### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](unittest.mock.xhtml "unittest.mock --- mock object library") |
- [上一页](doctest.xhtml "doctest --- Test interactive Python examples") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 标准库](index.xhtml) »
- [开发工具](development.xhtml) »
- $('.inline-search').show(0); |
# [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") --- 单元测试框架
**源代码:** :路径:Lib/unittest/\_\_init\_\_.py
- - - - - -
(如果你已经对测试的概念比较熟悉了,你可能想直接跳转到这一部分 [断言方法](#assert-methods)。)
[`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 单元测试框架是受到 JUnit 的启发,与其他语言中的主流单元测试框架有着相似的风格。其支持测试自动化,配置共享和关机代码测试。支持将测试样例聚合到测试集中,并将测试与报告框架独立。
为了实现这些,[`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 通过面向对象的方式支持了一些重要的概念。
测试脚手架*test fixture* 表示为了开展一项或多项测试所需要进行的准备工作,以及所有相关的清理操作。举个例子,这可能包含创建临时或代理的数据库、目录,再或者启动一个服务器进程。
测试用例一个测试用例是一个独立的测试单元。它检查输入特定的数据时的响应。 [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 提供一个基类: [`TestCase`](#unittest.TestCase "unittest.TestCase") ,用于新建测试用例。
测试套件A *test suite* is a collection of test cases, test suites, or both. It is used to aggregate tests that should be executed together.
测试运行器(test runner)测试运行器是一个用于执行和输出测试结果的组件。这个运行器可能使用图形接口、文本接口,或返回一个特定的值表示运行测试的结果。
参见
[`doctest`](doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.") --- 文档测试模块另一个风格完全不同的测试模块。
[Simple Smalltalk Testing: With Patterns](https://web.archive.org/web/20150315073817/http://www.xprogramming.com/testfram.htm) \[https://web.archive.org/web/20150315073817/http://www.xprogramming.com/testfram.htm\]Kent Beck's original paper on testing frameworks using the pattern shared by [`unittest`](#module-unittest "unittest: Unit testing framework for Python.").
[Nose](https://nose.readthedocs.io/) \[https://nose.readthedocs.io/\] and [pytest](https://docs.pytest.org/) \[https://docs.pytest.org/\]Third-party unittest frameworks with a lighter-weight syntax for writing tests. For example, `assert func(10) == 42`.
[The Python Testing Tools Taxonomy](https://wiki.python.org/moin/PythonTestingToolsTaxonomy) \[https://wiki.python.org/moin/PythonTestingToolsTaxonomy\]An extensive list of Python testing tools including functional testing frameworks and mock object libraries.
[Testing in Python Mailing List](http://lists.idyll.org/listinfo/testing-in-python) \[http://lists.idyll.org/listinfo/testing-in-python\]A special-interest-group for discussion of testing, and testing tools, in Python.
The script `Tools/unittestgui/unittestgui.py` in the Python source distribution is a GUI tool for test discovery and execution. This is intended largely for ease of use for those new to unit testing. For production environments it is recommended that tests be driven by a continuous integration system such as [Buildbot](https://buildbot.net/) \[https://buildbot.net/\], [Jenkins](https://jenkins.io/) \[https://jenkins.io/\]or [Hudson](http://hudson-ci.org/) \[http://hudson-ci.org/\].
## 基本实例
[`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 模块提供了一系列创建和运行测试的工具。这一段落演示了这些工具的一小部分,但也足以满足大部分用户的需求。
这是一段简短的代码,来测试三种字符串方法:
```
import unittest
class TestStringMethods(unittest.TestCase):
def test_upper(self):
self.assertEqual('foo'.upper(), 'FOO')
def test_isupper(self):
self.assertTrue('FOO'.isupper())
self.assertFalse('Foo'.isupper())
def test_split(self):
s = 'hello world'
self.assertEqual(s.split(), ['hello', 'world'])
# check that s.split fails when the separator is not a string
with self.assertRaises(TypeError):
s.split(2)
if __name__ == '__main__':
unittest.main()
```
继承 [`unittest.TestCase`](#unittest.TestCase "unittest.TestCase") 就创建了一个测试样例。上述三个独立的测试是三个类的方法,这些方法的命名都以 `test` 开头。 这个命名约定告诉测试运行者类的哪些方法表示测试。
每个测试的关键是:调用 [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual") 来检查预期的输出; 调用 [`assertTrue()`](#unittest.TestCase.assertTrue "unittest.TestCase.assertTrue") 或 [`assertFalse()`](#unittest.TestCase.assertFalse "unittest.TestCase.assertFalse") 来验证一个条件;调用 [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises") 来验证抛出了一个特定的异常。使用这些方法而不是 [`assert`](../reference/simple_stmts.xhtml#assert) 语句是为了让测试运行者能聚合所有的测试结果并产生结果报告。
通过 [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") 和 [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") 方法,可以设置测试开始前与完成后需要执行的指令。 在 [组织你的测试代码](#organizing-tests) 中,对此有更为详细的描述。
最后的代码块中,演示了运行测试的一个简单的方法。 [`unittest.main()`](#unittest.main "unittest.main") 提供了一个测试脚本的命令行接口。当在命令行运行该测试脚本,上文的脚本生成如以下格式的输出:
```
...
----------------------------------------------------------------------
Ran 3 tests in 0.000s
OK
```
在调用测试脚本时添加 `-v` 参数使 [`unittest.main()`](#unittest.main "unittest.main") 显示更为详细的信息,生成如以下形式的输出:
```
test_isupper (__main__.TestStringMethods) ... ok
test_split (__main__.TestStringMethods) ... ok
test_upper (__main__.TestStringMethods) ... ok
----------------------------------------------------------------------
Ran 3 tests in 0.001s
OK
```
以上例子演示了 [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 中最常用的、足够满足许多日常测试需求的特性。文档的剩余部分详述该框架的完整特性。
## 命令行界面
unittest 模块可以通过命令行运行模块、类和独立测试方法的测试。
```
python -m unittest test_module1 test_module2
python -m unittest test_module.TestClass
python -m unittest test_module.TestClass.test_method
```
你可以传入模块名、类或方法名或他们的任意组合。
同样的,测试模块可以通过文件路径指定。
```
python -m unittest tests/test_something.py
```
这样就可以使用 shell 的文件名补全指定测试模块。所指定的文件仍需要可以被作为模块导入。路径通过去除 '.py' 、把分隔符转换为 '.' 转换为模块名。若你需要执行不能被作为模块导入的测试文件,你需要直接执行该测试文件。
在运行测试时,你可以通过添加 -v 参数获取更详细(更多的冗余)的信息。
```
python -m unittest -v test_module
```
当运行时不包含参数,开始 [探索性测试](#unittest-test-discovery) 。
```
python -m unittest
```
用于获取命令行选项列表:
```
python -m unittest -h
```
在 3.2 版更改: 在早期版本中,只支持运行独立的测试方法,而不支持模块和类。
### 命令行选项
**unittest** supports these command-line options:
`-b````, ``--buffer```在测试运行时,标准输出流与标准错误流会被放入缓冲区。成功的测试的运行时输出会被丢弃;测试不通过时,测试运行中的输出会正常显示,错误会被加入到测试失败信息。
`-c````, ``--catch```当测试正在运行时, Control-C 会等待当前测试完成,并在完成后报告已执行的测试的结果。当再次按下 Control-C 时,引发平常的 [`KeyboardInterrupt`](exceptions.xhtml#KeyboardInterrupt "KeyboardInterrupt") 异常。
See [Signal Handling](#signal-handling) for the functions that provide this functionality.
`-f````, ``--failfast```当出现第一个错误或者失败时,停止运行测试。
`-k```只运行匹配模式或子串的测试方法和类。可以多次使用这个选项,以便包含匹配子串的所有测试用例。
包含通配符(\*)的模式使用 [`fnmatch.fnmatchcase()`](fnmatch.xhtml#fnmatch.fnmatchcase "fnmatch.fnmatchcase") 对测试名称进行匹配。另外,该匹配是大小写敏感的。
模式对测试加载器导入的测试方法全名进行匹配。
例如,`-k foo` 可以匹配到 `foo_tests.SomeTest.test_something` 和 `bar_tests.SomeTest.test_foo` ,但是不能匹配到 `bar_tests.FooTest.test_something` 。
`--locals```在回溯中显示局部变量。
3\.2 新版功能: 添加命令行选项 `-b`, `-c` 和 `-f` 。
3\.5 新版功能: 命令行选项 `--locals` 。
3\.7 新版功能: 命令行选项 `-k` 。
命令行亦可用于探索性测试,以运行一个项目的所有测试或其子集。
## 探索性测试
3\.2 新版功能.
Unittest支持简单的测试搜索。若需要使用探索性测试,所有的测试文件必须是 [modules](../tutorial/modules.xhtml#tut-modules) 或 [packages](../tutorial/modules.xhtml#tut-packages) (包括 [namespace packages](../glossary.xhtml#term-namespace-package) )并可从项目根目录导入(即它们的文件名必须是有效的 [identifiers](../reference/lexical_analysis.xhtml#identifiers) )。
探索性测试在 [`TestLoader.discover()`](#unittest.TestLoader.discover "unittest.TestLoader.discover") 中实现,但也可以通过命令行使用。它在命令行中的基本用法如下:
```
cd project_directory
python -m unittest discover
```
注解
方便起见, `python -m unittest` 与 `python -m unittest discover` 等价。如果你需要向探索性测试传入参数,必须显式地使用 `discover` 子命令。
`discover` 有以下选项:
`-v````, ``--verbose```更详细地输出结果。
`-s````, ``--start-directory`` directory`开始进行搜索的目录(默认值为当前目录 `.` )。
`-p````, ``--pattern`` pattern`用于匹配测试文件的模式(默认为 `test*.py` )。
`-t````, ``--top-level-directory`` directory`指定项目的最上层目录(通常为开始时所在目录)。
[`-s`](#cmdoption-unittest-discover-s) ,[`-p`](#cmdoption-unittest-discover-p) 和 [`-t`](#cmdoption-unittest-discover-t) 选项可以按顺序作为位置参数传入。以下两条命令是等价的:
```
python -m unittest discover -s project_directory -p "*_test.py"
python -m unittest discover project_directory "*_test.py"
```
正如可以传入路径那样,传入一个包名作为起始目录也是可行的,如 `myproject.subpackage.test` 。你提供的包名会被导入,它在文件系统中的位置会被作为起始目录。
警告
探索性测试通过导入测试对测试进行加载。在找到所有你指定的开始目录下的所有测试文件后,它把路径转换为包名并进行导入。如 `foo/bar/baz.py` 会被导入为 `foo.bar.baz` 。
如果你有一个全局安装的包,并尝试对这个包的副本进行探索性测试,可能会从错误的地方开始导入。如果出现这种情况,测试会输出警告并退出。
如果你使用包名而不是路径作为开始目录,搜索时会假定它导入的是你想要的目录,所以你不会收到警告。
测试模块和包可以通过 [load\_tests protocol](#load-tests-protocol) 自定义测试的加载和搜索。
在 3.4 版更改: 探索性测试支持命名空间包( [namespace packages](../glossary.xhtml#term-namespace-package) )。
## 组织你的测试代码
单元测试的构建单位是 *test cases* :独立的、包含执行条件与正确性检查的方案。在 [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 中,测试用例表示为 [`unittest.TestCase`](#unittest.TestCase "unittest.TestCase") 的实例。通过编写 [`TestCase`](#unittest.TestCase "unittest.TestCase") 的子类或使用 [`FunctionTestCase`](#unittest.FunctionTestCase "unittest.FunctionTestCase") 编写你自己的测试用例。
一个 [`TestCase`](#unittest.TestCase "unittest.TestCase") 实例的测试代码必须是完全自含的,因此它可以独立运行,或与其它任意组合任意数量的测试用例一起运行。
[`TestCase`](#unittest.TestCase "unittest.TestCase") 的最简单的子类需要实现一个测试方法(例如一个命名以 `test` 开头的方法)以执行特定的测试代码:
```
import unittest
class DefaultWidgetSizeTestCase(unittest.TestCase):
def test_default_widget_size(self):
widget = Widget('The widget')
self.assertEqual(widget.size(), (50, 50))
```
可以看到,为了进行测试,我们使用了基类 [`TestCase`](#unittest.TestCase "unittest.TestCase") 提供的其中一个 `assert*()` 方法。若测试不通过,将会引发一个带有说明信息的异常,并且 [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 会将这个测试用例标记为测试不通过。任何其它类型的异常将会被当做错误处理。
可能同时存在多个前置操作相同的测试,我们可以把测试的前置操作从测试代码中拆解出来,并实现测试前置方法 [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") 。在运行测试时,测试框架会自动地为每个单独测试调用前置方法。
```
import unittest
class WidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget('The widget')
def test_default_widget_size(self):
self.assertEqual(self.widget.size(), (50,50),
'incorrect default size')
def test_widget_resize(self):
self.widget.resize(100,150)
self.assertEqual(self.widget.size(), (100,150),
'wrong size after resize')
```
注解
多个测试运行的顺序由内置字符串排序方法对测试名进行排序的结果决定。
在测试运行时,若 [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") 方法引发异常,测试框架会认为测试发生了错误,因此测试方法不会被运行。
相似的,我们提供了一个 [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") 方法在测试方法运行后进行清理工作。
```
import unittest
class WidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget('The widget')
def tearDown(self):
self.widget.dispose()
```
若 [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") 成功运行,无论测试方法是否成功,都会运行 [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") 。
这样的一个测试代码运行的环境被称为 *test fixture* 。一个新的 TestCase 实例作为一个测试脚手架,用于运行各个独立的测试方法。在运行每个测试时,[`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") 、[`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") 和 `__init__()` 会被调用一次。
It is recommended that you use TestCase implementations to group tests together according to the features they test. [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") provides a mechanism for this: the *test suite*, represented by [`unittest`](#module-unittest "unittest: Unit testing framework for Python.")'s [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") class. In most cases, calling [`unittest.main()`](#unittest.main "unittest.main") will do the right thing and collect all the module's test cases for you and execute them.
However, should you want to customize the building of your test suite, you can do it yourself:
```
def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase('test_default_widget_size'))
suite.addTest(WidgetTestCase('test_widget_resize'))
return suite
if __name__ == '__main__':
runner = unittest.TextTestRunner()
runner.run(suite())
```
You can place the definitions of test cases and test suites in the same modules as the code they are to test (such as `widget.py`), but there are several advantages to placing the test code in a separate module, such as `test_widget.py`:
- The test module can be run standalone from the command line.
- The test code can more easily be separated from shipped code.
- There is less temptation to change test code to fit the code it tests without a good reason.
- Test code should be modified much less frequently than the code it tests.
- Tested code can be refactored more easily.
- Tests for modules written in C must be in separate modules anyway, so why not be consistent?
- If the testing strategy changes, there is no need to change the source code.
## 复用已有的测试代码
一些用户希望直接使用 [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 运行已有的测试代码,而不需要把已有的每个测试函数转化为一个 [`TestCase`](#unittest.TestCase "unittest.TestCase") 的子类。
因此, [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") 提供 [`FunctionTestCase`](#unittest.FunctionTestCase "unittest.FunctionTestCase") 类。这个 [`TestCase`](#unittest.TestCase "unittest.TestCase") 的子类可用于打包已有的测试函数,并支持设置前置与后置函数。
假定有一个测试函数:
```
def testSomething():
something = makeSomething()
assert something.name is not None
# ...
```
可以创建等价的测试用例如下,其中前置和后置方法是可选的。
```
testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)
```
注解
Even though [`FunctionTestCase`](#unittest.FunctionTestCase "unittest.FunctionTestCase") can be used to quickly convert an existing test base over to a [`unittest`](#module-unittest "unittest: Unit testing framework for Python.")-based system, this approach is not recommended. Taking the time to set up proper [`TestCase`](#unittest.TestCase "unittest.TestCase")subclasses will make future test refactorings infinitely easier.
In some cases, the existing tests may have been written using the [`doctest`](doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.")module. If so, [`doctest`](doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.") provides a `DocTestSuite` class that can automatically build [`unittest.TestSuite`](#unittest.TestSuite "unittest.TestSuite") instances from the existing [`doctest`](doctest.xhtml#module-doctest "doctest: Test pieces of code within docstrings.")-based tests.
## Skipping tests and expected failures
3\.1 新版功能.
Unittest supports skipping individual test methods and even whole classes of tests. In addition, it supports marking a test as an "expected failure," a test that is broken and will fail, but shouldn't be counted as a failure on a [`TestResult`](#unittest.TestResult "unittest.TestResult").
Skipping a test is simply a matter of using the [`skip()`](#unittest.skip "unittest.skip") [decorator](../glossary.xhtml#term-decorator)or one of its conditional variants.
Basic skipping looks like this:
```
class MyTestCase(unittest.TestCase):
@unittest.skip("demonstrating skipping")
def test_nothing(self):
self.fail("shouldn't happen")
@unittest.skipIf(mylib.__version__ < (1, 3),
"not supported in this library version")
def test_format(self):
# Tests that work for only a certain version of the library.
pass
@unittest.skipUnless(sys.platform.startswith("win"), "requires Windows")
def test_windows_support(self):
# windows specific testing code
pass
```
This is the output of running the example above in verbose mode:
```
test_format (__main__.MyTestCase) ... skipped 'not supported in this library version'
test_nothing (__main__.MyTestCase) ... skipped 'demonstrating skipping'
test_windows_support (__main__.MyTestCase) ... skipped 'requires Windows'
----------------------------------------------------------------------
Ran 3 tests in 0.005s
OK (skipped=3)
```
Classes can be skipped just like methods:
```
@unittest.skip("showing class skipping")
class MySkippedTestCase(unittest.TestCase):
def test_not_run(self):
pass
```
[`TestCase.setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") can also skip the test. This is useful when a resource that needs to be set up is not available.
Expected failures use the [`expectedFailure()`](#unittest.expectedFailure "unittest.expectedFailure") decorator.
```
class ExpectedFailureTestCase(unittest.TestCase):
@unittest.expectedFailure
def test_fail(self):
self.assertEqual(1, 0, "broken")
```
It's easy to roll your own skipping decorators by making a decorator that calls [`skip()`](#unittest.skip "unittest.skip") on the test when it wants it to be skipped. This decorator skips the test unless the passed object has a certain attribute:
```
def skipUnlessHasattr(obj, attr):
if hasattr(obj, attr):
return lambda func: func
return unittest.skip("{!r} doesn't have {!r}".format(obj, attr))
```
The following decorators implement test skipping and expected failures:
`@``unittest.``skip`(*reason*)Unconditionally skip the decorated test. *reason* should describe why the test is being skipped.
`@``unittest.``skipIf`(*condition*, *reason*)Skip the decorated test if *condition* is true.
`@``unittest.``skipUnless`(*condition*, *reason*)Skip the decorated test unless *condition* is true.
`@``unittest.``expectedFailure`Mark the test as an expected failure. If the test fails it will be considered a success. If the test passes, it will be considered a failure.
*exception* `unittest.``SkipTest`(*reason*)This exception is raised to skip a test.
Usually you can use [`TestCase.skipTest()`](#unittest.TestCase.skipTest "unittest.TestCase.skipTest") or one of the skipping decorators instead of raising this directly.
Skipped tests will not have [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") or [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") run around them. Skipped classes will not have [`setUpClass()`](#unittest.TestCase.setUpClass "unittest.TestCase.setUpClass") or [`tearDownClass()`](#unittest.TestCase.tearDownClass "unittest.TestCase.tearDownClass") run. Skipped modules will not have `setUpModule()` or `tearDownModule()` run.
## Distinguishing test iterations using subtests
3\.4 新版功能.
When there are very small differences among your tests, for instance some parameters, unittest allows you to distinguish them inside the body of a test method using the [`subTest()`](#unittest.TestCase.subTest "unittest.TestCase.subTest") context manager.
For example, the following test:
```
class NumbersTest(unittest.TestCase):
def test_even(self):
"""
Test that numbers between 0 and 5 are all even.
"""
for i in range(0, 6):
with self.subTest(i=i):
self.assertEqual(i % 2, 0)
```
will produce the following output:
```
======================================================================
FAIL: test_even (__main__.NumbersTest) (i=1)
----------------------------------------------------------------------
Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)
AssertionError: 1 != 0
======================================================================
FAIL: test_even (__main__.NumbersTest) (i=3)
----------------------------------------------------------------------
Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)
AssertionError: 1 != 0
======================================================================
FAIL: test_even (__main__.NumbersTest) (i=5)
----------------------------------------------------------------------
Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)
AssertionError: 1 != 0
```
Without using a subtest, execution would stop after the first failure, and the error would be less easy to diagnose because the value of `i`wouldn't be displayed:
```
======================================================================
FAIL: test_even (__main__.NumbersTest)
----------------------------------------------------------------------
Traceback (most recent call last):
File "subtests.py", line 32, in test_even
self.assertEqual(i % 2, 0)
AssertionError: 1 != 0
```
## Classes and functions
This section describes in depth the API of [`unittest`](#module-unittest "unittest: Unit testing framework for Python.").
### Test cases
*class* `unittest.``TestCase`(*methodName='runTest'*)Instances of the [`TestCase`](#unittest.TestCase "unittest.TestCase") class represent the logical test units in the [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") universe. This class is intended to be used as a base class, with specific tests being implemented by concrete subclasses. This class implements the interface needed by the test runner to allow it to drive the tests, and methods that the test code can use to check for and report various kinds of failure.
Each instance of [`TestCase`](#unittest.TestCase "unittest.TestCase") will run a single base method: the method named *methodName*. In most uses of [`TestCase`](#unittest.TestCase "unittest.TestCase"), you will neither change the *methodName* nor reimplement the default `runTest()` method.
在 3.2 版更改: [`TestCase`](#unittest.TestCase "unittest.TestCase") can be instantiated successfully without providing a *methodName*. This makes it easier to experiment with [`TestCase`](#unittest.TestCase "unittest.TestCase")from the interactive interpreter.
[`TestCase`](#unittest.TestCase "unittest.TestCase") instances provide three groups of methods: one group used to run the test, another used by the test implementation to check conditions and report failures, and some inquiry methods allowing information about the test itself to be gathered.
Methods in the first group (running the test) are:
`setUp`()Method called to prepare the test fixture. This is called immediately before calling the test method; other than [`AssertionError`](exceptions.xhtml#AssertionError "AssertionError") or [`SkipTest`](#unittest.SkipTest "unittest.SkipTest"), any exception raised by this method will be considered an error rather than a test failure. The default implementation does nothing.
`tearDown`()Method called immediately after the test method has been called and the result recorded. This is called even if the test method raised an exception, so the implementation in subclasses may need to be particularly careful about checking internal state. Any exception, other than [`AssertionError`](exceptions.xhtml#AssertionError "AssertionError") or [`SkipTest`](#unittest.SkipTest "unittest.SkipTest"), raised by this method will be considered an additional error rather than a test failure (thus increasing the total number of reported errors). This method will only be called if the [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") succeeds, regardless of the outcome of the test method. The default implementation does nothing.
`setUpClass`()A class method called before tests in an individual class are run. `setUpClass` is called with the class as the only argument and must be decorated as a [`classmethod()`](functions.xhtml#classmethod "classmethod"):
```
@classmethod
def setUpClass(cls):
...
```
See [Class and Module Fixtures](#class-and-module-fixtures) for more details.
3\.2 新版功能.
`tearDownClass`()A class method called after tests in an individual class have run. `tearDownClass` is called with the class as the only argument and must be decorated as a [`classmethod()`](functions.xhtml#classmethod "classmethod"):
```
@classmethod
def tearDownClass(cls):
...
```
See [Class and Module Fixtures](#class-and-module-fixtures) for more details.
3\.2 新版功能.
`run`(*result=None*)Run the test, collecting the result into the [`TestResult`](#unittest.TestResult "unittest.TestResult") object passed as *result*. If *result* is omitted or `None`, a temporary result object is created (by calling the [`defaultTestResult()`](#unittest.TestCase.defaultTestResult "unittest.TestCase.defaultTestResult")method) and used. The result object is returned to [`run()`](#unittest.TestCase.run "unittest.TestCase.run")'s caller.
The same effect may be had by simply calling the [`TestCase`](#unittest.TestCase "unittest.TestCase")instance.
在 3.3 版更改: Previous versions of `run` did not return the result. Neither did calling an instance.
`skipTest`(*reason*)Calling this during a test method or [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") skips the current test. See [Skipping tests and expected failures](#unittest-skipping) for more information.
3\.1 新版功能.
`subTest`(*msg=None*, *\*\*params*)Return a context manager which executes the enclosed code block as a subtest. *msg* and *params* are optional, arbitrary values which are displayed whenever a subtest fails, allowing you to identify them clearly.
A test case can contain any number of subtest declarations, and they can be arbitrarily nested.
See [Distinguishing test iterations using subtests](#subtests) for more information.
3\.4 新版功能.
`debug`()Run the test without collecting the result. This allows exceptions raised by the test to be propagated to the caller, and can be used to support running tests under a debugger.
The [`TestCase`](#unittest.TestCase "unittest.TestCase") class provides several assert methods to check for and report failures. The following table lists the most commonly used methods (see the tables below for more assert methods):
Method
Checks that
New in
[`assertEqual(a, b)`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual")
`a == b`
[`assertNotEqual(a, b)`](#unittest.TestCase.assertNotEqual "unittest.TestCase.assertNotEqual")
`a != b`
[`assertTrue(x)`](#unittest.TestCase.assertTrue "unittest.TestCase.assertTrue")
`bool(x) is True`
[`assertFalse(x)`](#unittest.TestCase.assertFalse "unittest.TestCase.assertFalse")
`bool(x) is False`
[`assertIs(a, b)`](#unittest.TestCase.assertIs "unittest.TestCase.assertIs")
`a is b`
3\.1
[`assertIsNot(a, b)`](#unittest.TestCase.assertIsNot "unittest.TestCase.assertIsNot")
`a is not b`
3\.1
[`assertIsNone(x)`](#unittest.TestCase.assertIsNone "unittest.TestCase.assertIsNone")
`x is None`
3\.1
[`assertIsNotNone(x)`](#unittest.TestCase.assertIsNotNone "unittest.TestCase.assertIsNotNone")
`x is not None`
3\.1
[`assertIn(a, b)`](#unittest.TestCase.assertIn "unittest.TestCase.assertIn")
`a in b`
3\.1
[`assertNotIn(a, b)`](#unittest.TestCase.assertNotIn "unittest.TestCase.assertNotIn")
`a not in b`
3\.1
[`assertIsInstance(a, b)`](#unittest.TestCase.assertIsInstance "unittest.TestCase.assertIsInstance")
`isinstance(a, b)`
3\.2
[`assertNotIsInstance(a, b)`](#unittest.TestCase.assertNotIsInstance "unittest.TestCase.assertNotIsInstance")
`not isinstance(a, b)`
3\.2
All the assert methods accept a *msg* argument that, if specified, is used as the error message on failure (see also [`longMessage`](#unittest.TestCase.longMessage "unittest.TestCase.longMessage")). Note that the *msg* keyword argument can be passed to [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises"), [`assertRaisesRegex()`](#unittest.TestCase.assertRaisesRegex "unittest.TestCase.assertRaisesRegex"), [`assertWarns()`](#unittest.TestCase.assertWarns "unittest.TestCase.assertWarns"), [`assertWarnsRegex()`](#unittest.TestCase.assertWarnsRegex "unittest.TestCase.assertWarnsRegex")only when they are used as a context manager.
`assertEqual`(*first*, *second*, *msg=None*)Test that *first* and *second* are equal. If the values do not compare equal, the test will fail.
In addition, if *first* and *second* are the exact same type and one of list, tuple, dict, set, frozenset or str or any type that a subclass registers with [`addTypeEqualityFunc()`](#unittest.TestCase.addTypeEqualityFunc "unittest.TestCase.addTypeEqualityFunc") the type-specific equality function will be called in order to generate a more useful default error message (see also the [list of type-specific methods](#type-specific-methods)).
在 3.1 版更改: Added the automatic calling of type-specific equality function.
在 3.2 版更改: [`assertMultiLineEqual()`](#unittest.TestCase.assertMultiLineEqual "unittest.TestCase.assertMultiLineEqual") added as the default type equality function for comparing strings.
`assertNotEqual`(*first*, *second*, *msg=None*)Test that *first* and *second* are not equal. If the values do compare equal, the test will fail.
`assertTrue`(*expr*, *msg=None*)`assertFalse`(*expr*, *msg=None*)Test that *expr* is true (or false).
Note that this is equivalent to `bool(expr) is True` and not to
```
expr
is True
```
(use `assertIs(expr, True)` for the latter). This method should also be avoided when more specific methods are available (e.g. `assertEqual(a, b)` instead of `assertTrue(a == b)`), because they provide a better error message in case of failure.
`assertIs`(*first*, *second*, *msg=None*)`assertIsNot`(*first*, *second*, *msg=None*)Test that *first* and *second* evaluate (or don't evaluate) to the same object.
3\.1 新版功能.
`assertIsNone`(*expr*, *msg=None*)`assertIsNotNone`(*expr*, *msg=None*)Test that *expr* is (or is not) `None`.
3\.1 新版功能.
`assertIn`(*first*, *second*, *msg=None*)`assertNotIn`(*first*, *second*, *msg=None*)Test that *first* is (or is not) in *second*.
3\.1 新版功能.
`assertIsInstance`(*obj*, *cls*, *msg=None*)`assertNotIsInstance`(*obj*, *cls*, *msg=None*)Test that *obj* is (or is not) an instance of *cls* (which can be a class or a tuple of classes, as supported by [`isinstance()`](functions.xhtml#isinstance "isinstance")). To check for the exact type, use [`assertIs(type(obj), cls)`](#unittest.TestCase.assertIs "unittest.TestCase.assertIs").
3\.2 新版功能.
It is also possible to check the production of exceptions, warnings, and log messages using the following methods:
Method
Checks that
New in
[`assertRaises(exc, fun, *args, **kwds)`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises")
`fun(*args, **kwds)` raises *exc*
[`assertRaisesRegex(exc, r, fun, *args, **kwds)`](#unittest.TestCase.assertRaisesRegex "unittest.TestCase.assertRaisesRegex")
`fun(*args, **kwds)` raises *exc*and the message matches regex *r*
3\.1
[`assertWarns(warn, fun, *args, **kwds)`](#unittest.TestCase.assertWarns "unittest.TestCase.assertWarns")
`fun(*args, **kwds)` raises *warn*
3\.2
[`assertWarnsRegex(warn, r, fun, *args, **kwds)`](#unittest.TestCase.assertWarnsRegex "unittest.TestCase.assertWarnsRegex")
`fun(*args, **kwds)` raises *warn*and the message matches regex *r*
3\.2
[`assertLogs(logger, level)`](#unittest.TestCase.assertLogs "unittest.TestCase.assertLogs")
The `with` block logs on *logger*with minimum *level*
3\.4
`assertRaises`(*exception*, *callable*, *\*args*, *\*\*kwds*)`assertRaises`(*exception*, *\**, *msg=None*)Test that an exception is raised when *callable* is called with any positional or keyword arguments that are also passed to [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises"). The test passes if *exception* is raised, is an error if another exception is raised, or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the exception classes may be passed as *exception*.
If only the *exception* and possibly the *msg* arguments are given, return a context manager so that the code under test can be written inline rather than as a function:
```
with self.assertRaises(SomeException):
do_something()
```
When used as a context manager, [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises") accepts the additional keyword argument *msg*.
The context manager will store the caught exception object in its `exception` attribute. This can be useful if the intention is to perform additional checks on the exception raised:
```
with self.assertRaises(SomeException) as cm:
do_something()
the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)
```
在 3.1 版更改: Added the ability to use [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises") as a context manager.
在 3.2 版更改: Added the `exception` attribute.
在 3.3 版更改: Added the *msg* keyword argument when used as a context manager.
`assertRaisesRegex`(*exception*, *regex*, *callable*, *\*args*, *\*\*kwds*)`assertRaisesRegex`(*exception*, *regex*, *\**, *msg=None*)Like [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises") but also tests that *regex* matches on the string representation of the raised exception. *regex* may be a regular expression object or a string containing a regular expression suitable for use by [`re.search()`](re.xhtml#re.search "re.search"). Examples:
```
self.assertRaisesRegex(ValueError, "invalid literal for.*XYZ'$",
int, 'XYZ')
```
or:
```
with self.assertRaisesRegex(ValueError, 'literal'):
int('XYZ')
```
3\.1 新版功能: Added under the name `assertRaisesRegexp`.
在 3.2 版更改: Renamed to [`assertRaisesRegex()`](#unittest.TestCase.assertRaisesRegex "unittest.TestCase.assertRaisesRegex").
在 3.3 版更改: Added the *msg* keyword argument when used as a context manager.
`assertWarns`(*warning*, *callable*, *\*args*, *\*\*kwds*)`assertWarns`(*warning*, *\**, *msg=None*)Test that a warning is triggered when *callable* is called with any positional or keyword arguments that are also passed to [`assertWarns()`](#unittest.TestCase.assertWarns "unittest.TestCase.assertWarns"). The test passes if *warning* is triggered and fails if it isn't. Any exception is an error. To catch any of a group of warnings, a tuple containing the warning classes may be passed as *warnings*.
If only the *warning* and possibly the *msg* arguments are given, return a context manager so that the code under test can be written inline rather than as a function:
```
with self.assertWarns(SomeWarning):
do_something()
```
When used as a context manager, [`assertWarns()`](#unittest.TestCase.assertWarns "unittest.TestCase.assertWarns") accepts the additional keyword argument *msg*.
The context manager will store the caught warning object in its `warning` attribute, and the source line which triggered the warnings in the `filename` and `lineno` attributes. This can be useful if the intention is to perform additional checks on the warning caught:
```
with self.assertWarns(SomeWarning) as cm:
do_something()
self.assertIn('myfile.py', cm.filename)
self.assertEqual(320, cm.lineno)
```
This method works regardless of the warning filters in place when it is called.
3\.2 新版功能.
在 3.3 版更改: Added the *msg* keyword argument when used as a context manager.
`assertWarnsRegex`(*warning*, *regex*, *callable*, *\*args*, *\*\*kwds*)`assertWarnsRegex`(*warning*, *regex*, *\**, *msg=None*)Like [`assertWarns()`](#unittest.TestCase.assertWarns "unittest.TestCase.assertWarns") but also tests that *regex* matches on the message of the triggered warning. *regex* may be a regular expression object or a string containing a regular expression suitable for use by [`re.search()`](re.xhtml#re.search "re.search"). Example:
```
self.assertWarnsRegex(DeprecationWarning,
r'legacy_function\(\) is deprecated',
legacy_function, 'XYZ')
```
or:
```
with self.assertWarnsRegex(RuntimeWarning, 'unsafe frobnicating'):
frobnicate('/etc/passwd')
```
3\.2 新版功能.
在 3.3 版更改: Added the *msg* keyword argument when used as a context manager.
`assertLogs`(*logger=None*, *level=None*)A context manager to test that at least one message is logged on the *logger* or one of its children, with at least the given *level*.
If given, *logger* should be a [`logging.Logger`](logging.xhtml#logging.Logger "logging.Logger") object or a [`str`](stdtypes.xhtml#str "str") giving the name of a logger. The default is the root logger, which will catch all messages.
If given, *level* should be either a numeric logging level or its string equivalent (for example either `"ERROR"` or `logging.ERROR`). The default is `logging.INFO`.
The test passes if at least one message emitted inside the `with`block matches the *logger* and *level* conditions, otherwise it fails.
The object returned by the context manager is a recording helper which keeps tracks of the matching log messages. It has two attributes:
`records`A list of [`logging.LogRecord`](logging.xhtml#logging.LogRecord "logging.LogRecord") objects of the matching log messages.
`output`A list of [`str`](stdtypes.xhtml#str "str") objects with the formatted output of matching messages.
示例:
```
with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')
self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])
```
3\.4 新版功能.
There are also other methods used to perform more specific checks, such as:
Method
Checks that
New in
[`assertAlmostEqual(a, b)`](#unittest.TestCase.assertAlmostEqual "unittest.TestCase.assertAlmostEqual")
`round(a-b, 7) == 0`
[`assertNotAlmostEqual(a, b)`](#unittest.TestCase.assertNotAlmostEqual "unittest.TestCase.assertNotAlmostEqual")
`round(a-b, 7) != 0`
[`assertGreater(a, b)`](#unittest.TestCase.assertGreater "unittest.TestCase.assertGreater")
`a > b`
3\.1
[`assertGreaterEqual(a, b)`](#unittest.TestCase.assertGreaterEqual "unittest.TestCase.assertGreaterEqual")
`a >= b`
3\.1
[`assertLess(a, b)`](#unittest.TestCase.assertLess "unittest.TestCase.assertLess")
`a < b`
3\.1
[`assertLessEqual(a, b)`](#unittest.TestCase.assertLessEqual "unittest.TestCase.assertLessEqual")
`a <= b`
3\.1
[`assertRegex(s, r)`](#unittest.TestCase.assertRegex "unittest.TestCase.assertRegex")
`r.search(s)`
3\.1
[`assertNotRegex(s, r)`](#unittest.TestCase.assertNotRegex "unittest.TestCase.assertNotRegex")
`not r.search(s)`
3\.2
[`assertCountEqual(a, b)`](#unittest.TestCase.assertCountEqual "unittest.TestCase.assertCountEqual")
*a* and *b* have the same elements in the same number, regardless of their order.
3\.2
`assertAlmostEqual`(*first*, *second*, *places=7*, *msg=None*, *delta=None*)`assertNotAlmostEqual`(*first*, *second*, *places=7*, *msg=None*, *delta=None*)Test that *first* and *second* are approximately (or not approximately) equal by computing the difference, rounding to the given number of decimal *places* (default 7), and comparing to zero. Note that these methods round the values to the given number of *decimal places* (i.e. like the [`round()`](functions.xhtml#round "round") function) and not *significant digits*.
If *delta* is supplied instead of *places* then the difference between *first* and *second* must be less or equal to (or greater than) *delta*.
Supplying both *delta* and *places* raises a [`TypeError`](exceptions.xhtml#TypeError "TypeError").
在 3.2 版更改: [`assertAlmostEqual()`](#unittest.TestCase.assertAlmostEqual "unittest.TestCase.assertAlmostEqual") automatically considers almost equal objects that compare equal. [`assertNotAlmostEqual()`](#unittest.TestCase.assertNotAlmostEqual "unittest.TestCase.assertNotAlmostEqual") automatically fails if the objects compare equal. Added the *delta* keyword argument.
`assertGreater`(*first*, *second*, *msg=None*)`assertGreaterEqual`(*first*, *second*, *msg=None*)`assertLess`(*first*, *second*, *msg=None*)`assertLessEqual`(*first*, *second*, *msg=None*)Test that *first* is respectively >, >=, < or <= than *second* depending on the method name. If not, the test will fail:
```
>>> self.assertGreaterEqual(3, 4)
AssertionError: "3" unexpectedly not greater than or equal to "4"
```
3\.1 新版功能.
`assertRegex`(*text*, *regex*, *msg=None*)`assertNotRegex`(*text*, *regex*, *msg=None*)Test that a *regex* search matches (or does not match) *text*. In case of failure, the error message will include the pattern and the *text* (or the pattern and the part of *text* that unexpectedly matched). *regex*may be a regular expression object or a string containing a regular expression suitable for use by [`re.search()`](re.xhtml#re.search "re.search").
3\.1 新版功能: Added under the name `assertRegexpMatches`.
在 3.2 版更改: The method `assertRegexpMatches()` has been renamed to [`assertRegex()`](#unittest.TestCase.assertRegex "unittest.TestCase.assertRegex").
3\.2 新版功能: [`assertNotRegex()`](#unittest.TestCase.assertNotRegex "unittest.TestCase.assertNotRegex").
3\.5 新版功能: The name `assertNotRegexpMatches` is a deprecated alias for [`assertNotRegex()`](#unittest.TestCase.assertNotRegex "unittest.TestCase.assertNotRegex").
`assertCountEqual`(*first*, *second*, *msg=None*)Test that sequence *first* contains the same elements as *second*, regardless of their order. When they don't, an error message listing the differences between the sequences will be generated.
Duplicate elements are *not* ignored when comparing *first* and *second*. It verifies whether each element has the same count in both sequences. Equivalent to: `assertEqual(Counter(list(first)), Counter(list(second)))`but works with sequences of unhashable objects as well.
3\.2 新版功能.
The [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual") method dispatches the equality check for objects of the same type to different type-specific methods. These methods are already implemented for most of the built-in types, but it's also possible to register new methods using [`addTypeEqualityFunc()`](#unittest.TestCase.addTypeEqualityFunc "unittest.TestCase.addTypeEqualityFunc"):
`addTypeEqualityFunc`(*typeobj*, *function*)Registers a type-specific method called by [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual") to check if two objects of exactly the same *typeobj* (not subclasses) compare equal. *function* must take two positional arguments and a third msg=None keyword argument just as [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual") does. It must raise [`self.failureException(msg)`](#unittest.TestCase.failureException "unittest.TestCase.failureException") when inequality between the first two parameters is detected -- possibly providing useful information and explaining the inequalities in details in the error message.
3\.1 新版功能.
The list of type-specific methods automatically used by [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual") are summarized in the following table. Note that it's usually not necessary to invoke these methods directly.
Method
Used to compare
New in
[`assertMultiLineEqual(a, b)`](#unittest.TestCase.assertMultiLineEqual "unittest.TestCase.assertMultiLineEqual")
strings
3\.1
[`assertSequenceEqual(a, b)`](#unittest.TestCase.assertSequenceEqual "unittest.TestCase.assertSequenceEqual")
sequences
3\.1
[`assertListEqual(a, b)`](#unittest.TestCase.assertListEqual "unittest.TestCase.assertListEqual")
lists
3\.1
[`assertTupleEqual(a, b)`](#unittest.TestCase.assertTupleEqual "unittest.TestCase.assertTupleEqual")
tuples
3\.1
[`assertSetEqual(a, b)`](#unittest.TestCase.assertSetEqual "unittest.TestCase.assertSetEqual")
sets or frozensets
3\.1
[`assertDictEqual(a, b)`](#unittest.TestCase.assertDictEqual "unittest.TestCase.assertDictEqual")
dicts
3\.1
`assertMultiLineEqual`(*first*, *second*, *msg=None*)Test that the multiline string *first* is equal to the string *second*. When not equal a diff of the two strings highlighting the differences will be included in the error message. This method is used by default when comparing strings with [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual").
3\.1 新版功能.
`assertSequenceEqual`(*first*, *second*, *msg=None*, *seq\_type=None*)Tests that two sequences are equal. If a *seq\_type* is supplied, both *first* and *second* must be instances of *seq\_type* or a failure will be raised. If the sequences are different an error message is constructed that shows the difference between the two.
This method is not called directly by [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual"), but it's used to implement [`assertListEqual()`](#unittest.TestCase.assertListEqual "unittest.TestCase.assertListEqual") and [`assertTupleEqual()`](#unittest.TestCase.assertTupleEqual "unittest.TestCase.assertTupleEqual").
3\.1 新版功能.
`assertListEqual`(*first*, *second*, *msg=None*)`assertTupleEqual`(*first*, *second*, *msg=None*)Tests that two lists or tuples are equal. If not, an error message is constructed that shows only the differences between the two. An error is also raised if either of the parameters are of the wrong type. These methods are used by default when comparing lists or tuples with [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual").
3\.1 新版功能.
`assertSetEqual`(*first*, *second*, *msg=None*)Tests that two sets are equal. If not, an error message is constructed that lists the differences between the sets. This method is used by default when comparing sets or frozensets with [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual").
Fails if either of *first* or *second* does not have a `set.difference()`method.
3\.1 新版功能.
`assertDictEqual`(*first*, *second*, *msg=None*)Test that two dictionaries are equal. If not, an error message is constructed that shows the differences in the dictionaries. This method will be used by default to compare dictionaries in calls to [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual").
3\.1 新版功能.
Finally the [`TestCase`](#unittest.TestCase "unittest.TestCase") provides the following methods and attributes:
`fail`(*msg=None*)Signals a test failure unconditionally, with *msg* or `None` for the error message.
`failureException`This class attribute gives the exception raised by the test method. If a test framework needs to use a specialized exception, possibly to carry additional information, it must subclass this exception in order to "play fair" with the framework. The initial value of this attribute is [`AssertionError`](exceptions.xhtml#AssertionError "AssertionError").
`longMessage`This class attribute determines what happens when a custom failure message is passed as the msg argument to an assertXYY call that fails. `True` is the default value. In this case, the custom message is appended to the end of the standard failure message. When set to `False`, the custom message replaces the standard message.
The class setting can be overridden in individual test methods by assigning an instance attribute, self.longMessage, to `True` or `False` before calling the assert methods.
The class setting gets reset before each test call.
3\.1 新版功能.
`maxDiff`This attribute controls the maximum length of diffs output by assert methods that report diffs on failure. It defaults to 80\*8 characters. Assert methods affected by this attribute are [`assertSequenceEqual()`](#unittest.TestCase.assertSequenceEqual "unittest.TestCase.assertSequenceEqual") (including all the sequence comparison methods that delegate to it), [`assertDictEqual()`](#unittest.TestCase.assertDictEqual "unittest.TestCase.assertDictEqual") and [`assertMultiLineEqual()`](#unittest.TestCase.assertMultiLineEqual "unittest.TestCase.assertMultiLineEqual").
Setting `maxDiff` to `None` means that there is no maximum length of diffs.
3\.2 新版功能.
Testing frameworks can use the following methods to collect information on the test:
`countTestCases`()Return the number of tests represented by this test object. For [`TestCase`](#unittest.TestCase "unittest.TestCase") instances, this will always be `1`.
`defaultTestResult`()Return an instance of the test result class that should be used for this test case class (if no other result instance is provided to the [`run()`](#unittest.TestCase.run "unittest.TestCase.run") method).
For [`TestCase`](#unittest.TestCase "unittest.TestCase") instances, this will always be an instance of [`TestResult`](#unittest.TestResult "unittest.TestResult"); subclasses of [`TestCase`](#unittest.TestCase "unittest.TestCase") should override this as necessary.
`id`()Return a string identifying the specific test case. This is usually the full name of the test method, including the module and class name.
`shortDescription`()Returns a description of the test, or `None` if no description has been provided. The default implementation of this method returns the first line of the test method's docstring, if available, or `None`.
在 3.1 版更改: In 3.1 this was changed to add the test name to the short description even in the presence of a docstring. This caused compatibility issues with unittest extensions and adding the test name was moved to the [`TextTestResult`](#unittest.TextTestResult "unittest.TextTestResult") in Python 3.2.
`addCleanup`(*function*, *\*args*, *\*\*kwargs*)Add a function to be called after [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") to cleanup resources used during the test. Functions will be called in reverse order to the order they are added (LIFO). They are called with any arguments and keyword arguments passed into [`addCleanup()`](#unittest.TestCase.addCleanup "unittest.TestCase.addCleanup") when they are added.
If [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") fails, meaning that [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") is not called, then any cleanup functions added will still be called.
3\.1 新版功能.
`doCleanups`()This method is called unconditionally after [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown"), or after [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") if [`setUp()`](#unittest.TestCase.setUp "unittest.TestCase.setUp") raises an exception.
It is responsible for calling all the cleanup functions added by [`addCleanup()`](#unittest.TestCase.addCleanup "unittest.TestCase.addCleanup"). If you need cleanup functions to be called *prior* to [`tearDown()`](#unittest.TestCase.tearDown "unittest.TestCase.tearDown") then you can call [`doCleanups()`](#unittest.TestCase.doCleanups "unittest.TestCase.doCleanups")yourself.
[`doCleanups()`](#unittest.TestCase.doCleanups "unittest.TestCase.doCleanups") pops methods off the stack of cleanup functions one at a time, so it can be called at any time.
3\.1 新版功能.
*class* `unittest.``FunctionTestCase`(*testFunc*, *setUp=None*, *tearDown=None*, *description=None*)This class implements the portion of the [`TestCase`](#unittest.TestCase "unittest.TestCase") interface which allows the test runner to drive the test, but does not provide the methods which test code can use to check and report errors. This is used to create test cases using legacy test code, allowing it to be integrated into a [`unittest`](#module-unittest "unittest: Unit testing framework for Python.")-based test framework.
#### Deprecated aliases
For historical reasons, some of the [`TestCase`](#unittest.TestCase "unittest.TestCase") methods had one or more aliases that are now deprecated. The following table lists the correct names along with their deprecated aliases:
> Method Name
>
> Deprecated alias
>
> Deprecated alias
>
> [`assertEqual()`](#unittest.TestCase.assertEqual "unittest.TestCase.assertEqual")
>
> failUnlessEqual
>
> assertEquals
>
> [`assertNotEqual()`](#unittest.TestCase.assertNotEqual "unittest.TestCase.assertNotEqual")
>
> failIfEqual
>
> assertNotEquals
>
> [`assertTrue()`](#unittest.TestCase.assertTrue "unittest.TestCase.assertTrue")
>
> failUnless
>
> assert\_
>
> [`assertFalse()`](#unittest.TestCase.assertFalse "unittest.TestCase.assertFalse")
>
> failIf
>
> [`assertRaises()`](#unittest.TestCase.assertRaises "unittest.TestCase.assertRaises")
>
> failUnlessRaises
>
> [`assertAlmostEqual()`](#unittest.TestCase.assertAlmostEqual "unittest.TestCase.assertAlmostEqual")
>
> failUnlessAlmostEqual
>
> assertAlmostEquals
>
> [`assertNotAlmostEqual()`](#unittest.TestCase.assertNotAlmostEqual "unittest.TestCase.assertNotAlmostEqual")
>
> failIfAlmostEqual
>
> assertNotAlmostEquals
>
> [`assertRegex()`](#unittest.TestCase.assertRegex "unittest.TestCase.assertRegex")
>
> assertRegexpMatches
>
> [`assertNotRegex()`](#unittest.TestCase.assertNotRegex "unittest.TestCase.assertNotRegex")
>
> assertNotRegexpMatches
>
> [`assertRaisesRegex()`](#unittest.TestCase.assertRaisesRegex "unittest.TestCase.assertRaisesRegex")
>
> assertRaisesRegexp
>
> 3\.1 版后已移除: The fail\* aliases listed in the second column have been deprecated.
>
>
>
> 3\.2 版后已移除: The assert\* aliases listed in the third column have been deprecated.
>
>
>
> 3\.2 版后已移除: `assertRegexpMatches` and `assertRaisesRegexp` have been renamed to [`assertRegex()`](#unittest.TestCase.assertRegex "unittest.TestCase.assertRegex") and [`assertRaisesRegex()`](#unittest.TestCase.assertRaisesRegex "unittest.TestCase.assertRaisesRegex").
>
>
>
> 3\.5 版后已移除: The `assertNotRegexpMatches` name is deprecated in favor of [`assertNotRegex()`](#unittest.TestCase.assertNotRegex "unittest.TestCase.assertNotRegex").
### Grouping tests
*class* `unittest.``TestSuite`(*tests=()*)This class represents an aggregation of individual test cases and test suites. The class presents the interface needed by the test runner to allow it to be run as any other test case. Running a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") instance is the same as iterating over the suite, running each test individually.
If *tests* is given, it must be an iterable of individual test cases or other test suites that will be used to build the suite initially. Additional methods are provided to add test cases and suites to the collection later on.
[`TestSuite`](#unittest.TestSuite "unittest.TestSuite") objects behave much like [`TestCase`](#unittest.TestCase "unittest.TestCase") objects, except they do not actually implement a test. Instead, they are used to aggregate tests into groups of tests that should be run together. Some additional methods are available to add tests to [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") instances:
`addTest`(*test*)Add a [`TestCase`](#unittest.TestCase "unittest.TestCase") or [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") to the suite.
`addTests`(*tests*)Add all the tests from an iterable of [`TestCase`](#unittest.TestCase "unittest.TestCase") and [`TestSuite`](#unittest.TestSuite "unittest.TestSuite")instances to this test suite.
This is equivalent to iterating over *tests*, calling [`addTest()`](#unittest.TestSuite.addTest "unittest.TestSuite.addTest") for each element.
[`TestSuite`](#unittest.TestSuite "unittest.TestSuite") shares the following methods with [`TestCase`](#unittest.TestCase "unittest.TestCase"):
`run`(*result*)Run the tests associated with this suite, collecting the result into the test result object passed as *result*. Note that unlike [`TestCase.run()`](#unittest.TestCase.run "unittest.TestCase.run"), [`TestSuite.run()`](#unittest.TestSuite.run "unittest.TestSuite.run") requires the result object to be passed in.
`debug`()Run the tests associated with this suite without collecting the result. This allows exceptions raised by the test to be propagated to the caller and can be used to support running tests under a debugger.
`countTestCases`()Return the number of tests represented by this test object, including all individual tests and sub-suites.
`__iter__`()Tests grouped by a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") are always accessed by iteration. Subclasses can lazily provide tests by overriding [`__iter__()`](#unittest.TestSuite.__iter__ "unittest.TestSuite.__iter__"). Note that this method may be called several times on a single suite (for example when counting tests or comparing for equality) so the tests returned by repeated iterations before [`TestSuite.run()`](#unittest.TestSuite.run "unittest.TestSuite.run") must be the same for each call iteration. After [`TestSuite.run()`](#unittest.TestSuite.run "unittest.TestSuite.run"), callers should not rely on the tests returned by this method unless the caller uses a subclass that overrides `TestSuite._removeTestAtIndex()` to preserve test references.
在 3.2 版更改: In earlier versions the [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") accessed tests directly rather than through iteration, so overriding [`__iter__()`](#unittest.TestSuite.__iter__ "unittest.TestSuite.__iter__") wasn't sufficient for providing tests.
在 3.4 版更改: In earlier versions the [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") held references to each [`TestCase`](#unittest.TestCase "unittest.TestCase") after [`TestSuite.run()`](#unittest.TestSuite.run "unittest.TestSuite.run"). Subclasses can restore that behavior by overriding `TestSuite._removeTestAtIndex()`.
In the typical usage of a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") object, the [`run()`](#unittest.TestSuite.run "unittest.TestSuite.run") method is invoked by a `TestRunner` rather than by the end-user test harness.
### Loading and running tests
*class* `unittest.``TestLoader`The [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") class is used to create test suites from classes and modules. Normally, there is no need to create an instance of this class; the [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") module provides an instance that can be shared as [`unittest.defaultTestLoader`](#unittest.defaultTestLoader "unittest.defaultTestLoader"). Using a subclass or instance, however, allows customization of some configurable properties.
[`TestLoader`](#unittest.TestLoader "unittest.TestLoader") objects have the following attributes:
`errors`A list of the non-fatal errors encountered while loading tests. Not reset by the loader at any point. Fatal errors are signalled by the relevant a method raising an exception to the caller. Non-fatal errors are also indicated by a synthetic test that will raise the original error when run.
3\.5 新版功能.
[`TestLoader`](#unittest.TestLoader "unittest.TestLoader") objects have the following methods:
`loadTestsFromTestCase`(*testCaseClass*)Return a suite of all test cases contained in the [`TestCase`](#unittest.TestCase "unittest.TestCase")-derived `testCaseClass`.
A test case instance is created for each method named by [`getTestCaseNames()`](#unittest.TestLoader.getTestCaseNames "unittest.TestLoader.getTestCaseNames"). By default these are the method names beginning with `test`. If [`getTestCaseNames()`](#unittest.TestLoader.getTestCaseNames "unittest.TestLoader.getTestCaseNames") returns no methods, but the `runTest()` method is implemented, a single test case is created for that method instead.
`loadTestsFromModule`(*module*, *pattern=None*)Return a suite of all test cases contained in the given module. This method searches *module* for classes derived from [`TestCase`](#unittest.TestCase "unittest.TestCase") and creates an instance of the class for each test method defined for the class.
注解
While using a hierarchy of [`TestCase`](#unittest.TestCase "unittest.TestCase")-derived classes can be convenient in sharing fixtures and helper functions, defining test methods on base classes that are not intended to be instantiated directly does not play well with this method. Doing so, however, can be useful when the fixtures are different and defined in subclasses.
If a module provides a `load_tests` function it will be called to load the tests. This allows modules to customize test loading. This is the [load\_tests protocol](#load-tests-protocol). The *pattern* argument is passed as the third argument to `load_tests`.
在 3.2 版更改: Support for `load_tests` added.
在 3.5 版更改: The undocumented and unofficial *use\_load\_tests* default argument is deprecated and ignored, although it is still accepted for backward compatibility. The method also now accepts a keyword-only argument *pattern* which is passed to `load_tests` as the third argument.
`loadTestsFromName`(*name*, *module=None*)Return a suite of all test cases given a string specifier.
The specifier *name* is a "dotted name" that may resolve either to a module, a test case class, a test method within a test case class, a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") instance, or a callable object which returns a [`TestCase`](#unittest.TestCase "unittest.TestCase") or [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") instance. These checks are applied in the order listed here; that is, a method on a possible test case class will be picked up as "a test method within a test case class", rather than "a callable object".
For example, if you have a module `SampleTests` containing a [`TestCase`](#unittest.TestCase "unittest.TestCase")-derived class `SampleTestCase` with three test methods (`test_one()`, `test_two()`, and `test_three()`), the specifier `'SampleTests.SampleTestCase'` would cause this method to return a suite which will run all three test methods. Using the specifier `'SampleTests.SampleTestCase.test_two'` would cause it to return a test suite which will run only the `test_two()` test method. The specifier can refer to modules and packages which have not been imported; they will be imported as a side-effect.
The method optionally resolves *name* relative to the given *module*.
在 3.5 版更改: If an [`ImportError`](exceptions.xhtml#ImportError "ImportError") or [`AttributeError`](exceptions.xhtml#AttributeError "AttributeError") occurs while traversing *name* then a synthetic test that raises that error when run will be returned. These errors are included in the errors accumulated by self.errors.
`loadTestsFromNames`(*names*, *module=None*)Similar to [`loadTestsFromName()`](#unittest.TestLoader.loadTestsFromName "unittest.TestLoader.loadTestsFromName"), but takes a sequence of names rather than a single name. The return value is a test suite which supports all the tests defined for each name.
`getTestCaseNames`(*testCaseClass*)Return a sorted sequence of method names found within *testCaseClass*; this should be a subclass of [`TestCase`](#unittest.TestCase "unittest.TestCase").
`discover`(*start\_dir*, *pattern='test\*.py'*, *top\_level\_dir=None*)Find all the test modules by recursing into subdirectories from the specified start directory, and return a TestSuite object containing them. Only test files that match *pattern* will be loaded. (Using shell style pattern matching.) Only module names that are importable (i.e. are valid Python identifiers) will be loaded.
All test modules must be importable from the top level of the project. If the start directory is not the top level directory then the top level directory must be specified separately.
If importing a module fails, for example due to a syntax error, then this will be recorded as a single error and discovery will continue. If the import failure is due to [`SkipTest`](#unittest.SkipTest "unittest.SkipTest") being raised, it will be recorded as a skip instead of an error.
If a package (a directory containing a file named `__init__.py`) is found, the package will be checked for a `load_tests` function. If this exists then it will be called `package.load_tests(loader, tests, pattern)`. Test discovery takes care to ensure that a package is only checked for tests once during an invocation, even if the load\_tests function itself calls `loader.discover`.
If `load_tests` exists then discovery does *not* recurse into the package, `load_tests` is responsible for loading all tests in the package.
The pattern is deliberately not stored as a loader attribute so that packages can continue discovery themselves. *top\_level\_dir* is stored so `load_tests` does not need to pass this argument in to `loader.discover()`.
*start\_dir* can be a dotted module name as well as a directory.
3\.2 新版功能.
在 3.4 版更改: Modules that raise [`SkipTest`](#unittest.SkipTest "unittest.SkipTest") on import are recorded as skips, not errors. Discovery works for [namespace packages](../glossary.xhtml#term-namespace-package). Paths are sorted before being imported so that execution order is the same even if the underlying file system's ordering is not dependent on file name.
在 3.5 版更改: Found packages are now checked for `load_tests` regardless of whether their path matches *pattern*, because it is impossible for a package name to match the default pattern.
The following attributes of a [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") can be configured either by subclassing or assignment on an instance:
`testMethodPrefix`String giving the prefix of method names which will be interpreted as test methods. The default value is `'test'`.
This affects [`getTestCaseNames()`](#unittest.TestLoader.getTestCaseNames "unittest.TestLoader.getTestCaseNames") and all the `loadTestsFrom*()`methods.
`sortTestMethodsUsing`Function to be used to compare method names when sorting them in [`getTestCaseNames()`](#unittest.TestLoader.getTestCaseNames "unittest.TestLoader.getTestCaseNames") and all the `loadTestsFrom*()` methods.
`suiteClass`Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed. The default value is the [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") class.
This affects all the `loadTestsFrom*()` methods.
`testNamePatterns`List of Unix shell-style wildcard test name patterns that test methods have to match to be included in test suites (see `-v` option).
If this attribute is not `None` (the default), all test methods to be included in test suites must match one of the patterns in this list. Note that matches are always performed using [`fnmatch.fnmatchcase()`](fnmatch.xhtml#fnmatch.fnmatchcase "fnmatch.fnmatchcase"), so unlike patterns passed to the `-v` option, simple substring patterns will have to be converted using `*` wildcards.
This affects all the `loadTestsFrom*()` methods.
3\.7 新版功能.
*class* `unittest.``TestResult`This class is used to compile information about which tests have succeeded and which have failed.
A [`TestResult`](#unittest.TestResult "unittest.TestResult") object stores the results of a set of tests. The [`TestCase`](#unittest.TestCase "unittest.TestCase") and [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") classes ensure that results are properly recorded; test authors do not need to worry about recording the outcome of tests.
Testing frameworks built on top of [`unittest`](#module-unittest "unittest: Unit testing framework for Python.") may want access to the [`TestResult`](#unittest.TestResult "unittest.TestResult") object generated by running a set of tests for reporting purposes; a [`TestResult`](#unittest.TestResult "unittest.TestResult") instance is returned by the `TestRunner.run()` method for this purpose.
[`TestResult`](#unittest.TestResult "unittest.TestResult") instances have the following attributes that will be of interest when inspecting the results of running a set of tests:
`errors`A list containing 2-tuples of [`TestCase`](#unittest.TestCase "unittest.TestCase") instances and strings holding formatted tracebacks. Each tuple represents a test which raised an unexpected exception.
`failures`A list containing 2-tuples of [`TestCase`](#unittest.TestCase "unittest.TestCase") instances and strings holding formatted tracebacks. Each tuple represents a test where a failure was explicitly signalled using the `TestCase.assert*()` methods.
`skipped`A list containing 2-tuples of [`TestCase`](#unittest.TestCase "unittest.TestCase") instances and strings holding the reason for skipping the test.
3\.1 新版功能.
`expectedFailures`A list containing 2-tuples of [`TestCase`](#unittest.TestCase "unittest.TestCase") instances and strings holding formatted tracebacks. Each tuple represents an expected failure of the test case.
`unexpectedSuccesses`A list containing [`TestCase`](#unittest.TestCase "unittest.TestCase") instances that were marked as expected failures, but succeeded.
`shouldStop`Set to `True` when the execution of tests should stop by [`stop()`](#unittest.TestResult.stop "unittest.TestResult.stop").
`testsRun`The total number of tests run so far.
`buffer`If set to true, `sys.stdout` and `sys.stderr` will be buffered in between [`startTest()`](#unittest.TestResult.startTest "unittest.TestResult.startTest") and [`stopTest()`](#unittest.TestResult.stopTest "unittest.TestResult.stopTest") being called. Collected output will only be echoed onto the real `sys.stdout` and `sys.stderr` if the test fails or errors. Any output is also attached to the failure / error message.
3\.2 新版功能.
`failfast`If set to true [`stop()`](#unittest.TestResult.stop "unittest.TestResult.stop") will be called on the first failure or error, halting the test run.
3\.2 新版功能.
`tb_locals`If set to true then local variables will be shown in tracebacks.
3\.5 新版功能.
`wasSuccessful`()Return `True` if all tests run so far have passed, otherwise returns `False`.
在 3.4 版更改: Returns `False` if there were any [`unexpectedSuccesses`](#unittest.TestResult.unexpectedSuccesses "unittest.TestResult.unexpectedSuccesses")from tests marked with the [`expectedFailure()`](#unittest.expectedFailure "unittest.expectedFailure") decorator.
`stop`()This method can be called to signal that the set of tests being run should be aborted by setting the [`shouldStop`](#unittest.TestResult.shouldStop "unittest.TestResult.shouldStop") attribute to `True`. `TestRunner` objects should respect this flag and return without running any additional tests.
For example, this feature is used by the [`TextTestRunner`](#unittest.TextTestRunner "unittest.TextTestRunner") class to stop the test framework when the user signals an interrupt from the keyboard. Interactive tools which provide `TestRunner`implementations can use this in a similar manner.
The following methods of the [`TestResult`](#unittest.TestResult "unittest.TestResult") class are used to maintain the internal data structures, and may be extended in subclasses to support additional reporting requirements. This is particularly useful in building tools which support interactive reporting while tests are being run.
`startTest`(*test*)Called when the test case *test* is about to be run.
`stopTest`(*test*)Called after the test case *test* has been executed, regardless of the outcome.
`startTestRun`()Called once before any tests are executed.
3\.1 新版功能.
`stopTestRun`()Called once after all tests are executed.
3\.1 新版功能.
`addError`(*test*, *err*)Called when the test case *test* raises an unexpected exception. *err* is a tuple of the form returned by [`sys.exc_info()`](sys.xhtml#sys.exc_info "sys.exc_info"):
```
(type, value,
traceback)
```
.
The default implementation appends a tuple `(test, formatted_err)` to the instance's [`errors`](#unittest.TestResult.errors "unittest.TestResult.errors") attribute, where *formatted\_err* is a formatted traceback derived from *err*.
`addFailure`(*test*, *err*)Called when the test case *test* signals a failure. *err* is a tuple of the form returned by [`sys.exc_info()`](sys.xhtml#sys.exc_info "sys.exc_info"): `(type, value, traceback)`.
The default implementation appends a tuple `(test, formatted_err)` to the instance's [`failures`](#unittest.TestResult.failures "unittest.TestResult.failures") attribute, where *formatted\_err* is a formatted traceback derived from *err*.
`addSuccess`(*test*)Called when the test case *test* succeeds.
The default implementation does nothing.
`addSkip`(*test*, *reason*)Called when the test case *test* is skipped. *reason* is the reason the test gave for skipping.
The default implementation appends a tuple `(test, reason)` to the instance's [`skipped`](#unittest.TestResult.skipped "unittest.TestResult.skipped") attribute.
`addExpectedFailure`(*test*, *err*)Called when the test case *test* fails, but was marked with the [`expectedFailure()`](#unittest.expectedFailure "unittest.expectedFailure") decorator.
The default implementation appends a tuple `(test, formatted_err)` to the instance's [`expectedFailures`](#unittest.TestResult.expectedFailures "unittest.TestResult.expectedFailures") attribute, where *formatted\_err*is a formatted traceback derived from *err*.
`addUnexpectedSuccess`(*test*)Called when the test case *test* was marked with the [`expectedFailure()`](#unittest.expectedFailure "unittest.expectedFailure") decorator, but succeeded.
The default implementation appends the test to the instance's [`unexpectedSuccesses`](#unittest.TestResult.unexpectedSuccesses "unittest.TestResult.unexpectedSuccesses") attribute.
`addSubTest`(*test*, *subtest*, *outcome*)Called when a subtest finishes. *test* is the test case corresponding to the test method. *subtest* is a custom [`TestCase`](#unittest.TestCase "unittest.TestCase") instance describing the subtest.
If *outcome* is [`None`](constants.xhtml#None "None"), the subtest succeeded. Otherwise, it failed with an exception where *outcome* is a tuple of the form returned by [`sys.exc_info()`](sys.xhtml#sys.exc_info "sys.exc_info"): `(type, value, traceback)`.
The default implementation does nothing when the outcome is a success, and records subtest failures as normal failures.
3\.4 新版功能.
*class* `unittest.``TextTestResult`(*stream*, *descriptions*, *verbosity*)A concrete implementation of [`TestResult`](#unittest.TestResult "unittest.TestResult") used by the [`TextTestRunner`](#unittest.TextTestRunner "unittest.TextTestRunner").
3\.2 新版功能: This class was previously named `_TextTestResult`. The old name still exists as an alias but is deprecated.
`unittest.``defaultTestLoader`Instance of the [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") class intended to be shared. If no customization of the [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") is needed, this instance can be used instead of repeatedly creating new instances.
*class* `unittest.``TextTestRunner`(*stream=None*, *descriptions=True*, *verbosity=1*, *failfast=False*, *buffer=False*, *resultclass=None*, *warnings=None*, *\**, *tb\_locals=False*)A basic test runner implementation that outputs results to a stream. If *stream*is `None`, the default, [`sys.stderr`](sys.xhtml#sys.stderr "sys.stderr") is used as the output stream. This class has a few configurable parameters, but is essentially very simple. Graphical applications which run test suites should provide alternate implementations. Such implementations should accept `**kwargs` as the interface to construct runners changes when features are added to unittest.
By default this runner shows [`DeprecationWarning`](exceptions.xhtml#DeprecationWarning "DeprecationWarning"), [`PendingDeprecationWarning`](exceptions.xhtml#PendingDeprecationWarning "PendingDeprecationWarning"), [`ResourceWarning`](exceptions.xhtml#ResourceWarning "ResourceWarning") and [`ImportWarning`](exceptions.xhtml#ImportWarning "ImportWarning") even if they are [ignored by default](warnings.xhtml#warning-ignored). Deprecation warnings caused by [deprecated unittest methods](#deprecated-aliases) are also special-cased and, when the warning filters are `'default'` or `'always'`, they will appear only once per-module, in order to avoid too many warning messages. This behavior can be overridden using Python's `-Wd` or `-Wa` options (see [Warning control](../using/cmdline.xhtml#using-on-warnings)) and leaving *warnings* to `None`.
在 3.2 版更改: Added the `warnings` argument.
在 3.2 版更改: The default stream is set to [`sys.stderr`](sys.xhtml#sys.stderr "sys.stderr") at instantiation time rather than import time.
在 3.5 版更改: Added the tb\_locals parameter.
`_makeResult`()This method returns the instance of `TestResult` used by [`run()`](#unittest.TextTestRunner.run "unittest.TextTestRunner.run"). It is not intended to be called directly, but can be overridden in subclasses to provide a custom `TestResult`.
`_makeResult()` instantiates the class or callable passed in the `TextTestRunner` constructor as the `resultclass` argument. It defaults to [`TextTestResult`](#unittest.TextTestResult "unittest.TextTestResult") if no `resultclass` is provided. The result class is instantiated with the following arguments:
```
stream, descriptions, verbosity
```
`run`(*test*)This method is the main public interface to the `TextTestRunner`. This method takes a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") or [`TestCase`](#unittest.TestCase "unittest.TestCase") instance. A [`TestResult`](#unittest.TestResult "unittest.TestResult") is created by calling [`_makeResult()`](#unittest.TextTestRunner._makeResult "unittest.TextTestRunner._makeResult") and the test(s) are run and the results printed to stdout.
`unittest.``main`(*module='\_\_main\_\_'*, *defaultTest=None*, *argv=None*, *testRunner=None*, *testLoader=unittest.defaultTestLoader*, *exit=True*, *verbosity=1*, *failfast=None*, *catchbreak=None*, *buffer=None*, *warnings=None*)A command-line program that loads a set of tests from *module* and runs them; this is primarily for making test modules conveniently executable. The simplest use for this function is to include the following line at the end of a test script:
```
if __name__ == '__main__':
unittest.main()
```
You can run tests with more detailed information by passing in the verbosity argument:
```
if __name__ == '__main__':
unittest.main(verbosity=2)
```
The *defaultTest* argument is either the name of a single test or an iterable of test names to run if no test names are specified via *argv*. If not specified or `None` and no test names are provided via *argv*, all tests found in *module* are run.
The *argv* argument can be a list of options passed to the program, with the first element being the program name. If not specified or `None`, the values of [`sys.argv`](sys.xhtml#sys.argv "sys.argv") are used.
The *testRunner* argument can either be a test runner class or an already created instance of it. By default `main` calls [`sys.exit()`](sys.xhtml#sys.exit "sys.exit") with an exit code indicating success or failure of the tests run.
The *testLoader* argument has to be a [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") instance, and defaults to [`defaultTestLoader`](#unittest.defaultTestLoader "unittest.defaultTestLoader").
`main` supports being used from the interactive interpreter by passing in the argument `exit=False`. This displays the result on standard output without calling [`sys.exit()`](sys.xhtml#sys.exit "sys.exit"):
```
>>> from unittest import main
>>> main(module='test_module', exit=False)
```
The *failfast*, *catchbreak* and *buffer* parameters have the same effect as the same-name [command-line options](#command-line-options).
The *warnings* argument specifies the [warning filter](warnings.xhtml#warning-filter)that should be used while running the tests. If it's not specified, it will remain `None` if a `-W` option is passed to **python**(see [Warning control](../using/cmdline.xhtml#using-on-warnings)), otherwise it will be set to `'default'`.
Calling `main` actually returns an instance of the `TestProgram` class. This stores the result of the tests run as the `result` attribute.
在 3.1 版更改: The *exit* parameter was added.
在 3.2 版更改: The *verbosity*, *failfast*, *catchbreak*, *buffer*and *warnings* parameters were added.
在 3.4 版更改: The *defaultTest* parameter was changed to also accept an iterable of test names.
#### load\_tests Protocol
3\.2 新版功能.
Modules or packages can customize how tests are loaded from them during normal test runs or test discovery by implementing a function called `load_tests`.
If a test module defines `load_tests` it will be called by [`TestLoader.loadTestsFromModule()`](#unittest.TestLoader.loadTestsFromModule "unittest.TestLoader.loadTestsFromModule") with the following arguments:
```
load_tests(loader, standard_tests, pattern)
```
where *pattern* is passed straight through from `loadTestsFromModule`. It defaults to `None`.
It should return a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite").
*loader* is the instance of [`TestLoader`](#unittest.TestLoader "unittest.TestLoader") doing the loading. *standard\_tests* are the tests that would be loaded by default from the module. It is common for test modules to only want to add or remove tests from the standard set of tests. The third argument is used when loading packages as part of test discovery.
A typical `load_tests` function that loads tests from a specific set of [`TestCase`](#unittest.TestCase "unittest.TestCase") classes may look like:
```
test_cases = (TestCase1, TestCase2, TestCase3)
def load_tests(loader, tests, pattern):
suite = TestSuite()
for test_class in test_cases:
tests = loader.loadTestsFromTestCase(test_class)
suite.addTests(tests)
return suite
```
If discovery is started in a directory containing a package, either from the command line or by calling [`TestLoader.discover()`](#unittest.TestLoader.discover "unittest.TestLoader.discover"), then the package `__init__.py` will be checked for `load_tests`. If that function does not exist, discovery will recurse into the package as though it were just another directory. Otherwise, discovery of the package's tests will be left up to `load_tests` which is called with the following arguments:
```
load_tests(loader, standard_tests, pattern)
```
This should return a [`TestSuite`](#unittest.TestSuite "unittest.TestSuite") representing all the tests from the package. (`standard_tests` will only contain tests collected from `__init__.py`.)
Because the pattern is passed into `load_tests` the package is free to continue (and potentially modify) test discovery. A 'do nothing' `load_tests` function for a test package would look like:
```
def load_tests(loader, standard_tests, pattern):
# top level directory cached on loader instance
this_dir = os.path.dirname(__file__)
package_tests = loader.discover(start_dir=this_dir, pattern=pattern)
standard_tests.addTests(package_tests)
return standard_tests
```
在 3.5 版更改: Discovery no longer checks package names for matching *pattern* due to the impossibility of package names matching the default pattern.
## Class and Module Fixtures
Class and module level fixtures are implemented in [`TestSuite`](#unittest.TestSuite "unittest.TestSuite"). When the test suite encounters a test from a new class then `tearDownClass()`from the previous class (if there is one) is called, followed by `setUpClass()` from the new class.
Similarly if a test is from a different module from the previous test then `tearDownModule` from the previous module is run, followed by `setUpModule` from the new module.
After all the tests have run the final `tearDownClass` and `tearDownModule` are run.
Note that shared fixtures do not play well with \[potential\] features like test parallelization and they break test isolation. They should be used with care.
The default ordering of tests created by the unittest test loaders is to group all tests from the same modules and classes together. This will lead to `setUpClass` / `setUpModule` (etc) being called exactly once per class and module. If you randomize the order, so that tests from different modules and classes are adjacent to each other, then these shared fixture functions may be called multiple times in a single test run.
Shared fixtures are not intended to work with suites with non-standard ordering. A `BaseTestSuite` still exists for frameworks that don't want to support shared fixtures.
If there are any exceptions raised during one of the shared fixture functions the test is reported as an error. Because there is no corresponding test instance an `_ErrorHolder` object (that has the same interface as a [`TestCase`](#unittest.TestCase "unittest.TestCase")) is created to represent the error. If you are just using the standard unittest test runner then this detail doesn't matter, but if you are a framework author it may be relevant.
### setUpClass and tearDownClass
These must be implemented as class methods:
```
import unittest
class Test(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._connection = createExpensiveConnectionObject()
@classmethod
def tearDownClass(cls):
cls._connection.destroy()
```
If you want the `setUpClass` and `tearDownClass` on base classes called then you must call up to them yourself. The implementations in [`TestCase`](#unittest.TestCase "unittest.TestCase") are empty.
If an exception is raised during a `setUpClass` then the tests in the class are not run and the `tearDownClass` is not run. Skipped classes will not have `setUpClass` or `tearDownClass` run. If the exception is a [`SkipTest`](#unittest.SkipTest "unittest.SkipTest") exception then the class will be reported as having been skipped instead of as an error.
### setUpModule and tearDownModule
These should be implemented as functions:
```
def setUpModule():
createConnection()
def tearDownModule():
closeConnection()
```
If an exception is raised in a `setUpModule` then none of the tests in the module will be run and the `tearDownModule` will not be run. If the exception is a [`SkipTest`](#unittest.SkipTest "unittest.SkipTest") exception then the module will be reported as having been skipped instead of as an error.
## Signal Handling
3\.2 新版功能.
The [`-c/--catch`](#cmdoption-unittest-c) command-line option to unittest, along with the `catchbreak` parameter to [`unittest.main()`](#unittest.main "unittest.main"), provide more friendly handling of control-C during a test run. With catch break behavior enabled control-C will allow the currently running test to complete, and the test run will then end and report all the results so far. A second control-c will raise a [`KeyboardInterrupt`](exceptions.xhtml#KeyboardInterrupt "KeyboardInterrupt") in the usual way.
The control-c handling signal handler attempts to remain compatible with code or tests that install their own `signal.SIGINT` handler. If the `unittest`handler is called but *isn't* the installed `signal.SIGINT` handler, i.e. it has been replaced by the system under test and delegated to, then it calls the default handler. This will normally be the expected behavior by code that replaces an installed handler and delegates to it. For individual tests that need `unittest` control-c handling disabled the [`removeHandler()`](#unittest.removeHandler "unittest.removeHandler")decorator can be used.
There are a few utility functions for framework authors to enable control-c handling functionality within test frameworks.
`unittest.``installHandler`()Install the control-c handler. When a `signal.SIGINT` is received (usually in response to the user pressing control-c) all registered results have [`stop()`](#unittest.TestResult.stop "unittest.TestResult.stop") called.
`unittest.``registerResult`(*result*)Register a [`TestResult`](#unittest.TestResult "unittest.TestResult") object for control-c handling. Registering a result stores a weak reference to it, so it doesn't prevent the result from being garbage collected.
Registering a [`TestResult`](#unittest.TestResult "unittest.TestResult") object has no side-effects if control-c handling is not enabled, so test frameworks can unconditionally register all results they create independently of whether or not handling is enabled.
`unittest.``removeResult`(*result*)Remove a registered result. Once a result has been removed then [`stop()`](#unittest.TestResult.stop "unittest.TestResult.stop") will no longer be called on that result object in response to a control-c.
`unittest.``removeHandler`(*function=None*)When called without arguments this function removes the control-c handler if it has been installed. This function can also be used as a test decorator to temporarily remove the handler while the test is being executed:
```
@unittest.removeHandler
def test_signal_handling(self):
...
```
### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](unittest.mock.xhtml "unittest.mock --- mock object library") |
- [上一页](doctest.xhtml "doctest --- Test interactive Python examples") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 标准库](index.xhtml) »
- [开发工具](development.xhtml) »
- $('.inline-search').show(0); |
© [版权所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 软件基金会是一个非盈利组织。 [请捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [发现了问题](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 创建。
- Python文档内容
- Python 有什么新变化?
- Python 3.7 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- C API 的改变
- 构建的改变
- 性能优化
- 其他 CPython 实现的改变
- 已弃用的 Python 行为
- 已弃用的 Python 模块、函数和方法
- 已弃用的 C API 函数和类型
- 平台支持的移除
- API 与特性的移除
- 移除的模块
- Windows 专属的改变
- 移植到 Python 3.7
- Python 3.7.1 中的重要变化
- Python 3.7.2 中的重要变化
- Python 3.6 有什么新变化A
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 其他改进
- 弃用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要变化
- Python 3.6.4 中的重要变化
- Python 3.6.5 中的重要变化
- Python 3.6.7 中的重要变化
- Python 3.5 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- Other module-level changes
- 性能优化
- Build and C API Changes
- 弃用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 发布重点
- 新的特性
- 新增模块
- 改进的模块
- CPython Implementation Changes
- 弃用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 发布重点
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他语言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 弃用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 多线程
- 性能优化
- Unicode
- Codecs
- 文档
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 性能优化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他语言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新变化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他语言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他语言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推导式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最终版
- Python 3.7.3 发布候选版 1
- Python 3.7.2 最终版
- Python 3.7.2 发布候选版 1
- Python 3.7.1 最终版
- Python 3.7.1 RC 2版本
- Python 3.7.1 发布候选版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 课前甜点
- 使用 Python 解释器
- 调用解释器
- 解释器的运行环境
- Python 的非正式介绍
- Python 作为计算器使用
- 走向编程的第一步
- 其他流程控制工具
- if 语句
- for 语句
- range() 函数
- break 和 continue 语句,以及循环中的 else 子句
- pass 语句
- 定义函数
- 函数定义的更多形式
- 小插曲:编码风格
- 数据结构
- 列表的更多特性
- del 语句
- 元组和序列
- 集合
- 字典
- 循环的技巧
- 深入条件控制
- 序列和其它类型的比较
- 模块
- 有关模块的更多信息
- 标准模块
- dir() 函数
- 包
- 输入输出
- 更漂亮的输出格式
- 读写文件
- 错误和异常
- 语法错误
- 异常
- 处理异常
- 抛出异常
- 用户自定义异常
- 定义清理操作
- 预定义的清理操作
- 类
- 名称和对象
- Python 作用域和命名空间
- 初探类
- 补充说明
- 继承
- 私有变量
- 杂项说明
- 迭代器
- 生成器
- 生成器表达式
- 标准库简介
- 操作系统接口
- 文件通配符
- 命令行参数
- 错误输出重定向和程序终止
- 字符串模式匹配
- 数学
- 互联网访问
- 日期和时间
- 数据压缩
- 性能测量
- 质量控制
- 自带电池
- 标准库简介 —— 第二部分
- 格式化输出
- 模板
- 使用二进制数据记录格式
- 多线程
- 日志
- 弱引用
- 用于操作列表的工具
- 十进制浮点运算
- 虚拟环境和包
- 概述
- 创建虚拟环境
- 使用pip管理包
- 接下来?
- 交互式编辑和编辑历史
- Tab 补全和编辑历史
- 默认交互式解释器的替代品
- 浮点算术:争议和限制
- 表示性错误
- 附录
- 交互模式
- 安装和使用 Python
- 命令行与环境
- 命令行
- 环境变量
- 在Unix平台中使用Python
- 获取最新版本的Python
- 构建Python
- 与Python相关的路径和文件
- 杂项
- 编辑器和集成开发环境
- 在Windows上使用 Python
- 完整安装程序
- Microsoft Store包
- nuget.org 安装包
- 可嵌入的包
- 替代捆绑包
- 配置Python
- 适用于Windows的Python启动器
- 查找模块
- 附加模块
- 在Windows上编译Python
- 其他平台
- 在苹果系统上使用 Python
- 获取和安装 MacPython
- IDE
- 安装额外的 Python 包
- Mac 上的图形界面编程
- 在 Mac 上分发 Python 应用程序
- 其他资源
- Python 语言参考
- 概述
- 其他实现
- 标注
- 词法分析
- 行结构
- 其他形符
- 标识符和关键字
- 字面值
- 运算符
- 分隔符
- 数据模型
- 对象、值与类型
- 标准类型层级结构
- 特殊方法名称
- 协程
- 执行模型
- 程序的结构
- 命名与绑定
- 异常
- 导入系统
- importlib
- 包
- 搜索
- 加载
- 基于路径的查找器
- 替换标准导入系统
- Package Relative Imports
- 有关 main 的特殊事项
- 开放问题项
- 参考文献
- 表达式
- 算术转换
- 原子
- 原型
- await 表达式
- 幂运算符
- 一元算术和位运算
- 二元算术运算符
- 移位运算
- 二元位运算
- 比较运算
- 布尔运算
- 条件表达式
- lambda 表达式
- 表达式列表
- 求值顺序
- 运算符优先级
- 简单语句
- 表达式语句
- 赋值语句
- assert 语句
- pass 语句
- del 语句
- return 语句
- yield 语句
- raise 语句
- break 语句
- continue 语句
- import 语句
- global 语句
- nonlocal 语句
- 复合语句
- if 语句
- while 语句
- for 语句
- try 语句
- with 语句
- 函数定义
- 类定义
- 协程
- 最高层级组件
- 完整的 Python 程序
- 文件输入
- 交互式输入
- 表达式输入
- 完整的语法规范
- Python 标准库
- 概述
- 可用性注释
- 内置函数
- 内置常量
- 由 site 模块添加的常量
- 内置类型
- 逻辑值检测
- 布尔运算 — and, or, not
- 比较
- 数字类型 — int, float, complex
- 迭代器类型
- 序列类型 — list, tuple, range
- 文本序列类型 — str
- 二进制序列类型 — bytes, bytearray, memoryview
- 集合类型 — set, frozenset
- 映射类型 — dict
- 上下文管理器类型
- 其他内置类型
- 特殊属性
- 内置异常
- 基类
- 具体异常
- 警告
- 异常层次结构
- 文本处理服务
- string — 常见的字符串操作
- re — 正则表达式操作
- 模块 difflib 是一个计算差异的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 数据库
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函数
- 二进制数据服务
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 数据类型
- datetime — 基础日期/时间数据类型
- calendar — General calendar-related functions
- collections — 容器数据类型
- collections.abc — 容器的抽象基类
- heapq — 堆队列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 浅层 (shallow) 和深层 (deep) 复制操作
- pprint — 数据美化输出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 数字和数学模块
- numbers — 数字的抽象基类
- math — 数学函数
- cmath — Mathematical functions for complex numbers
- decimal — 十进制定点和浮点运算
- fractions — 分数
- random — 生成伪随机数
- statistics — Mathematical statistics functions
- 函数式编程模块
- itertools — 为高效循环而创建迭代器的函数
- functools — 高阶函数和可调用对象上的操作
- operator — 标准运算符替代函数
- 文件和目录访问
- pathlib — 面向对象的文件系统路径
- os.path — 常见路径操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路径操作函数
- 数据持久化
- pickle —— Python 对象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 数据库 DB-API 2.0 接口模块
- 数据压缩和存档
- zlib — 与 gzip 兼容的压缩
- gzip — 对 gzip 格式的支持
- bz2 — 对 bzip2 压缩算法的支持
- lzma — 用 LZMA 算法压缩
- zipfile — 在 ZIP 归档中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件读写
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服务
- hashlib — 安全哈希与消息摘要
- hmac — 基于密钥的消息验证
- secrets — Generate secure random numbers for managing secrets
- 通用操作系统服务
- os — 操作系统接口模块
- io — 处理流的核心工具
- time — 时间的访问和转换
- argparse — 命令行选项、参数和子命令解析器
- getopt — C-style parser for command line options
- 模块 logging — Python 的日志记录工具
- logging.config — 日志记录配置
- logging.handlers — Logging handlers
- getpass — 便携式密码输入工具
- curses — 终端字符单元显示的处理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函数库
- 并发执行
- threading — 基于线程的并行
- multiprocessing — 基于进程的并行
- concurrent 包
- concurrent.futures — 启动并行任务
- subprocess — 子进程管理
- sched — 事件调度器
- queue — 一个同步的队列类
- _thread — 底层多线程 API
- _dummy_thread — _thread 的替代模块
- dummy_threading — 可直接替代 threading 模块。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 网络和进程间通信
- asyncio — 异步 I/O
- socket — 底层网络接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高级 I/O 复用库
- asyncore — 异步socket处理器
- asynchat — 异步 socket 指令/响应 处理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互联网数据处理
- email — 电子邮件与 MIME 处理包
- json — JSON 编码和解码器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 数据编码
- binhex — 对binhex4文件进行编码和解码
- binascii — 二进制和 ASCII 码互转
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 结构化标记处理工具
- html — 超文本标记语言支持
- html.parser — 简单的 HTML 和 XHTML 解析器
- html.entities — HTML 一般实体的定义
- XML处理模块
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互联网协议和支持
- webbrowser — 方便的Web浏览器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 处理模块
- urllib.request — 用于打开 URL 的可扩展库
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模块
- http.client — HTTP协议客户端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP协议客户端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服务器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服务端与客户端模块
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒体服务
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 读写 Sun AU 文件
- wave — 读写WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推测图像类型
- sndhdr — 推测声音文件的类型
- ossaudiodev — Access to OSS-compatible audio devices
- 国际化
- gettext — 多语种国际化服务
- locale — 国际化服务
- 程序框架
- turtle — 海龟绘图
- cmd — 支持面向行的命令解释器
- shlex — Simple lexical analysis
- Tk图形用户界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滚动文字控件
- IDLE
- 其他图形用户界面(GUI)包
- 开发工具
- typing — 类型标注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 单元测试框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自动将 Python 2 代码转为 Python 3 代码
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 调试和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 测量小代码片段的执行时间
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 软件打包和分发
- distutils — 构建和安装 Python 模块
- ensurepip — Bootstrapping the pip installer
- venv — 创建虚拟环境
- zipapp — Manage executable Python zip archives
- Python运行时服务
- sys — 系统相关的参数和函数
- sysconfig — Provide access to Python's configuration information
- builtins — 内建对象
- main — 顶层脚本环境
- warnings — Warning control
- dataclasses — 数据类
- contextlib — Utilities for with-statement contexts
- abc — 抽象基类
- atexit — 退出处理器
- traceback — Print or retrieve a stack traceback
- future — Future 语句定义
- gc — 垃圾回收器接口
- inspect — 检查对象
- site — Site-specific configuration hook
- 自定义 Python 解释器
- code — Interpreter base classes
- codeop — Compile Python code
- 导入模块
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找脚本使用的模块
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 语言服务
- parser — Access Python parse trees
- ast — 抽象语法树
- symtable — Access to the compiler's symbol tables
- symbol — 与 Python 解析树一起使用的常量
- token — 与Python解析树一起使用的常量
- keyword — 检验Python关键字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊缩进检测
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字节码反汇编器
- pickletools — Tools for pickle developers
- 杂项服务
- formatter — Generic output formatting
- Windows系统相关模块
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注册表访问
- winsound — Sound-playing interface for Windows
- Unix 专有服务
- posix — The most common POSIX system calls
- pwd — 用户密码数据库
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 终端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 库例程
- 被取代的模块
- optparse — Parser for command line options
- imp — Access the import internals
- 未创建文档的模块
- 平台特定模块
- 扩展和嵌入 Python 解释器
- 推荐的第三方工具
- 不使用第三方工具创建扩展
- 使用 C 或 C++ 扩展 Python
- 自定义扩展类型:教程
- 定义扩展类型:已分类主题
- 构建C/C++扩展
- 在Windows平台编译C和C++扩展
- 在更大的应用程序中嵌入 CPython 运行时
- Embedding Python in Another Application
- Python/C API 参考手册
- 概述
- 代码标准
- 包含文件
- 有用的宏
- 对象、类型和引用计数
- 异常
- 嵌入Python
- 调试构建
- 稳定的应用程序二进制接口
- The Very High Level Layer
- Reference Counting
- 异常处理
- Printing and clearing
- 抛出异常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 标准异常
- 标准警告类别
- 工具
- 操作系统实用程序
- 系统功能
- 过程控制
- 导入模块
- Data marshalling support
- 语句解释及变量编译
- 字符串转换与格式化
- 反射
- 编解码器注册与支持功能
- 抽象对象层
- Object Protocol
- 数字协议
- Sequence Protocol
- Mapping Protocol
- 迭代器协议
- 缓冲协议
- Old Buffer Protocol
- 具体的对象层
- 基本对象
- 数值对象
- 序列对象
- 容器对象
- 函数对象
- 其他对象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置变量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 内存管理
- 概述
- 原始内存接口
- Memory Interface
- 对象分配器
- 默认内存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 对象实现支持
- 在堆中分配对象
- Common Object Structures
- Type 对象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使对象类型支持循环垃圾回收
- API 和 ABI 版本管理
- 分发 Python 模块
- 关键术语
- 开源许可与协作
- 安装工具
- 阅读指南
- 我该如何...?
- ...为我的项目选择一个名字?
- ...创建和分发二进制扩展?
- 安装 Python 模块
- 关键术语
- 基本使用
- 我应如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安装 pip ?
- ... 只为当前用户安装软件包?
- ... 安装科学计算类 Python 软件包?
- ... 使用并行安装的多个 Python 版本?
- 常见的安装问题
- 在 Linux 的系统 Python 版本上安装
- 未安装 pip
- 安装二进制编译扩展
- Python 常用指引
- 将 Python 2 代码迁移到 Python 3
- 简要说明
- 详情
- 将扩展模块移植到 Python 3
- 条件编译
- 对象API的更改
- 模块初始化和状态
- CObject 替换为 Capsule
- 其他选项
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 实现描述器
- 摘要
- 定义和简介
- 描述器协议
- 发起调用描述符
- 描述符示例
- Properties
- 函数和方法
- Static Methods and Class Methods
- 函数式编程指引
- 概述
- 迭代器
- 生成器表达式和列表推导式
- 生成器
- 内置函数
- itertools 模块
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文献
- 日志 HOWTO
- 日志基础教程
- 进阶日志教程
- 日志级别
- 有用的处理程序
- 记录日志中引发的异常
- 使用任意对象作为消息
- 优化
- 日志操作手册
- 在多个模块中使用日志
- 在多线程中使用日志
- 使用多个日志处理器和多种格式化
- 在多个地方记录日志
- 日志服务器配置示例
- 处理日志处理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正则表达式HOWTO
- 概述
- 简单模式
- 使用正则表达式
- 更多模式能力
- 修改字符串
- 常见问题
- 反馈
- 套接字编程指南
- 套接字
- 创建套接字
- 使用一个套接字
- 断开连接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 关键函数
- Operator 模块函数
- 升序和降序
- 排序稳定性和排序复杂度
- 使用装饰-排序-去装饰的旧方法
- 使用 cmp 参数的旧方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包获取网络资源
- 概述
- Fetching URLs
- 处理异常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 脚注
- Argparse 教程
- 概念
- 基础
- 位置参数介绍
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模块介绍
- 创建 Address/Network/Interface 对象
- 审查 Address/Network/Interface 对象
- Network 作为 Address 列表
- 比较
- 将IP地址与其他模块一起使用
- 实例创建失败时获取更多详细信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 检测CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常见问题
- Python常见问题
- 一般信息
- 现实世界中的 Python
- 编程常见问题
- 一般问题
- 核心语言
- 数字和字符串
- 性能
- 序列(元组/列表)
- 对象
- 模块
- 设计和历史常见问题
- 为什么Python使用缩进来分组语句?
- 为什么简单的算术运算得到奇怪的结果?
- 为什么浮点计算不准确?
- 为什么Python字符串是不可变的?
- 为什么必须在方法定义和调用中显式使用“self”?
- 为什么不能在表达式中赋值?
- 为什么Python对某些功能(例如list.index())使用方法来实现,而其他功能(例如len(List))使用函数实现?
- 为什么 join()是一个字符串方法而不是列表或元组方法?
- 异常有多快?
- 为什么Python中没有switch或case语句?
- 难道不能在解释器中模拟线程,而非得依赖特定于操作系统的线程实现吗?
- 为什么lambda表达式不能包含语句?
- 可以将Python编译为机器代码,C或其他语言吗?
- Python如何管理内存?
- 为什么CPython不使用更传统的垃圾回收方案?
- CPython退出时为什么不释放所有内存?
- 为什么有单独的元组和列表数据类型?
- 列表是如何在CPython中实现的?
- 字典是如何在CPython中实现的?
- 为什么字典key必须是不可变的?
- 为什么 list.sort() 没有返回排序列表?
- 如何在Python中指定和实施接口规范?
- 为什么没有goto?
- 为什么原始字符串(r-strings)不能以反斜杠结尾?
- 为什么Python没有属性赋值的“with”语句?
- 为什么 if/while/def/class语句需要冒号?
- 为什么Python在列表和元组的末尾允许使用逗号?
- 代码库和插件 FAQ
- 通用的代码库问题
- 通用任务
- 线程相关
- 输入输出
- 网络 / Internet 编程
- 数据库
- 数学和数字
- 扩展/嵌入常见问题
- 可以使用C语言中创建自己的函数吗?
- 可以使用C++语言中创建自己的函数吗?
- C很难写,有没有其他选择?
- 如何从C执行任意Python语句?
- 如何从C中评估任意Python表达式?
- 如何从Python对象中提取C的值?
- 如何使用Py_BuildValue()创建任意长度的元组?
- 如何从C调用对象的方法?
- 如何捕获PyErr_Print()(或打印到stdout / stderr的任何内容)的输出?
- 如何从C访问用Python编写的模块?
- 如何从Python接口到C ++对象?
- 我使用Setup文件添加了一个模块,为什么make失败了?
- 如何调试扩展?
- 我想在Linux系统上编译一个Python模块,但是缺少一些文件。为什么?
- 如何区分“输入不完整”和“输入无效”?
- 如何找到未定义的g++符号__builtin_new或__pure_virtual?
- 能否创建一个对象类,其中部分方法在C中实现,而其他方法在Python中实现(例如通过继承)?
- Python在Windows上的常见问题
- 我怎样在Windows下运行一个Python程序?
- 我怎么让 Python 脚本可执行?
- 为什么有时候 Python 程序会启动缓慢?
- 我怎样使用Python脚本制作可执行文件?
- *.pyd 文件和DLL文件相同吗?
- 我怎样将Python嵌入一个Windows程序?
- 如何让编辑器不要在我的 Python 源代码中插入 tab ?
- 如何在不阻塞的情况下检查按键?
- 图形用户界面(GUI)常见问题
- 图形界面常见问题
- Python 是否有平台无关的图形界面工具包?
- 有哪些Python的GUI工具是某个平台专用的?
- 有关Tkinter的问题
- “为什么我的电脑上安装了 Python ?”
- 什么是Python?
- 为什么我的电脑上安装了 Python ?
- 我能删除 Python 吗?
- 术语对照表
- 文档说明
- Python 文档贡献者
- 解决 Bug
- 文档错误
- 使用 Python 的错误追踪系统
- 开始为 Python 贡献您的知识
- 版权
- 历史和许可证
- 软件历史
- 访问Python或以其他方式使用Python的条款和条件
- Python 3.7.3 的 PSF 许可协议
- Python 2.0 的 BeOpen.com 许可协议
- Python 1.6.1 的 CNRI 许可协议
- Python 0.9.0 至 1.2 的 CWI 许可协议
- 集成软件的许可和认可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec