAULTSECT* in that order. If the key is not found and *fallback* is provided, it is used as a fallback value. `None` can be provided as a *fallback* value.
All the `'%'` interpolations are expanded in the return values, unless the *raw* argument is true. Values for interpolation keys are looked up in the same manner as the option.
在 3.2 版更改: Arguments *raw*, *vars* and *fallback* are keyword only to protect users from trying to use the third argument as the *fallback* fallback (especially when using the mapping protocol).
`getint`(*section*, *option*, *\**, *raw=False*, *vars=None*\[, *fallback*\])A convenience method which coerces the *option* in the specified *section*to an integer. See [`get()`](#configparser.ConfigParser.get "configparser.ConfigParser.get") for explanation of *raw*, *vars* and *fallback*.
`getfloat`(*section*, *option*, *\**, *raw=False*, *vars=None*\[, *fallback*\])A convenience method which coerces the *option* in the specified *section*to a floating point number. See [`get()`](#configparser.ConfigParser.get "configparser.ConfigParser.get") for explanation of *raw*, *vars* and *fallback*.
`getboolean`(*section*, *option*, *\**, *raw=False*, *vars=None*\[, *fallback*\])A convenience method which coerces the *option* in the specified *section*to a Boolean value. Note that the accepted values for the option are `'1'`, `'yes'`, `'true'`, and `'on'`, which cause this method to return `True`, and `'0'`, `'no'`, `'false'`, and `'off'`, which cause it to return `False`. These string values are checked in a case-insensitive manner. Any other value will cause it to raise [`ValueError`](exceptions.xhtml#ValueError "ValueError"). See [`get()`](#configparser.ConfigParser.get "configparser.ConfigParser.get") for explanation of *raw*, *vars* and *fallback*.
`items`(*raw=False*, *vars=None*)`items`(*section*, *raw=False*, *vars=None*)When *section* is not given, return a list of *section\_name*, *section\_proxy* pairs, including DEFAULTSECT.
Otherwise, return a list of *name*, *value* pairs for the options in the given *section*. Optional arguments have the same meaning as for the [`get()`](#configparser.ConfigParser.get "configparser.ConfigParser.get") method.
`set`(*section*, *option*, *value*)If the given section exists, set the given option to the specified value; otherwise raise [`NoSectionError`](#configparser.NoSectionError "configparser.NoSectionError"). *option* and *value* must be strings; if not, [`TypeError`](exceptions.xhtml#TypeError "TypeError") is raised.
`write`(*fileobject*, *space\_around\_delimiters=True*)Write a representation of the configuration to the specified [file object](../glossary.xhtml#term-file-object), which must be opened in text mode (accepting strings). This representation can be parsed by a future [`read()`](#configparser.ConfigParser.read "configparser.ConfigParser.read") call. If *space\_around\_delimiters* is true, delimiters between keys and values are surrounded by spaces.
`remove_option`(*section*, *option*)Remove the specified *option* from the specified *section*. If the section does not exist, raise [`NoSectionError`](#configparser.NoSectionError "configparser.NoSectionError"). If the option existed to be removed, return [`True`](constants.xhtml#True "True"); otherwise return [`False`](constants.xhtml#False "False").
`remove_section`(*section*)Remove the specified *section* from the configuration. If the section in fact existed, return `True`. Otherwise return `False`.
`optionxform`(*option*)Transforms the option name *option* as found in an input file or as passed in by client code to the form that should be used in the internal structures. The default implementation returns a lower-case version of *option*; subclasses may override this or client code can set an attribute of this name on instances to affect this behavior.
You don't need to subclass the parser to use this method, you can also set it on an instance, to a function that takes a string argument and returns a string. Setting it to `str`, for example, would make option names case sensitive:
```
cfgparser = ConfigParser()
cfgparser.optionxform = str
```
Note that when reading configuration files, whitespace around the option names is stripped before [`optionxform()`](#configparser.ConfigParser.optionxform "configparser.ConfigParser.optionxform") is called.
`readfp`(*fp*, *filename=None*)3\.2 版后已移除: Use [`read_file()`](#configparser.ConfigParser.read_file "configparser.ConfigParser.read_file") instead.
在 3.2 版更改: [`readfp()`](#configparser.ConfigParser.readfp "configparser.ConfigParser.readfp") now iterates on *fp* instead of calling `fp.readline()`.
For existing code calling [`readfp()`](#configparser.ConfigParser.readfp "configparser.ConfigParser.readfp") with arguments which don't support iteration, the following generator may be used as a wrapper around the file-like object:
```
def readline_generator(fp):
line = fp.readline()
while line:
yield line
line = fp.readline()
```
Instead of `parser.readfp(fp)` use `parser.read_file(readline_generator(fp))`.
`configparser.``MAX_INTERPOLATION_DEPTH`The maximum depth for recursive interpolation for `get()` when the *raw*parameter is false. This is relevant only when the default *interpolation*is used.
## RawConfigParser Objects
*class* `configparser.``RawConfigParser`(*defaults=None*, *dict\_type=collections.OrderedDict*, *allow\_no\_value=False*, *\**, *delimiters=('='*, *':')*, *comment\_prefixes=('#'*, *';')*, *inline\_comment\_prefixes=None*, *strict=True*, *empty\_lines\_in\_values=True*, *default\_section=configparser.DEFAULTSECT*\[, *interpolation*\])Legacy variant of the [`ConfigParser`](#configparser.ConfigParser "configparser.ConfigParser"). It has interpolation disabled by default and allows for non-string section names, option names, and values via its unsafe `add_section` and `set` methods, as well as the legacy `defaults=` keyword argument handling.
注解
Consider using [`ConfigParser`](#configparser.ConfigParser "configparser.ConfigParser") instead which checks types of the values to be stored internally. If you don't want interpolation, you can use `ConfigParser(interpolation=None)`.
`add_section`(*section*)Add a section named *section* to the instance. If a section by the given name already exists, [`DuplicateSectionError`](#configparser.DuplicateSectionError "configparser.DuplicateSectionError") is raised. If the *default section* name is passed, [`ValueError`](exceptions.xhtml#ValueError "ValueError") is raised.
Type of *section* is not checked which lets users create non-string named sections. This behaviour is unsupported and may cause internal errors.
`set`(*section*, *option*, *value*)If the given section exists, set the given option to the specified value; otherwise raise [`NoSectionError`](#configparser.NoSectionError "configparser.NoSectionError"). While it is possible to use [`RawConfigParser`](#configparser.RawConfigParser "configparser.RawConfigParser") (or [`ConfigParser`](#configparser.ConfigParser "configparser.ConfigParser") with *raw* parameters set to true) for *internal* storage of non-string values, full functionality (including interpolation and output to files) can only be achieved using string values.
This method lets users assign non-string values to keys internally. This behaviour is unsupported and will cause errors when attempting to write to a file or get it in non-raw mode. **Use the mapping protocol API**which does not allow such assignments to take place.
## 异常
*exception* `configparser.``Error`Base class for all other [`configparser`](#module-configparser "configparser: Configuration file parser.") exceptions.
*exception* `configparser.``NoSectionError`Exception raised when a specified section is not found.
*exception* `configparser.``DuplicateSectionError`Exception raised if `add_section()` is called with the name of a section that is already present or in strict parsers when a section if found more than once in a single input file, string or dictionary.
3\.2 新版功能: Optional `source` and `lineno` attributes and arguments to [`__init__()`](../reference/datamodel.xhtml#object.__init__ "object.__init__") were added.
*exception* `configparser.``DuplicateOptionError`Exception raised by strict parsers if a single option appears twice during reading from a single file, string or dictionary. This catches misspellings and case sensitivity-related errors, e.g. a dictionary may have two keys representing the same case-insensitive configuration key.
*exception* `configparser.``NoOptionError`Exception raised when a specified option is not found in the specified section.
*exception* `configparser.``InterpolationError`Base class for exceptions raised when problems occur performing string interpolation.
*exception* `configparser.``InterpolationDepthError`Exception raised when string interpolation cannot be completed because the number of iterations exceeds [`MAX_INTERPOLATION_DEPTH`](#configparser.MAX_INTERPOLATION_DEPTH "configparser.MAX_INTERPOLATION_DEPTH"). Subclass of [`InterpolationError`](#configparser.InterpolationError "configparser.InterpolationError").
*exception* `configparser.``InterpolationMissingOptionError`Exception raised when an option referenced from a value does not exist. Subclass of [`InterpolationError`](#configparser.InterpolationError "configparser.InterpolationError").
*exception* `configparser.``InterpolationSyntaxError`Exception raised when the source text into which substitutions are made does not conform to the required syntax. Subclass of [`InterpolationError`](#configparser.InterpolationError "configparser.InterpolationError").
*exception* `configparser.``MissingSectionHeaderError`Exception raised when attempting to parse a file which has no section headers.
*exception* `configparser.``ParsingError`Exception raised when errors occur attempting to parse a file.
在 3.2 版更改: The `filename` attribute and [`__init__()`](../reference/datamodel.xhtml#object.__init__ "object.__init__") argument were renamed to `source` for consistency.
脚注
1([1](#id1),[2](#id2),[3](#id3),[4](#id4),[5](#id5),[6](#id6),[7](#id7),[8](#id8),[9](#id9),[10](#id10))Config parsers allow for heavy customization. If you are interested in changing the behaviour outlined by the footnote reference, consult the [Customizing Parser Behaviour](#customizing-parser-behaviour) section.
### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](netrc.xhtml "netrc --- netrc file processing") |
- [上一页](csv.xhtml "csv --- CSV 文件读写") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 标准库](index.xhtml) »
- [文件格式](fileformats.xhtml) »
- $('.inline-search').show(0); |
© [版权所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 软件基金会是一个非盈利组织。 [请捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [发现了问题](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 创建。
- Python文档内容
- Python 有什么新变化?
- Python 3.7 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- C API 的改变
- 构建的改变
- 性能优化
- 其他 CPython 实现的改变
- 已弃用的 Python 行为
- 已弃用的 Python 模块、函数和方法
- 已弃用的 C API 函数和类型
- 平台支持的移除
- API 与特性的移除
- 移除的模块
- Windows 专属的改变
- 移植到 Python 3.7
- Python 3.7.1 中的重要变化
- Python 3.7.2 中的重要变化
- Python 3.6 有什么新变化A
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 其他改进
- 弃用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要变化
- Python 3.6.4 中的重要变化
- Python 3.6.5 中的重要变化
- Python 3.6.7 中的重要变化
- Python 3.5 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- Other module-level changes
- 性能优化
- Build and C API Changes
- 弃用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 发布重点
- 新的特性
- 新增模块
- 改进的模块
- CPython Implementation Changes
- 弃用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 发布重点
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他语言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 弃用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 多线程
- 性能优化
- Unicode
- Codecs
- 文档
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 性能优化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他语言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新变化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他语言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他语言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推导式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最终版
- Python 3.7.3 发布候选版 1
- Python 3.7.2 最终版
- Python 3.7.2 发布候选版 1
- Python 3.7.1 最终版
- Python 3.7.1 RC 2版本
- Python 3.7.1 发布候选版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 课前甜点
- 使用 Python 解释器
- 调用解释器
- 解释器的运行环境
- Python 的非正式介绍
- Python 作为计算器使用
- 走向编程的第一步
- 其他流程控制工具
- if 语句
- for 语句
- range() 函数
- break 和 continue 语句,以及循环中的 else 子句
- pass 语句
- 定义函数
- 函数定义的更多形式
- 小插曲:编码风格
- 数据结构
- 列表的更多特性
- del 语句
- 元组和序列
- 集合
- 字典
- 循环的技巧
- 深入条件控制
- 序列和其它类型的比较
- 模块
- 有关模块的更多信息
- 标准模块
- dir() 函数
- 包
- 输入输出
- 更漂亮的输出格式
- 读写文件
- 错误和异常
- 语法错误
- 异常
- 处理异常
- 抛出异常
- 用户自定义异常
- 定义清理操作
- 预定义的清理操作
- 类
- 名称和对象
- Python 作用域和命名空间
- 初探类
- 补充说明
- 继承
- 私有变量
- 杂项说明
- 迭代器
- 生成器
- 生成器表达式
- 标准库简介
- 操作系统接口
- 文件通配符
- 命令行参数
- 错误输出重定向和程序终止
- 字符串模式匹配
- 数学
- 互联网访问
- 日期和时间
- 数据压缩
- 性能测量
- 质量控制
- 自带电池
- 标准库简介 —— 第二部分
- 格式化输出
- 模板
- 使用二进制数据记录格式
- 多线程
- 日志
- 弱引用
- 用于操作列表的工具
- 十进制浮点运算
- 虚拟环境和包
- 概述
- 创建虚拟环境
- 使用pip管理包
- 接下来?
- 交互式编辑和编辑历史
- Tab 补全和编辑历史
- 默认交互式解释器的替代品
- 浮点算术:争议和限制
- 表示性错误
- 附录
- 交互模式
- 安装和使用 Python
- 命令行与环境
- 命令行
- 环境变量
- 在Unix平台中使用Python
- 获取最新版本的Python
- 构建Python
- 与Python相关的路径和文件
- 杂项
- 编辑器和集成开发环境
- 在Windows上使用 Python
- 完整安装程序
- Microsoft Store包
- nuget.org 安装包
- 可嵌入的包
- 替代捆绑包
- 配置Python
- 适用于Windows的Python启动器
- 查找模块
- 附加模块
- 在Windows上编译Python
- 其他平台
- 在苹果系统上使用 Python
- 获取和安装 MacPython
- IDE
- 安装额外的 Python 包
- Mac 上的图形界面编程
- 在 Mac 上分发 Python 应用程序
- 其他资源
- Python 语言参考
- 概述
- 其他实现
- 标注
- 词法分析
- 行结构
- 其他形符
- 标识符和关键字
- 字面值
- 运算符
- 分隔符
- 数据模型
- 对象、值与类型
- 标准类型层级结构
- 特殊方法名称
- 协程
- 执行模型
- 程序的结构
- 命名与绑定
- 异常
- 导入系统
- importlib
- 包
- 搜索
- 加载
- 基于路径的查找器
- 替换标准导入系统
- Package Relative Imports
- 有关 main 的特殊事项
- 开放问题项
- 参考文献
- 表达式
- 算术转换
- 原子
- 原型
- await 表达式
- 幂运算符
- 一元算术和位运算
- 二元算术运算符
- 移位运算
- 二元位运算
- 比较运算
- 布尔运算
- 条件表达式
- lambda 表达式
- 表达式列表
- 求值顺序
- 运算符优先级
- 简单语句
- 表达式语句
- 赋值语句
- assert 语句
- pass 语句
- del 语句
- return 语句
- yield 语句
- raise 语句
- break 语句
- continue 语句
- import 语句
- global 语句
- nonlocal 语句
- 复合语句
- if 语句
- while 语句
- for 语句
- try 语句
- with 语句
- 函数定义
- 类定义
- 协程
- 最高层级组件
- 完整的 Python 程序
- 文件输入
- 交互式输入
- 表达式输入
- 完整的语法规范
- Python 标准库
- 概述
- 可用性注释
- 内置函数
- 内置常量
- 由 site 模块添加的常量
- 内置类型
- 逻辑值检测
- 布尔运算 — and, or, not
- 比较
- 数字类型 — int, float, complex
- 迭代器类型
- 序列类型 — list, tuple, range
- 文本序列类型 — str
- 二进制序列类型 — bytes, bytearray, memoryview
- 集合类型 — set, frozenset
- 映射类型 — dict
- 上下文管理器类型
- 其他内置类型
- 特殊属性
- 内置异常
- 基类
- 具体异常
- 警告
- 异常层次结构
- 文本处理服务
- string — 常见的字符串操作
- re — 正则表达式操作
- 模块 difflib 是一个计算差异的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 数据库
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函数
- 二进制数据服务
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 数据类型
- datetime — 基础日期/时间数据类型
- calendar — General calendar-related functions
- collections — 容器数据类型
- collections.abc — 容器的抽象基类
- heapq — 堆队列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 浅层 (shallow) 和深层 (deep) 复制操作
- pprint — 数据美化输出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 数字和数学模块
- numbers — 数字的抽象基类
- math — 数学函数
- cmath — Mathematical functions for complex numbers
- decimal — 十进制定点和浮点运算
- fractions — 分数
- random — 生成伪随机数
- statistics — Mathematical statistics functions
- 函数式编程模块
- itertools — 为高效循环而创建迭代器的函数
- functools — 高阶函数和可调用对象上的操作
- operator — 标准运算符替代函数
- 文件和目录访问
- pathlib — 面向对象的文件系统路径
- os.path — 常见路径操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路径操作函数
- 数据持久化
- pickle —— Python 对象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 数据库 DB-API 2.0 接口模块
- 数据压缩和存档
- zlib — 与 gzip 兼容的压缩
- gzip — 对 gzip 格式的支持
- bz2 — 对 bzip2 压缩算法的支持
- lzma — 用 LZMA 算法压缩
- zipfile — 在 ZIP 归档中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件读写
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服务
- hashlib — 安全哈希与消息摘要
- hmac — 基于密钥的消息验证
- secrets — Generate secure random numbers for managing secrets
- 通用操作系统服务
- os — 操作系统接口模块
- io — 处理流的核心工具
- time — 时间的访问和转换
- argparse — 命令行选项、参数和子命令解析器
- getopt — C-style parser for command line options
- 模块 logging — Python 的日志记录工具
- logging.config — 日志记录配置
- logging.handlers — Logging handlers
- getpass — 便携式密码输入工具
- curses — 终端字符单元显示的处理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函数库
- 并发执行
- threading — 基于线程的并行
- multiprocessing — 基于进程的并行
- concurrent 包
- concurrent.futures — 启动并行任务
- subprocess — 子进程管理
- sched — 事件调度器
- queue — 一个同步的队列类
- _thread — 底层多线程 API
- _dummy_thread — _thread 的替代模块
- dummy_threading — 可直接替代 threading 模块。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 网络和进程间通信
- asyncio — 异步 I/O
- socket — 底层网络接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高级 I/O 复用库
- asyncore — 异步socket处理器
- asynchat — 异步 socket 指令/响应 处理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互联网数据处理
- email — 电子邮件与 MIME 处理包
- json — JSON 编码和解码器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 数据编码
- binhex — 对binhex4文件进行编码和解码
- binascii — 二进制和 ASCII 码互转
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 结构化标记处理工具
- html — 超文本标记语言支持
- html.parser — 简单的 HTML 和 XHTML 解析器
- html.entities — HTML 一般实体的定义
- XML处理模块
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互联网协议和支持
- webbrowser — 方便的Web浏览器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 处理模块
- urllib.request — 用于打开 URL 的可扩展库
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模块
- http.client — HTTP协议客户端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP协议客户端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服务器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服务端与客户端模块
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒体服务
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 读写 Sun AU 文件
- wave — 读写WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推测图像类型
- sndhdr — 推测声音文件的类型
- ossaudiodev — Access to OSS-compatible audio devices
- 国际化
- gettext — 多语种国际化服务
- locale — 国际化服务
- 程序框架
- turtle — 海龟绘图
- cmd — 支持面向行的命令解释器
- shlex — Simple lexical analysis
- Tk图形用户界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滚动文字控件
- IDLE
- 其他图形用户界面(GUI)包
- 开发工具
- typing — 类型标注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 单元测试框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自动将 Python 2 代码转为 Python 3 代码
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 调试和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 测量小代码片段的执行时间
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 软件打包和分发
- distutils — 构建和安装 Python 模块
- ensurepip — Bootstrapping the pip installer
- venv — 创建虚拟环境
- zipapp — Manage executable Python zip archives
- Python运行时服务
- sys — 系统相关的参数和函数
- sysconfig — Provide access to Python's configuration information
- builtins — 内建对象
- main — 顶层脚本环境
- warnings — Warning control
- dataclasses — 数据类
- contextlib — Utilities for with-statement contexts
- abc — 抽象基类
- atexit — 退出处理器
- traceback — Print or retrieve a stack traceback
- future — Future 语句定义
- gc — 垃圾回收器接口
- inspect — 检查对象
- site — Site-specific configuration hook
- 自定义 Python 解释器
- code — Interpreter base classes
- codeop — Compile Python code
- 导入模块
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找脚本使用的模块
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 语言服务
- parser — Access Python parse trees
- ast — 抽象语法树
- symtable — Access to the compiler's symbol tables
- symbol — 与 Python 解析树一起使用的常量
- token — 与Python解析树一起使用的常量
- keyword — 检验Python关键字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊缩进检测
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字节码反汇编器
- pickletools — Tools for pickle developers
- 杂项服务
- formatter — Generic output formatting
- Windows系统相关模块
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注册表访问
- winsound — Sound-playing interface for Windows
- Unix 专有服务
- posix — The most common POSIX system calls
- pwd — 用户密码数据库
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 终端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 库例程
- 被取代的模块
- optparse — Parser for command line options
- imp — Access the import internals
- 未创建文档的模块
- 平台特定模块
- 扩展和嵌入 Python 解释器
- 推荐的第三方工具
- 不使用第三方工具创建扩展
- 使用 C 或 C++ 扩展 Python
- 自定义扩展类型:教程
- 定义扩展类型:已分类主题
- 构建C/C++扩展
- 在Windows平台编译C和C++扩展
- 在更大的应用程序中嵌入 CPython 运行时
- Embedding Python in Another Application
- Python/C API 参考手册
- 概述
- 代码标准
- 包含文件
- 有用的宏
- 对象、类型和引用计数
- 异常
- 嵌入Python
- 调试构建
- 稳定的应用程序二进制接口
- The Very High Level Layer
- Reference Counting
- 异常处理
- Printing and clearing
- 抛出异常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 标准异常
- 标准警告类别
- 工具
- 操作系统实用程序
- 系统功能
- 过程控制
- 导入模块
- Data marshalling support
- 语句解释及变量编译
- 字符串转换与格式化
- 反射
- 编解码器注册与支持功能
- 抽象对象层
- Object Protocol
- 数字协议
- Sequence Protocol
- Mapping Protocol
- 迭代器协议
- 缓冲协议
- Old Buffer Protocol
- 具体的对象层
- 基本对象
- 数值对象
- 序列对象
- 容器对象
- 函数对象
- 其他对象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置变量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 内存管理
- 概述
- 原始内存接口
- Memory Interface
- 对象分配器
- 默认内存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 对象实现支持
- 在堆中分配对象
- Common Object Structures
- Type 对象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使对象类型支持循环垃圾回收
- API 和 ABI 版本管理
- 分发 Python 模块
- 关键术语
- 开源许可与协作
- 安装工具
- 阅读指南
- 我该如何...?
- ...为我的项目选择一个名字?
- ...创建和分发二进制扩展?
- 安装 Python 模块
- 关键术语
- 基本使用
- 我应如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安装 pip ?
- ... 只为当前用户安装软件包?
- ... 安装科学计算类 Python 软件包?
- ... 使用并行安装的多个 Python 版本?
- 常见的安装问题
- 在 Linux 的系统 Python 版本上安装
- 未安装 pip
- 安装二进制编译扩展
- Python 常用指引
- 将 Python 2 代码迁移到 Python 3
- 简要说明
- 详情
- 将扩展模块移植到 Python 3
- 条件编译
- 对象API的更改
- 模块初始化和状态
- CObject 替换为 Capsule
- 其他选项
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 实现描述器
- 摘要
- 定义和简介
- 描述器协议
- 发起调用描述符
- 描述符示例
- Properties
- 函数和方法
- Static Methods and Class Methods
- 函数式编程指引
- 概述
- 迭代器
- 生成器表达式和列表推导式
- 生成器
- 内置函数
- itertools 模块
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文献
- 日志 HOWTO
- 日志基础教程
- 进阶日志教程
- 日志级别
- 有用的处理程序
- 记录日志中引发的异常
- 使用任意对象作为消息
- 优化
- 日志操作手册
- 在多个模块中使用日志
- 在多线程中使用日志
- 使用多个日志处理器和多种格式化
- 在多个地方记录日志
- 日志服务器配置示例
- 处理日志处理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正则表达式HOWTO
- 概述
- 简单模式
- 使用正则表达式
- 更多模式能力
- 修改字符串
- 常见问题
- 反馈
- 套接字编程指南
- 套接字
- 创建套接字
- 使用一个套接字
- 断开连接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 关键函数
- Operator 模块函数
- 升序和降序
- 排序稳定性和排序复杂度
- 使用装饰-排序-去装饰的旧方法
- 使用 cmp 参数的旧方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包获取网络资源
- 概述
- Fetching URLs
- 处理异常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 脚注
- Argparse 教程
- 概念
- 基础
- 位置参数介绍
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模块介绍
- 创建 Address/Network/Interface 对象
- 审查 Address/Network/Interface 对象
- Network 作为 Address 列表
- 比较
- 将IP地址与其他模块一起使用
- 实例创建失败时获取更多详细信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 检测CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常见问题
- Python常见问题
- 一般信息
- 现实世界中的 Python
- 编程常见问题
- 一般问题
- 核心语言
- 数字和字符串
- 性能
- 序列(元组/列表)
- 对象
- 模块
- 设计和历史常见问题
- 为什么Python使用缩进来分组语句?
- 为什么简单的算术运算得到奇怪的结果?
- 为什么浮点计算不准确?
- 为什么Python字符串是不可变的?
- 为什么必须在方法定义和调用中显式使用“self”?
- 为什么不能在表达式中赋值?
- 为什么Python对某些功能(例如list.index())使用方法来实现,而其他功能(例如len(List))使用函数实现?
- 为什么 join()是一个字符串方法而不是列表或元组方法?
- 异常有多快?
- 为什么Python中没有switch或case语句?
- 难道不能在解释器中模拟线程,而非得依赖特定于操作系统的线程实现吗?
- 为什么lambda表达式不能包含语句?
- 可以将Python编译为机器代码,C或其他语言吗?
- Python如何管理内存?
- 为什么CPython不使用更传统的垃圾回收方案?
- CPython退出时为什么不释放所有内存?
- 为什么有单独的元组和列表数据类型?
- 列表是如何在CPython中实现的?
- 字典是如何在CPython中实现的?
- 为什么字典key必须是不可变的?
- 为什么 list.sort() 没有返回排序列表?
- 如何在Python中指定和实施接口规范?
- 为什么没有goto?
- 为什么原始字符串(r-strings)不能以反斜杠结尾?
- 为什么Python没有属性赋值的“with”语句?
- 为什么 if/while/def/class语句需要冒号?
- 为什么Python在列表和元组的末尾允许使用逗号?
- 代码库和插件 FAQ
- 通用的代码库问题
- 通用任务
- 线程相关
- 输入输出
- 网络 / Internet 编程
- 数据库
- 数学和数字
- 扩展/嵌入常见问题
- 可以使用C语言中创建自己的函数吗?
- 可以使用C++语言中创建自己的函数吗?
- C很难写,有没有其他选择?
- 如何从C执行任意Python语句?
- 如何从C中评估任意Python表达式?
- 如何从Python对象中提取C的值?
- 如何使用Py_BuildValue()创建任意长度的元组?
- 如何从C调用对象的方法?
- 如何捕获PyErr_Print()(或打印到stdout / stderr的任何内容)的输出?
- 如何从C访问用Python编写的模块?
- 如何从Python接口到C ++对象?
- 我使用Setup文件添加了一个模块,为什么make失败了?
- 如何调试扩展?
- 我想在Linux系统上编译一个Python模块,但是缺少一些文件。为什么?
- 如何区分“输入不完整”和“输入无效”?
- 如何找到未定义的g++符号__builtin_new或__pure_virtual?
- 能否创建一个对象类,其中部分方法在C中实现,而其他方法在Python中实现(例如通过继承)?
- Python在Windows上的常见问题
- 我怎样在Windows下运行一个Python程序?
- 我怎么让 Python 脚本可执行?
- 为什么有时候 Python 程序会启动缓慢?
- 我怎样使用Python脚本制作可执行文件?
- *.pyd 文件和DLL文件相同吗?
- 我怎样将Python嵌入一个Windows程序?
- 如何让编辑器不要在我的 Python 源代码中插入 tab ?
- 如何在不阻塞的情况下检查按键?
- 图形用户界面(GUI)常见问题
- 图形界面常见问题
- Python 是否有平台无关的图形界面工具包?
- 有哪些Python的GUI工具是某个平台专用的?
- 有关Tkinter的问题
- “为什么我的电脑上安装了 Python ?”
- 什么是Python?
- 为什么我的电脑上安装了 Python ?
- 我能删除 Python 吗?
- 术语对照表
- 文档说明
- Python 文档贡献者
- 解决 Bug
- 文档错误
- 使用 Python 的错误追踪系统
- 开始为 Python 贡献您的知识
- 版权
- 历史和许可证
- 软件历史
- 访问Python或以其他方式使用Python的条款和条件
- Python 3.7.3 的 PSF 许可协议
- Python 2.0 的 BeOpen.com 许可协议
- Python 1.6.1 的 CNRI 许可协议
- Python 0.9.0 至 1.2 的 CWI 许可协议
- 集成软件的许可和认可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec