### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](instrumentation.xhtml "使用 DTrace 和 SystemTap 检测CPython") |
- [上一页](ipaddress.xhtml "ipaddress模块介绍") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 常用指引](index.xhtml) »
- $('.inline-search').show(0); |
# Argument Clinic How-To
作者Larry Hastings
摘要
Argument Clinic is a preprocessor for CPython C files. Its purpose is to automate all the boilerplate involved with writing argument parsing code for "builtins". This document shows you how to convert your first C function to work with Argument Clinic, and then introduces some advanced topics on Argument Clinic usage.
Currently Argument Clinic is considered internal-only for CPython. Its use is not supported for files outside CPython, and no guarantees are made regarding backwards compatibility for future versions. In other words: if you maintain an external C extension for CPython, you're welcome to experiment with Argument Clinic in your own code. But the version of Argument Clinic that ships with the next version of CPython *could* be totally incompatible and break all your code.
## The Goals Of Argument Clinic
Argument Clinic's primary goal is to take over responsibility for all argument parsing code inside CPython. This means that, when you convert a function to work with Argument Clinic, that function should no longer do any of its own argument parsing—the code generated by Argument Clinic should be a "black box" to you, where CPython calls in at the top, and your code gets called at the bottom, with `PyObject *args` (and maybe `PyObject *kwargs`) magically converted into the C variables and types you need.
In order for Argument Clinic to accomplish its primary goal, it must be easy to use. Currently, working with CPython's argument parsing library is a chore, requiring maintaining redundant information in a surprising number of places. When you use Argument Clinic, you don't have to repeat yourself.
Obviously, no one would want to use Argument Clinic unless it's solving their problem—and without creating new problems of its own. So it's paramount that Argument Clinic generate correct code. It'd be nice if the code was faster, too, but at the very least it should not introduce a major speed regression. (Eventually Argument Clinic *should* make a major speedup possible—we could rewrite its code generator to produce tailor-made argument parsing code, rather than calling the general-purpose CPython argument parsing library. That would make for the fastest argument parsing possible!)
Additionally, Argument Clinic must be flexible enough to work with any approach to argument parsing. Python has some functions with some very strange parsing behaviors; Argument Clinic's goal is to support all of them.
Finally, the original motivation for Argument Clinic was to provide introspection "signatures" for CPython builtins. It used to be, the introspection query functions would throw an exception if you passed in a builtin. With Argument Clinic, that's a thing of the past!
One idea you should keep in mind, as you work with Argument Clinic: the more information you give it, the better job it'll be able to do. Argument Clinic is admittedly relatively simple right now. But as it evolves it will get more sophisticated, and it should be able to do many interesting and smart things with all the information you give it.
## Basic Concepts And Usage
Argument Clinic ships with CPython; you'll find it in `Tools/clinic/clinic.py`. If you run that script, specifying a C file as an argument:
```
$ python3 Tools/clinic/clinic.py foo.c
```
Argument Clinic will scan over the file looking for lines that look exactly like this:
```
/*[clinic input]
```
When it finds one, it reads everything up to a line that looks exactly like this:
```
[clinic start generated code]*/
```
Everything in between these two lines is input for Argument Clinic. All of these lines, including the beginning and ending comment lines, are collectively called an Argument Clinic "block".
When Argument Clinic parses one of these blocks, it generates output. This output is rewritten into the C file immediately after the block, followed by a comment containing a checksum. The Argument Clinic block now looks like this:
```
/*[clinic input]
... clinic input goes here ...
[clinic start generated code]*/
... clinic output goes here ...
/*[clinic end generated code: checksum=...]*/
```
If you run Argument Clinic on the same file a second time, Argument Clinic will discard the old output and write out the new output with a fresh checksum line. However, if the input hasn't changed, the output won't change either.
You should never modify the output portion of an Argument Clinic block. Instead, change the input until it produces the output you want. (That's the purpose of the checksum—to detect if someone changed the output, as these edits would be lost the next time Argument Clinic writes out fresh output.)
For the sake of clarity, here's the terminology we'll use with Argument Clinic:
- The first line of the comment (`/*[clinic input]`) is the *start line*.
- The last line of the initial comment (`[clinic start generated code]*/`) is the *end line*.
- The last line (`/*[clinic end generated code: checksum=...]*/`) is the *checksum line*.
- In between the start line and the end line is the *input*.
- In between the end line and the checksum line is the *output*.
- All the text collectively, from the start line to the checksum line inclusively, is the *block*. (A block that hasn't been successfully processed by Argument Clinic yet doesn't have output or a checksum line, but it's still considered a block.)
## Converting Your First Function
The best way to get a sense of how Argument Clinic works is to convert a function to work with it. Here, then, are the bare minimum steps you'd need to follow to convert a function to work with Argument Clinic. Note that for code you plan to check in to CPython, you really should take the conversion farther, using some of the advanced concepts you'll see later on in the document (like "return converters" and "self converters"). But we'll keep it simple for this walkthrough so you can learn.
Let's dive in!
1. Make sure you're working with a freshly updated checkout of the CPython trunk.
2. Find a Python builtin that calls either [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple")or [`PyArg_ParseTupleAndKeywords()`](../c-api/arg.xhtml#c.PyArg_ParseTupleAndKeywords "PyArg_ParseTupleAndKeywords"), and hasn't been converted to work with Argument Clinic yet. For my example I'm using `_pickle.Pickler.dump()`.
3. If the call to the `PyArg_Parse` function uses any of the following format units:
```
O&
O!
es
es#
et
et#
```
or if it has multiple calls to [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple"), you should choose a different function. Argument Clinic *does*support all of these scenarios. But these are advanced topics—let's do something simpler for your first function.
Also, if the function has multiple calls to [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple")or [`PyArg_ParseTupleAndKeywords()`](../c-api/arg.xhtml#c.PyArg_ParseTupleAndKeywords "PyArg_ParseTupleAndKeywords") where it supports different types for the same argument, or if the function uses something besides PyArg\_Parse functions to parse its arguments, it probably isn't suitable for conversion to Argument Clinic. Argument Clinic doesn't support generic functions or polymorphic parameters.
4. Add the following boilerplate above the function, creating our block:
```
/*[clinic input]
[clinic start generated code]*/
```
5. Cut the docstring and paste it in between the `[clinic]` lines, removing all the junk that makes it a properly quoted C string. When you're done you should have just the text, based at the left margin, with no line wider than 80 characters. (Argument Clinic will preserve indents inside the docstring.)
If the old docstring had a first line that looked like a function signature, throw that line away. (The docstring doesn't need it anymore—when you use `help()` on your builtin in the future, the first line will be built automatically based on the function's signature.)
Sample:
```
/*[clinic input]
Write a pickled representation of obj to the open file.
[clinic start generated code]*/
```
6. If your docstring doesn't have a "summary" line, Argument Clinic will complain. So let's make sure it has one. The "summary" line should be a paragraph consisting of a single 80-column line at the beginning of the docstring.
(Our example docstring consists solely of a summary line, so the sample code doesn't have to change for this step.)
7. Above the docstring, enter the name of the function, followed by a blank line. This should be the Python name of the function, and should be the full dotted path to the function—it should start with the name of the module, include any sub-modules, and if the function is a method on a class it should include the class name too.
Sample:
```
/*[clinic input]
_pickle.Pickler.dump
Write a pickled representation of obj to the open file.
[clinic start generated code]*/
```
8. If this is the first time that module or class has been used with Argument Clinic in this C file, you must declare the module and/or class. Proper Argument Clinic hygiene prefers declaring these in a separate block somewhere near the top of the C file, in the same way that include files and statics go at the top. (In our sample code we'll just show the two blocks next to each other.)
The name of the class and module should be the same as the one seen by Python. Check the name defined in the [`PyModuleDef`](../c-api/module.xhtml#c.PyModuleDef "PyModuleDef")or [`PyTypeObject`](../c-api/type.xhtml#c.PyTypeObject "PyTypeObject") as appropriate.
When you declare a class, you must also specify two aspects of its type in C: the type declaration you'd use for a pointer to an instance of this class, and a pointer to the [`PyTypeObject`](../c-api/type.xhtml#c.PyTypeObject "PyTypeObject") for this class.
Sample:
```
/*[clinic input]
module _pickle
class _pickle.Pickler "PicklerObject *" "&Pickler_Type"
[clinic start generated code]*/
/*[clinic input]
_pickle.Pickler.dump
Write a pickled representation of obj to the open file.
[clinic start generated code]*/
```
9. Declare each of the parameters to the function. Each parameter should get its own line. All the parameter lines should be indented from the function name and the docstring.
The general form of these parameter lines is as follows:
```
name_of_parameter: converter
```
If the parameter has a default value, add that after the converter:
```
name_of_parameter: converter = default_value
```
Argument Clinic's support for "default values" is quite sophisticated; please see [the section below on default values](#default-values)for more information.
Add a blank line below the parameters.
What's a "converter"? It establishes both the type of the variable used in C, and the method to convert the Python value into a C value at runtime. For now you're going to use what's called a "legacy converter"—a convenience syntax intended to make porting old code into Argument Clinic easier.
For each parameter, copy the "format unit" for that parameter from the `PyArg_Parse()` format argument and specify *that* as its converter, as a quoted string. ("format unit" is the formal name for the one-to-three character substring of the `format` parameter that tells the argument parsing function what the type of the variable is and how to convert it. For more on format units please see [语句解释及变量编译](../c-api/arg.xhtml#arg-parsing).)
For multicharacter format units like `z#`, use the entire two-or-three character string.
Sample:
```
/*[clinic input]
module _pickle
class _pickle.Pickler "PicklerObject *" "&Pickler_Type"
[clinic start generated code]*/
/*[clinic input]
_pickle.Pickler.dump
obj: 'O'
Write a pickled representation of obj to the open file.
[clinic start generated code]*/
```
10. If your function has `|` in the format string, meaning some parameters have default values, you can ignore it. Argument Clinic infers which parameters are optional based on whether or not they have default values.
If your function has `$` in the format string, meaning it takes keyword-only arguments, specify `*` on a line by itself before the first keyword-only argument, indented the same as the parameter lines.
(`_pickle.Pickler.dump` has neither, so our sample is unchanged.)
11. If the existing C function calls [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple")(as opposed to [`PyArg_ParseTupleAndKeywords()`](../c-api/arg.xhtml#c.PyArg_ParseTupleAndKeywords "PyArg_ParseTupleAndKeywords")), then all its arguments are positional-only.
To mark all parameters as positional-only in Argument Clinic, add a `/` on a line by itself after the last parameter, indented the same as the parameter lines.
Currently this is all-or-nothing; either all parameters are positional-only, or none of them are. (In the future Argument Clinic may relax this restriction.)
Sample:
```
/*[clinic input]
module _pickle
class _pickle.Pickler "PicklerObject *" "&Pickler_Type"
[clinic start generated code]*/
/*[clinic input]
_pickle.Pickler.dump
obj: 'O'
/
Write a pickled representation of obj to the open file.
[clinic start generated code]*/
```
12. It's helpful to write a per-parameter docstring for each parameter. But per-parameter docstrings are optional; you can skip this step if you prefer.
Here's how to add a per-parameter docstring. The first line of the per-parameter docstring must be indented further than the parameter definition. The left margin of this first line establishes the left margin for the whole per-parameter docstring; all the text you write will be outdented by this amount. You can write as much text as you like, across multiple lines if you wish.
Sample:
```
/*[clinic input]
module _pickle
class _pickle.Pickler "PicklerObject *" "&Pickler_Type"
[clinic start generated code]*/
/*[clinic input]
_pickle.Pickler.dump
obj: 'O'
The object to be pickled.
/
Write a pickled representation of obj to the open file.
[clinic start generated code]*/
```
13. Save and close the file, then run `Tools/clinic/clinic.py` on it. With luck everything worked---your block now has output, and a `.c.h` file has been generated! Reopen the file in your text editor to see:
```
/*[clinic input]
_pickle.Pickler.dump
obj: 'O'
The object to be pickled.
/
Write a pickled representation of obj to the open file.
[clinic start generated code]*/
static PyObject *
_pickle_Pickler_dump(PicklerObject *self, PyObject *obj)
/*[clinic end generated code: output=87ecad1261e02ac7 input=552eb1c0f52260d9]*/
```
Obviously, if Argument Clinic didn't produce any output, it's because it found an error in your input. Keep fixing your errors and retrying until Argument Clinic processes your file without complaint.
For readability, most of the glue code has been generated to a `.c.h`file. You'll need to include that in your original `.c` file, typically right after the clinic module block:
```
#include "clinic/_pickle.c.h"
```
14. Double-check that the argument-parsing code Argument Clinic generated looks basically the same as the existing code.
First, ensure both places use the same argument-parsing function. The existing code must call either [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple") or [`PyArg_ParseTupleAndKeywords()`](../c-api/arg.xhtml#c.PyArg_ParseTupleAndKeywords "PyArg_ParseTupleAndKeywords"); ensure that the code generated by Argument Clinic calls the *exact* same function.
Second, the format string passed in to [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple") or [`PyArg_ParseTupleAndKeywords()`](../c-api/arg.xhtml#c.PyArg_ParseTupleAndKeywords "PyArg_ParseTupleAndKeywords") should be *exactly* the same as the hand-written one in the existing function, up to the colon or semi-colon.
(Argument Clinic always generates its format strings with a `:` followed by the name of the function. If the existing code's format string ends with `;`, to provide usage help, this change is harmless—don't worry about it.)
Third, for parameters whose format units require two arguments (like a length variable, or an encoding string, or a pointer to a conversion function), ensure that the second argument is *exactly* the same between the two invocations.
Fourth, inside the output portion of the block you'll find a preprocessor macro defining the appropriate static [`PyMethodDef`](../c-api/structures.xhtml#c.PyMethodDef "PyMethodDef") structure for this builtin:
```
#define __PICKLE_PICKLER_DUMP_METHODDEF \
{"dump", (PyCFunction)__pickle_Pickler_dump, METH_O, __pickle_Pickler_dump__doc__},
```
This static structure should be *exactly* the same as the existing static [`PyMethodDef`](../c-api/structures.xhtml#c.PyMethodDef "PyMethodDef") structure for this builtin.
If any of these items differ in *any way*, adjust your Argument Clinic function specification and rerun `Tools/clinic/clinic.py` until they *are* the same.
15. Notice that the last line of its output is the declaration of your "impl" function. This is where the builtin's implementation goes. Delete the existing prototype of the function you're modifying, but leave the opening curly brace. Now delete its argument parsing code and the declarations of all the variables it dumps the arguments into. Notice how the Python arguments are now arguments to this impl function; if the implementation used different names for these variables, fix it.
Let's reiterate, just because it's kind of weird. Your code should now look like this:
```
static return_type
your_function_impl(...)
/*[clinic end generated code: checksum=...]*/
{
...
```
Argument Clinic generated the checksum line and the function prototype just above it. You should write the opening (and closing) curly braces for the function, and the implementation inside.
Sample:
```
/*[clinic input]
module _pickle
class _pickle.Pickler "PicklerObject *" "&Pickler_Type"
[clinic start generated code]*/
/*[clinic end generated code: checksum=da39a3ee5e6b4b0d3255bfef95601890afd80709]*/
/*[clinic input]
_pickle.Pickler.dump
obj: 'O'
The object to be pickled.
/
Write a pickled representation of obj to the open file.
[clinic start generated code]*/
PyDoc_STRVAR(__pickle_Pickler_dump__doc__,
"Write a pickled representation of obj to the open file.\n"
"\n"
...
static PyObject *
_pickle_Pickler_dump_impl(PicklerObject *self, PyObject *obj)
/*[clinic end generated code: checksum=3bd30745bf206a48f8b576a1da3d90f55a0a4187]*/
{
/* Check whether the Pickler was initialized correctly (issue3664).
Developers often forget to call __init__() in their subclasses, which
would trigger a segfault without this check. */
if (self->write == NULL) {
PyErr_Format(PicklingError,
"Pickler.__init__() was not called by %s.__init__()",
Py_TYPE(self)->tp_name);
return NULL;
}
if (_Pickler_ClearBuffer(self) < 0)
return NULL;
...
```
16. Remember the macro with the [`PyMethodDef`](../c-api/structures.xhtml#c.PyMethodDef "PyMethodDef") structure for this function? Find the existing [`PyMethodDef`](../c-api/structures.xhtml#c.PyMethodDef "PyMethodDef") structure for this function and replace it with a reference to the macro. (If the builtin is at module scope, this will probably be very near the end of the file; if the builtin is a class method, this will probably be below but relatively near to the implementation.)
Note that the body of the macro contains a trailing comma. So when you replace the existing static [`PyMethodDef`](../c-api/structures.xhtml#c.PyMethodDef "PyMethodDef") structure with the macro, *don't* add a comma to the end.
Sample:
```
static struct PyMethodDef Pickler_methods[] = {
__PICKLE_PICKLER_DUMP_METHODDEF
__PICKLE_PICKLER_CLEAR_MEMO_METHODDEF
{NULL, NULL} /* sentinel */
};
```
17. Compile, then run the relevant portions of the regression-test suite. This change should not introduce any new compile-time warnings or errors, and there should be no externally-visible change to Python's behavior.
Well, except for one difference: `inspect.signature()` run on your function should now provide a valid signature!
Congratulations, you've ported your first function to work with Argument Clinic!
## Advanced Topics
Now that you've had some experience working with Argument Clinic, it's time for some advanced topics.
### Symbolic default values
The default value you provide for a parameter can't be any arbitrary expression. Currently the following are explicitly supported:
- Numeric constants (integer and float)
- 字符串常量
- `True`, `False`, and `None`
- Simple symbolic constants like `sys.maxsize`, which must start with the name of the module
In case you're curious, this is implemented in `from_builtin()`in `Lib/inspect.py`.
(In the future, this may need to get even more elaborate, to allow full expressions like `CONSTANT - 1`.)
### Renaming the C functions and variables generated by Argument Clinic
Argument Clinic automatically names the functions it generates for you. Occasionally this may cause a problem, if the generated name collides with the name of an existing C function. There's an easy solution: override the names used for the C functions. Just add the keyword `"as"`to your function declaration line, followed by the function name you wish to use. Argument Clinic will use that function name for the base (generated) function, then add `"_impl"` to the end and use that for the name of the impl function.
For example, if we wanted to rename the C function names generated for `pickle.Pickler.dump`, it'd look like this:
```
/*[clinic input]
pickle.Pickler.dump as pickler_dumper
...
```
The base function would now be named `pickler_dumper()`, and the impl function would now be named `pickler_dumper_impl()`.
Similarly, you may have a problem where you want to give a parameter a specific Python name, but that name may be inconvenient in C. Argument Clinic allows you to give a parameter different names in Python and in C, using the same `"as"` syntax:
```
/*[clinic input]
pickle.Pickler.dump
obj: object
file as file_obj: object
protocol: object = NULL
*
fix_imports: bool = True
```
Here, the name used in Python (in the signature and the `keywords`array) would be `file`, but the C variable would be named `file_obj`.
You can use this to rename the `self` parameter too!
### Converting functions using PyArg\_UnpackTuple
To convert a function parsing its arguments with [`PyArg_UnpackTuple()`](../c-api/arg.xhtml#c.PyArg_UnpackTuple "PyArg_UnpackTuple"), simply write out all the arguments, specifying each as an `object`. You may specify the `type` argument to cast the type as appropriate. All arguments should be marked positional-only (add a `/` on a line by itself after the last argument).
Currently the generated code will use [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple"), but this will change soon.
### Optional Groups
Some legacy functions have a tricky approach to parsing their arguments: they count the number of positional arguments, then use a `switch` statement to call one of several different [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple") calls depending on how many positional arguments there are. (These functions cannot accept keyword-only arguments.) This approach was used to simulate optional arguments back before [`PyArg_ParseTupleAndKeywords()`](../c-api/arg.xhtml#c.PyArg_ParseTupleAndKeywords "PyArg_ParseTupleAndKeywords") was created.
While functions using this approach can often be converted to use [`PyArg_ParseTupleAndKeywords()`](../c-api/arg.xhtml#c.PyArg_ParseTupleAndKeywords "PyArg_ParseTupleAndKeywords"), optional arguments, and default values, it's not always possible. Some of these legacy functions have behaviors [`PyArg_ParseTupleAndKeywords()`](../c-api/arg.xhtml#c.PyArg_ParseTupleAndKeywords "PyArg_ParseTupleAndKeywords") doesn't directly support. The most obvious example is the builtin function `range()`, which has an optional argument on the *left* side of its required argument! Another example is `curses.window.addch()`, which has a group of two arguments that must always be specified together. (The arguments are called `x` and `y`; if you call the function passing in `x`, you must also pass in `y`—and if you don't pass in `x` you may not pass in `y` either.)
In any case, the goal of Argument Clinic is to support argument parsing for all existing CPython builtins without changing their semantics. Therefore Argument Clinic supports this alternate approach to parsing, using what are called *optional groups*. Optional groups are groups of arguments that must all be passed in together. They can be to the left or the right of the required arguments. They can *only* be used with positional-only parameters.
注解
Optional groups are *only* intended for use when converting functions that make multiple calls to [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple")! Functions that use *any* other approach for parsing arguments should *almost never* be converted to Argument Clinic using optional groups. Functions using optional groups currently cannot have accurate signatures in Python, because Python just doesn't understand the concept. Please avoid using optional groups wherever possible.
To specify an optional group, add a `[` on a line by itself before the parameters you wish to group together, and a `]` on a line by itself after these parameters. As an example, here's how `curses.window.addch`uses optional groups to make the first two parameters and the last parameter optional:
```
/*[clinic input]
curses.window.addch
[
x: int
X-coordinate.
y: int
Y-coordinate.
]
ch: object
Character to add.
[
attr: long
Attributes for the character.
]
/
...
```
注释:
- For every optional group, one additional parameter will be passed into the impl function representing the group. The parameter will be an int named `group_{direction}_{number}`, where `{direction}` is either `right` or `left` depending on whether the group is before or after the required parameters, and `{number}` is a monotonically increasing number (starting at 1) indicating how far away the group is from the required parameters. When the impl is called, this parameter will be set to zero if this group was unused, and set to non-zero if this group was used. (By used or unused, I mean whether or not the parameters received arguments in this invocation.)
- If there are no required arguments, the optional groups will behave as if they're to the right of the required arguments.
- In the case of ambiguity, the argument parsing code favors parameters on the left (before the required parameters).
- Optional groups can only contain positional-only parameters.
- Optional groups are *only* intended for legacy code. Please do not use optional groups for new code.
### Using real Argument Clinic converters, instead of "legacy converters"
To save time, and to minimize how much you need to learn to achieve your first port to Argument Clinic, the walkthrough above tells you to use "legacy converters". "Legacy converters" are a convenience, designed explicitly to make porting existing code to Argument Clinic easier. And to be clear, their use is acceptable when porting code for Python 3.4.
However, in the long term we probably want all our blocks to use Argument Clinic's real syntax for converters. Why? A couple reasons:
- The proper converters are far easier to read and clearer in their intent.
- There are some format units that are unsupported as "legacy converters", because they require arguments, and the legacy converter syntax doesn't support specifying arguments.
- In the future we may have a new argument parsing library that isn't restricted to what [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple") supports; this flexibility won't be available to parameters using legacy converters.
Therefore, if you don't mind a little extra effort, please use the normal converters instead of legacy converters.
In a nutshell, the syntax for Argument Clinic (non-legacy) converters looks like a Python function call. However, if there are no explicit arguments to the function (all functions take their default values), you may omit the parentheses. Thus `bool` and `bool()` are exactly the same converters.
All arguments to Argument Clinic converters are keyword-only. All Argument Clinic converters accept the following arguments:
> `c_default`The default value for this parameter when defined in C. Specifically, this will be the initializer for the variable declared in the "parse function". See [the section on default values](#default-values)for how to use this. Specified as a string.
>
> `annotation`The annotation value for this parameter. Not currently supported, because PEP 8 mandates that the Python library may not use annotations.
In addition, some converters accept additional arguments. Here is a list of these arguments, along with their meanings:
> `accept`A set of Python types (and possibly pseudo-types); this restricts the allowable Python argument to values of these types. (This is not a general-purpose facility; as a rule it only supports specific lists of types as shown in the legacy converter table.)
>
> To accept `None`, add `NoneType` to this set.
>
> `bitwise`Only supported for unsigned integers. The native integer value of this Python argument will be written to the parameter without any range checking, even for negative values.
>
> `converter`Only supported by the `object` converter. Specifies the name of a [C "converter function"](../c-api/arg.xhtml#o-ampersand)to use to convert this object to a native type.
>
> `encoding`Only supported for strings. Specifies the encoding to use when converting this string from a Python str (Unicode) value into a C `char *` value.
>
> `subclass_of`Only supported for the `object` converter. Requires that the Python value be a subclass of a Python type, as expressed in C.
>
> `type`Only supported for the `object` and `self` converters. Specifies the C type that will be used to declare the variable. Default value is `"PyObject *"`.
>
> `zeroes`Only supported for strings. If true, embedded NUL bytes (`'\\0'`) are permitted inside the value. The length of the string will be passed in to the impl function, just after the string parameter, as a parameter named `<parameter_name>_length`.
Please note, not every possible combination of arguments will work. Usually these arguments are implemented by specific `PyArg_ParseTuple`*format units*, with specific behavior. For example, currently you cannot call `unsigned_short` without also specifying `bitwise=True`. Although it's perfectly reasonable to think this would work, these semantics don't map to any existing format unit. So Argument Clinic doesn't support it. (Or, at least, not yet.)
下表显示了传统转换器映射到实参转换器的情况。左边是传统转换器,右边是要替换它的文本。
`'B'`
`unsigned_char(bitwise=True)`
`'b'`
`unsigned_char`
`'c'`
`char`
`'C'`
`int(accept={str})`
`'d'`
`double`
`'D'`
`Py_complex`
`'es'`
`str(encoding='name_of_encoding')`
`'es#'`
`str(encoding='name_of_encoding', zeroes=True)`
`'et'`
`str(encoding='name_of_encoding', accept={bytes, bytearray, str})`
`'et#'`
`str(encoding='name_of_encoding', accept={bytes, bytearray, str}, zeroes=True)`
`'f'`
`float`
`'h'`
`short`
`'H'`
`unsigned_short(bitwise=True)`
`'i'`
`int`
`'I'`
`unsigned_int(bitwise=True)`
`'k'`
`unsigned_long(bitwise=True)`
`'K'`
`unsigned_long_long(bitwise=True)`
`'l'`
`long`
`'L'`
`long long`
`'n'`
`Py_ssize_t`
`'O'`
`object`
`'O!'`
`object(subclass_of='&PySomething_Type')`
`'O&'`
`object(converter='name_of_c_function')`
`'p'`
`bool`
`'S'`
`PyBytesObject`
`'s'`
`str`
`'s#'`
`str(zeroes=True)`
`'s*'`
`Py_buffer(accept={buffer, str})`
`'U'`
`unicode`
`'u'`
`Py_UNICODE`
`'u#'`
`Py_UNICODE(zeroes=True)`
`'w*'`
`Py_buffer(accept={rwbuffer})`
`'Y'`
`PyByteArrayObject`
`'y'`
`str(accept={bytes})`
`'y#'`
`str(accept={robuffer}, zeroes=True)`
`'y*'`
`Py_buffer`
`'Z'`
`Py_UNICODE(accept={str, NoneType})`
`'Z#'`
`Py_UNICODE(accept={str, NoneType}, zeroes=True)`
`'z'`
`str(accept={str, NoneType})`
`'z#'`
`str(accept={str, NoneType}, zeroes=True)`
`'z*'`
`Py_buffer(accept={buffer, str, NoneType})`
As an example, here's our sample `pickle.Pickler.dump` using the proper converter:
```
/*[clinic input]
pickle.Pickler.dump
obj: object
The object to be pickled.
/
Write a pickled representation of obj to the open file.
[clinic start generated code]*/
```
Argument Clinic will show you all the converters it has available. For each converter it'll show you all the parameters it accepts, along with the default value for each parameter. Just run `Tools/clinic/clinic.py --converters` to see the full list.
### Py\_buffer
When using the `Py_buffer` converter (or the `'s*'`, `'w*'`, `'*y'`, or `'z*'` legacy converters), you *must* not call [`PyBuffer_Release()`](../c-api/buffer.xhtml#c.PyBuffer_Release "PyBuffer_Release") on the provided buffer. Argument Clinic generates code that does it for you (in the parsing function).
### Advanced converters
Remember those format units you skipped for your first time because they were advanced? Here's how to handle those too.
The trick is, all those format units take arguments—either conversion functions, or types, or strings specifying an encoding. (But "legacy converters" don't support arguments. That's why we skipped them for your first function.) The argument you specified to the format unit is now an argument to the converter; this argument is either `converter` (for `O&`), `subclass_of` (for `O!`), or `encoding` (for all the format units that start with `e`).
When using `subclass_of`, you may also want to use the other custom argument for `object()`: `type`, which lets you set the type actually used for the parameter. For example, if you want to ensure that the object is a subclass of `PyUnicode_Type`, you probably want to use the converter `object(type='PyUnicodeObject *', subclass_of='&PyUnicode_Type')`.
One possible problem with using Argument Clinic: it takes away some possible flexibility for the format units starting with `e`. When writing a `PyArg_Parse` call by hand, you could theoretically decide at runtime what encoding string to pass in to [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple"). But now this string must be hard-coded at Argument-Clinic-preprocessing-time. This limitation is deliberate; it made supporting this format unit much easier, and may allow for future optimizations. This restriction doesn't seem unreasonable; CPython itself always passes in static hard-coded encoding strings for parameters whose format units start with `e`.
### Parameter default values
Default values for parameters can be any of a number of values. At their simplest, they can be string, int, or float literals:
```
foo: str = "abc"
bar: int = 123
bat: float = 45.6
```
They can also use any of Python's built-in constants:
```
yep: bool = True
nope: bool = False
nada: object = None
```
There's also special support for a default value of `NULL`, and for simple expressions, documented in the following sections.
### The `NULL` default value
For string and object parameters, you can set them to `None` to indicate that there's no default. However, that means the C variable will be initialized to `Py_None`. For convenience's sakes, there's a special value called `NULL` for just this reason: from Python's perspective it behaves like a default value of `None`, but the C variable is initialized with `NULL`.
### Expressions specified as default values
The default value for a parameter can be more than just a literal value. It can be an entire expression, using math operators and looking up attributes on objects. However, this support isn't exactly simple, because of some non-obvious semantics.
Consider the following example:
```
foo: Py_ssize_t = sys.maxsize - 1
```
`sys.maxsize` can have different values on different platforms. Therefore Argument Clinic can't simply evaluate that expression locally and hard-code it in C. So it stores the default in such a way that it will get evaluated at runtime, when the user asks for the function's signature.
What namespace is available when the expression is evaluated? It's evaluated in the context of the module the builtin came from. So, if your module has an attribute called "`max_widgets`", you may simply use it:
```
foo: Py_ssize_t = max_widgets
```
If the symbol isn't found in the current module, it fails over to looking in `sys.modules`. That's how it can find `sys.maxsize` for example. (Since you don't know in advance what modules the user will load into their interpreter, it's best to restrict yourself to modules that are preloaded by Python itself.)
Evaluating default values only at runtime means Argument Clinic can't compute the correct equivalent C default value. So you need to tell it explicitly. When you use an expression, you must also specify the equivalent expression in C, using the `c_default` parameter to the converter:
```
foo: Py_ssize_t(c_default="PY_SSIZE_T_MAX - 1") = sys.maxsize - 1
```
Another complication: Argument Clinic can't know in advance whether or not the expression you supply is valid. It parses it to make sure it looks legal, but it can't *actually* know. You must be very careful when using expressions to specify values that are guaranteed to be valid at runtime!
Finally, because expressions must be representable as static C values, there are many restrictions on legal expressions. Here's a list of Python features you're not permitted to use:
- Function calls.
- Inline if statements (`3 if foo else 5`).
- Automatic sequence unpacking (`*[1, 2, 3]`).
- List/set/dict comprehensions and generator expressions.
- Tuple/list/set/dict literals.
### Using a return converter
By default the impl function Argument Clinic generates for you returns `PyObject *`. But your C function often computes some C type, then converts it into the `PyObject *`at the last moment. Argument Clinic handles converting your inputs from Python types into native C types—why not have it convert your return value from a native C type into a Python type too?
That's what a "return converter" does. It changes your impl function to return some C type, then adds code to the generated (non-impl) function to handle converting that value into the appropriate `PyObject *`.
The syntax for return converters is similar to that of parameter converters. You specify the return converter like it was a return annotation on the function itself. Return converters behave much the same as parameter converters; they take arguments, the arguments are all keyword-only, and if you're not changing any of the default arguments you can omit the parentheses.
(If you use both `"as"` *and* a return converter for your function, the `"as"` should come before the return converter.)
There's one additional complication when using return converters: how do you indicate an error has occurred? Normally, a function returns a valid (non-`NULL`) pointer for success, and `NULL` for failure. But if you use an integer return converter, all integers are valid. How can Argument Clinic detect an error? Its solution: each return converter implicitly looks for a special value that indicates an error. If you return that value, and an error has been set (`PyErr_Occurred()` returns a true value), then the generated code will propagate the error. Otherwise it will encode the value you return like normal.
Currently Argument Clinic supports only a few return converters:
```
bool
int
unsigned int
long
unsigned int
size_t
Py_ssize_t
float
double
DecodeFSDefault
```
None of these take parameters. For the first three, return -1 to indicate error. For `DecodeFSDefault`, the return type is `const char *`; return a NULL pointer to indicate an error.
(There's also an experimental `NoneType` converter, which lets you return `Py_None` on success or `NULL` on failure, without having to increment the reference count on `Py_None`. I'm not sure it adds enough clarity to be worth using.)
To see all the return converters Argument Clinic supports, along with their parameters (if any), just run `Tools/clinic/clinic.py --converters` for the full list.
### Cloning existing functions
If you have a number of functions that look similar, you may be able to use Clinic's "clone" feature. When you clone an existing function, you reuse:
- its parameters, including
- their names,
- their converters, with all parameters,
- their default values,
- their per-parameter docstrings,
- their *kind* (whether they're positional only, positional or keyword, or keyword only), and
- its return converter.
The only thing not copied from the original function is its docstring; the syntax allows you to specify a new docstring.
Here's the syntax for cloning a function:
```
/*[clinic input]
module.class.new_function [as c_basename] = module.class.existing_function
Docstring for new_function goes here.
[clinic start generated code]*/
```
(The functions can be in different modules or classes. I wrote `module.class` in the sample just to illustrate that you must use the full path to *both* functions.)
Sorry, there's no syntax for partially-cloning a function, or cloning a function then modifying it. Cloning is an all-or nothing proposition.
Also, the function you are cloning from must have been previously defined in the current file.
### Calling Python code
The rest of the advanced topics require you to write Python code which lives inside your C file and modifies Argument Clinic's runtime state. This is simple: you simply define a Python block.
A Python block uses different delimiter lines than an Argument Clinic function block. It looks like this:
```
/*[python input]
# python code goes here
[python start generated code]*/
```
All the code inside the Python block is executed at the time it's parsed. All text written to stdout inside the block is redirected into the "output" after the block.
As an example, here's a Python block that adds a static integer variable to the C code:
```
/*[python input]
print('static int __ignored_unused_variable__ = 0;')
[python start generated code]*/
static int __ignored_unused_variable__ = 0;
/*[python checksum:...]*/
```
### Using a "self converter"
Argument Clinic automatically adds a "self" parameter for you using a default converter. It automatically sets the `type`of this parameter to the "pointer to an instance" you specified when you declared the type. However, you can override Argument Clinic's converter and specify one yourself. Just add your own `self` parameter as the first parameter in a block, and ensure that its converter is an instance of `self_converter` or a subclass thereof.
What's the point? This lets you override the type of `self`, or give it a different default name.
How do you specify the custom type you want to cast `self` to? If you only have one or two functions with the same type for `self`, you can directly use Argument Clinic's existing `self` converter, passing in the type you want to use as the `type` parameter:
```
/*[clinic input]
_pickle.Pickler.dump
self: self(type="PicklerObject *")
obj: object
/
Write a pickled representation of the given object to the open file.
[clinic start generated code]*/
```
On the other hand, if you have a lot of functions that will use the same type for `self`, it's best to create your own converter, subclassing `self_converter` but overwriting the `type` member:
```
/*[python input]
class PicklerObject_converter(self_converter):
type = "PicklerObject *"
[python start generated code]*/
/*[clinic input]
_pickle.Pickler.dump
self: PicklerObject
obj: object
/
Write a pickled representation of the given object to the open file.
[clinic start generated code]*/
```
### Writing a custom converter
As we hinted at in the previous section... you can write your own converters! A converter is simply a Python class that inherits from `CConverter`. The main purpose of a custom converter is if you have a parameter using the `O&` format unit—parsing this parameter means calling a [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple") "converter function".
Your converter class should be named `*something*_converter`. If the name follows this convention, then your converter class will be automatically registered with Argument Clinic; its name will be the name of your class with the `_converter` suffix stripped off. (This is accomplished with a metaclass.)
You shouldn't subclass `CConverter.__init__`. Instead, you should write a `converter_init()` function. `converter_init()`always accepts a `self` parameter; after that, all additional parameters *must* be keyword-only. Any arguments passed in to the converter in Argument Clinic will be passed along to your `converter_init()`.
There are some additional members of `CConverter` you may wish to specify in your subclass. Here's the current list:
`type`The C type to use for this variable. `type` should be a Python string specifying the type, e.g. `int`. If this is a pointer type, the type string should end with `' *'`.
`default`The Python default value for this parameter, as a Python value. Or the magic value `unspecified` if there is no default.
`py_default``default` as it should appear in Python code, as a string. Or `None` if there is no default.
`c_default``default` as it should appear in C code, as a string. Or `None` if there is no default.
`c_ignored_default`The default value used to initialize the C variable when there is no default, but not specifying a default may result in an "uninitialized variable" warning. This can easily happen when using option groups—although properly-written code will never actually use this value, the variable does get passed in to the impl, and the C compiler will complain about the "use" of the uninitialized value. This value should always be a non-empty string.
`converter`The name of the C converter function, as a string.
`impl_by_reference`A boolean value. If true, Argument Clinic will add a `&` in front of the name of the variable when passing it into the impl function.
`parse_by_reference`A boolean value. If true, Argument Clinic will add a `&` in front of the name of the variable when passing it into [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple").
Here's the simplest example of a custom converter, from `Modules/zlibmodule.c`:
```
/*[python input]
class ssize_t_converter(CConverter):
type = 'Py_ssize_t'
converter = 'ssize_t_converter'
[python start generated code]*/
/*[python end generated code: output=da39a3ee5e6b4b0d input=35521e4e733823c7]*/
```
This block adds a converter to Argument Clinic named `ssize_t`. Parameters declared as `ssize_t` will be declared as type `Py_ssize_t`, and will be parsed by the `'O&'` format unit, which will call the `ssize_t_converter` converter function. `ssize_t` variables automatically support default values.
More sophisticated custom converters can insert custom C code to handle initialization and cleanup. You can see more examples of custom converters in the CPython source tree; grep the C files for the string `CConverter`.
### Writing a custom return converter
Writing a custom return converter is much like writing a custom converter. Except it's somewhat simpler, because return converters are themselves much simpler.
Return converters must subclass `CReturnConverter`. There are no examples yet of custom return converters, because they are not widely used yet. If you wish to write your own return converter, please read `Tools/clinic/clinic.py`, specifically the implementation of `CReturnConverter` and all its subclasses.
### METH\_O and METH\_NOARGS
To convert a function using `METH_O`, make sure the function's single argument is using the `object` converter, and mark the arguments as positional-only:
```
/*[clinic input]
meth_o_sample
argument: object
/
[clinic start generated code]*/
```
To convert a function using `METH_NOARGS`, just don't specify any arguments.
You can still use a self converter, a return converter, and specify a `type` argument to the object converter for `METH_O`.
### tp\_new and tp\_init functions
You can convert `tp_new` and `tp_init` functions. Just name them `__new__` or `__init__` as appropriate. Notes:
- The function name generated for `__new__` doesn't end in `__new__`like it would by default. It's just the name of the class, converted into a valid C identifier.
- No `PyMethodDef``#define` is generated for these functions.
- `__init__` functions return `int`, not `PyObject *`.
- Use the docstring as the class docstring.
- Although `__new__` and `__init__` functions must always accept both the `args` and `kwargs` objects, when converting you may specify any signature for these functions that you like. (If your function doesn't support keywords, the parsing function generated will throw an exception if it receives any.)
### Changing and redirecting Clinic's output
It can be inconvenient to have Clinic's output interspersed with your conventional hand-edited C code. Luckily, Clinic is configurable: you can buffer up its output for printing later (or earlier!), or write its output to a separate file. You can also add a prefix or suffix to every line of Clinic's generated output.
While changing Clinic's output in this manner can be a boon to readability, it may result in Clinic code using types before they are defined, or your code attempting to use Clinic-generated code before it is defined. These problems can be easily solved by rearranging the declarations in your file, or moving where Clinic's generated code goes. (This is why the default behavior of Clinic is to output everything into the current block; while many people consider this hampers readability, it will never require rearranging your code to fix definition-before-use problems.)
Let's start with defining some terminology:
*field*A field, in this context, is a subsection of Clinic's output. For example, the `#define` for the `PyMethodDef` structure is a field, called `methoddef_define`. Clinic has seven different fields it can output per function definition:
```
docstring_prototype
docstring_definition
methoddef_define
impl_prototype
parser_prototype
parser_definition
impl_definition
```
All the names are of the form `"<a>_<b>"`, where `"<a>"` is the semantic object represented (the parsing function, the impl function, the docstring, or the methoddef structure) and `"<b>"`represents what kind of statement the field is. Field names that end in `"_prototype"`represent forward declarations of that thing, without the actual body/data of the thing; field names that end in `"_definition"` represent the actual definition of the thing, with the body/data of the thing. (`"methoddef"`is special, it's the only one that ends with `"_define"`, representing that it's a preprocessor #define.)
*destination*A destination is a place Clinic can write output to. There are five built-in destinations:
`block`The default destination: printed in the output section of the current Clinic block.
`buffer`A text buffer where you can save text for later. Text sent here is appended to the end of any existing text. It's an error to have any text left in the buffer when Clinic finishes processing a file.
`file`A separate "clinic file" that will be created automatically by Clinic. The filename chosen for the file is `{basename}.clinic{extension}`, where `basename` and `extension` were assigned the output from `os.path.splitext()` run on the current file. (Example: the `file` destination for `_pickle.c` would be written to `_pickle.clinic.c`.)
**Important: When using a**`file` **destination, you***must check in* **the generated file!**
`two-pass`A buffer like `buffer`. However, a two-pass buffer can only be dumped once, and it prints out all text sent to it during all processing, even from Clinic blocks *after* the dumping point.
`suppress`The text is suppressed—thrown away.
Clinic defines five new directives that let you reconfigure its output.
The first new directive is `dump`:
```
dump <destination>
```
This dumps the current contents of the named destination into the output of the current block, and empties it. This only works with `buffer` and `two-pass` destinations.
The second new directive is `output`. The most basic form of `output`is like this:
```
output <field> <destination>
```
This tells Clinic to output *field* to *destination*. `output` also supports a special meta-destination, called `everything`, which tells Clinic to output *all* fields to that *destination*.
`output` has a number of other functions:
```
output push
output pop
output preset <preset>
```
`output push` and `output pop` allow you to push and pop configurations on an internal configuration stack, so that you can temporarily modify the output configuration, then easily restore the previous configuration. Simply push before your change to save the current configuration, then pop when you wish to restore the previous configuration.
`output preset` sets Clinic's output to one of several built-in preset configurations, as follows:
> `block`Clinic's original starting configuration. Writes everything immediately after the input block.
>
> Suppress the `parser_prototype`and `docstring_prototype`, write everything else to `block`.
>
> `file`Designed to write everything to the "clinic file" that it can. You then `#include` this file near the top of your file. You may need to rearrange your file to make this work, though usually this just means creating forward declarations for various `typedef` and `PyTypeObject` definitions.
>
> Suppress the `parser_prototype`and `docstring_prototype`, write the `impl_definition` to `block`, and write everything else to `file`.
>
> The default filename is `"{dirname}/clinic/{basename}.h"`.
>
> `buffer`Save up most of the output from Clinic, to be written into your file near the end. For Python files implementing modules or builtin types, it's recommended that you dump the buffer just above the static structures for your module or builtin type; these are normally very near the end. Using `buffer` may require even more editing than `file`, if your file has static `PyMethodDef` arrays defined in the middle of the file.
>
> Suppress the `parser_prototype`, `impl_prototype`, and `docstring_prototype`, write the `impl_definition` to `block`, and write everything else to `file`.
>
> `two-pass`Similar to the `buffer` preset, but writes forward declarations to the `two-pass` buffer, and definitions to the `buffer`. This is similar to the `buffer` preset, but may require less editing than `buffer`. Dump the `two-pass` buffer near the top of your file, and dump the `buffer` near the end just like you would when using the `buffer` preset.
>
> Suppresses the `impl_prototype`, write the `impl_definition`to `block`, write `docstring_prototype`, `methoddef_define`, and `parser_prototype` to `two-pass`, write everything else to `buffer`.
>
> `partial-buffer`Similar to the `buffer` preset, but writes more things to `block`, only writing the really big chunks of generated code to `buffer`. This avoids the definition-before-use problem of `buffer` completely, at the small cost of having slightly more stuff in the block's output. Dump the `buffer` near the end, just like you would when using the `buffer` preset.
>
> Suppresses the `impl_prototype`, write the `docstring_definition`and `parser_definition` to `buffer`, write everything else to `block`.
The third new directive is `destination`:
```
destination <name> <command> [...]
```
This performs an operation on the destination named `name`.
There are two defined subcommands: `new` and `clear`.
The `new` subcommand works like this:
```
destination <name> new <type>
```
This creates a new destination with name `<name>` and type `<type>`.
There are five destination types:
> `suppress`Throws the text away.
>
> `block`Writes the text to the current block. This is what Clinic originally did.
>
> `buffer`A simple text buffer, like the "buffer" builtin destination above.
>
> `file`A text file. The file destination takes an extra argument, a template to use for building the filename, like so:
>
> > destination <name> new <type> <file\_template>
>
> The template can use three strings internally that will be replaced by bits of the filename:
>
> > {path}The full path to the file, including directory and full filename.
> >
> > {dirname}The name of the directory the file is in.
> >
> > {basename}Just the name of the file, not including the directory.
> >
> > {basename\_root}Basename with the extension clipped off (everything up to but not including the last '.').
> >
> > {basename\_extension}The last '.' and everything after it. If the basename does not contain a period, this will be the empty string.
>
> If there are no periods in the filename, {basename} and {filename} are the same, and {extension} is empty. "{basename}{extension}" is always exactly the same as "{filename}"."
>
> `two-pass`A two-pass buffer, like the "two-pass" builtin destination above.
The `clear` subcommand works like this:
```
destination <name> clear
```
It removes all the accumulated text up to this point in the destination. (I don't know what you'd need this for, but I thought maybe it'd be useful while someone's experimenting.)
The fourth new directive is `set`:
```
set line_prefix "string"
set line_suffix "string"
```
`set` lets you set two internal variables in Clinic. `line_prefix` is a string that will be prepended to every line of Clinic's output; `line_suffix` is a string that will be appended to every line of Clinic's output.
Both of these support two format strings:
> `{block comment start}`Turns into the string `/*`, the start-comment text sequence for C files.
>
> `{block comment end}`Turns into the string `*/`, the end-comment text sequence for C files.
The final new directive is one you shouldn't need to use directly, called `preserve`:
```
preserve
```
This tells Clinic that the current contents of the output should be kept, unmodified. This is used internally by Clinic when dumping output into `file` files; wrapping it in a Clinic block lets Clinic use its existing checksum functionality to ensure the file was not modified by hand before it gets overwritten.
### The #ifdef trick
If you're converting a function that isn't available on all platforms, there's a trick you can use to make life a little easier. The existing code probably looks like this:
```
#ifdef HAVE_FUNCTIONNAME
static module_functionname(...)
{
...
}
#endif /* HAVE_FUNCTIONNAME */
```
And then in the `PyMethodDef` structure at the bottom the existing code will have:
```
#ifdef HAVE_FUNCTIONNAME
{'functionname', ... },
#endif /* HAVE_FUNCTIONNAME */
```
In this scenario, you should enclose the body of your impl function inside the `#ifdef`, like so:
```
#ifdef HAVE_FUNCTIONNAME
/*[clinic input]
module.functionname
...
[clinic start generated code]*/
static module_functionname(...)
{
...
}
#endif /* HAVE_FUNCTIONNAME */
```
Then, remove those three lines from the `PyMethodDef` structure, replacing them with the macro Argument Clinic generated:
```
MODULE_FUNCTIONNAME_METHODDEF
```
(You can find the real name for this macro inside the generated code. Or you can calculate it yourself: it's the name of your function as defined on the first line of your block, but with periods changed to underscores, uppercased, and `"_METHODDEF"` added to the end.)
Perhaps you're wondering: what if `HAVE_FUNCTIONNAME` isn't defined? The `MODULE_FUNCTIONNAME_METHODDEF` macro won't be defined either!
Here's where Argument Clinic gets very clever. It actually detects that the Argument Clinic block might be deactivated by the `#ifdef`. When that happens, it generates a little extra code that looks like this:
```
#ifndef MODULE_FUNCTIONNAME_METHODDEF
#define MODULE_FUNCTIONNAME_METHODDEF
#endif /* !defined(MODULE_FUNCTIONNAME_METHODDEF) */
```
That means the macro always works. If the function is defined, this turns into the correct structure, including the trailing comma. If the function is undefined, this turns into nothing.
However, this causes one ticklish problem: where should Argument Clinic put this extra code when using the "block" output preset? It can't go in the output block, because that could be deactivated by the `#ifdef`. (That's the whole point!)
In this situation, Argument Clinic writes the extra code to the "buffer" destination. This may mean that you get a complaint from Argument Clinic:
```
Warning in file "Modules/posixmodule.c" on line 12357:
Destination buffer 'buffer' not empty at end of file, emptying.
```
When this happens, just open your file, find the `dump buffer` block that Argument Clinic added to your file (it'll be at the very bottom), then move it above the `PyMethodDef` structure where that macro is used.
### Using Argument Clinic in Python files
It's actually possible to use Argument Clinic to preprocess Python files. There's no point to using Argument Clinic blocks, of course, as the output wouldn't make any sense to the Python interpreter. But using Argument Clinic to run Python blocks lets you use Python as a Python preprocessor!
Since Python comments are different from C comments, Argument Clinic blocks embedded in Python files look slightly different. They look like this:
```
#/*[python input]
#print("def foo(): pass")
#[python start generated code]*/
def foo(): pass
#/*[python checksum:...]*/
```
### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](instrumentation.xhtml "使用 DTrace 和 SystemTap 检测CPython") |
- [上一页](ipaddress.xhtml "ipaddress模块介绍") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [Python 常用指引](index.xhtml) »
- $('.inline-search').show(0); |
© [版权所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 软件基金会是一个非盈利组织。 [请捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [发现了问题](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 创建。
- Python文档内容
- Python 有什么新变化?
- Python 3.7 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- C API 的改变
- 构建的改变
- 性能优化
- 其他 CPython 实现的改变
- 已弃用的 Python 行为
- 已弃用的 Python 模块、函数和方法
- 已弃用的 C API 函数和类型
- 平台支持的移除
- API 与特性的移除
- 移除的模块
- Windows 专属的改变
- 移植到 Python 3.7
- Python 3.7.1 中的重要变化
- Python 3.7.2 中的重要变化
- Python 3.6 有什么新变化A
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 其他改进
- 弃用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要变化
- Python 3.6.4 中的重要变化
- Python 3.6.5 中的重要变化
- Python 3.6.7 中的重要变化
- Python 3.5 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- Other module-level changes
- 性能优化
- Build and C API Changes
- 弃用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 发布重点
- 新的特性
- 新增模块
- 改进的模块
- CPython Implementation Changes
- 弃用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 发布重点
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他语言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 弃用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 多线程
- 性能优化
- Unicode
- Codecs
- 文档
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 性能优化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他语言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新变化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他语言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他语言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推导式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最终版
- Python 3.7.3 发布候选版 1
- Python 3.7.2 最终版
- Python 3.7.2 发布候选版 1
- Python 3.7.1 最终版
- Python 3.7.1 RC 2版本
- Python 3.7.1 发布候选版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 课前甜点
- 使用 Python 解释器
- 调用解释器
- 解释器的运行环境
- Python 的非正式介绍
- Python 作为计算器使用
- 走向编程的第一步
- 其他流程控制工具
- if 语句
- for 语句
- range() 函数
- break 和 continue 语句,以及循环中的 else 子句
- pass 语句
- 定义函数
- 函数定义的更多形式
- 小插曲:编码风格
- 数据结构
- 列表的更多特性
- del 语句
- 元组和序列
- 集合
- 字典
- 循环的技巧
- 深入条件控制
- 序列和其它类型的比较
- 模块
- 有关模块的更多信息
- 标准模块
- dir() 函数
- 包
- 输入输出
- 更漂亮的输出格式
- 读写文件
- 错误和异常
- 语法错误
- 异常
- 处理异常
- 抛出异常
- 用户自定义异常
- 定义清理操作
- 预定义的清理操作
- 类
- 名称和对象
- Python 作用域和命名空间
- 初探类
- 补充说明
- 继承
- 私有变量
- 杂项说明
- 迭代器
- 生成器
- 生成器表达式
- 标准库简介
- 操作系统接口
- 文件通配符
- 命令行参数
- 错误输出重定向和程序终止
- 字符串模式匹配
- 数学
- 互联网访问
- 日期和时间
- 数据压缩
- 性能测量
- 质量控制
- 自带电池
- 标准库简介 —— 第二部分
- 格式化输出
- 模板
- 使用二进制数据记录格式
- 多线程
- 日志
- 弱引用
- 用于操作列表的工具
- 十进制浮点运算
- 虚拟环境和包
- 概述
- 创建虚拟环境
- 使用pip管理包
- 接下来?
- 交互式编辑和编辑历史
- Tab 补全和编辑历史
- 默认交互式解释器的替代品
- 浮点算术:争议和限制
- 表示性错误
- 附录
- 交互模式
- 安装和使用 Python
- 命令行与环境
- 命令行
- 环境变量
- 在Unix平台中使用Python
- 获取最新版本的Python
- 构建Python
- 与Python相关的路径和文件
- 杂项
- 编辑器和集成开发环境
- 在Windows上使用 Python
- 完整安装程序
- Microsoft Store包
- nuget.org 安装包
- 可嵌入的包
- 替代捆绑包
- 配置Python
- 适用于Windows的Python启动器
- 查找模块
- 附加模块
- 在Windows上编译Python
- 其他平台
- 在苹果系统上使用 Python
- 获取和安装 MacPython
- IDE
- 安装额外的 Python 包
- Mac 上的图形界面编程
- 在 Mac 上分发 Python 应用程序
- 其他资源
- Python 语言参考
- 概述
- 其他实现
- 标注
- 词法分析
- 行结构
- 其他形符
- 标识符和关键字
- 字面值
- 运算符
- 分隔符
- 数据模型
- 对象、值与类型
- 标准类型层级结构
- 特殊方法名称
- 协程
- 执行模型
- 程序的结构
- 命名与绑定
- 异常
- 导入系统
- importlib
- 包
- 搜索
- 加载
- 基于路径的查找器
- 替换标准导入系统
- Package Relative Imports
- 有关 main 的特殊事项
- 开放问题项
- 参考文献
- 表达式
- 算术转换
- 原子
- 原型
- await 表达式
- 幂运算符
- 一元算术和位运算
- 二元算术运算符
- 移位运算
- 二元位运算
- 比较运算
- 布尔运算
- 条件表达式
- lambda 表达式
- 表达式列表
- 求值顺序
- 运算符优先级
- 简单语句
- 表达式语句
- 赋值语句
- assert 语句
- pass 语句
- del 语句
- return 语句
- yield 语句
- raise 语句
- break 语句
- continue 语句
- import 语句
- global 语句
- nonlocal 语句
- 复合语句
- if 语句
- while 语句
- for 语句
- try 语句
- with 语句
- 函数定义
- 类定义
- 协程
- 最高层级组件
- 完整的 Python 程序
- 文件输入
- 交互式输入
- 表达式输入
- 完整的语法规范
- Python 标准库
- 概述
- 可用性注释
- 内置函数
- 内置常量
- 由 site 模块添加的常量
- 内置类型
- 逻辑值检测
- 布尔运算 — and, or, not
- 比较
- 数字类型 — int, float, complex
- 迭代器类型
- 序列类型 — list, tuple, range
- 文本序列类型 — str
- 二进制序列类型 — bytes, bytearray, memoryview
- 集合类型 — set, frozenset
- 映射类型 — dict
- 上下文管理器类型
- 其他内置类型
- 特殊属性
- 内置异常
- 基类
- 具体异常
- 警告
- 异常层次结构
- 文本处理服务
- string — 常见的字符串操作
- re — 正则表达式操作
- 模块 difflib 是一个计算差异的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 数据库
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函数
- 二进制数据服务
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 数据类型
- datetime — 基础日期/时间数据类型
- calendar — General calendar-related functions
- collections — 容器数据类型
- collections.abc — 容器的抽象基类
- heapq — 堆队列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 浅层 (shallow) 和深层 (deep) 复制操作
- pprint — 数据美化输出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 数字和数学模块
- numbers — 数字的抽象基类
- math — 数学函数
- cmath — Mathematical functions for complex numbers
- decimal — 十进制定点和浮点运算
- fractions — 分数
- random — 生成伪随机数
- statistics — Mathematical statistics functions
- 函数式编程模块
- itertools — 为高效循环而创建迭代器的函数
- functools — 高阶函数和可调用对象上的操作
- operator — 标准运算符替代函数
- 文件和目录访问
- pathlib — 面向对象的文件系统路径
- os.path — 常见路径操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路径操作函数
- 数据持久化
- pickle —— Python 对象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 数据库 DB-API 2.0 接口模块
- 数据压缩和存档
- zlib — 与 gzip 兼容的压缩
- gzip — 对 gzip 格式的支持
- bz2 — 对 bzip2 压缩算法的支持
- lzma — 用 LZMA 算法压缩
- zipfile — 在 ZIP 归档中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件读写
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服务
- hashlib — 安全哈希与消息摘要
- hmac — 基于密钥的消息验证
- secrets — Generate secure random numbers for managing secrets
- 通用操作系统服务
- os — 操作系统接口模块
- io — 处理流的核心工具
- time — 时间的访问和转换
- argparse — 命令行选项、参数和子命令解析器
- getopt — C-style parser for command line options
- 模块 logging — Python 的日志记录工具
- logging.config — 日志记录配置
- logging.handlers — Logging handlers
- getpass — 便携式密码输入工具
- curses — 终端字符单元显示的处理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函数库
- 并发执行
- threading — 基于线程的并行
- multiprocessing — 基于进程的并行
- concurrent 包
- concurrent.futures — 启动并行任务
- subprocess — 子进程管理
- sched — 事件调度器
- queue — 一个同步的队列类
- _thread — 底层多线程 API
- _dummy_thread — _thread 的替代模块
- dummy_threading — 可直接替代 threading 模块。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 网络和进程间通信
- asyncio — 异步 I/O
- socket — 底层网络接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高级 I/O 复用库
- asyncore — 异步socket处理器
- asynchat — 异步 socket 指令/响应 处理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互联网数据处理
- email — 电子邮件与 MIME 处理包
- json — JSON 编码和解码器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 数据编码
- binhex — 对binhex4文件进行编码和解码
- binascii — 二进制和 ASCII 码互转
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 结构化标记处理工具
- html — 超文本标记语言支持
- html.parser — 简单的 HTML 和 XHTML 解析器
- html.entities — HTML 一般实体的定义
- XML处理模块
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互联网协议和支持
- webbrowser — 方便的Web浏览器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 处理模块
- urllib.request — 用于打开 URL 的可扩展库
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模块
- http.client — HTTP协议客户端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP协议客户端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服务器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服务端与客户端模块
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒体服务
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 读写 Sun AU 文件
- wave — 读写WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推测图像类型
- sndhdr — 推测声音文件的类型
- ossaudiodev — Access to OSS-compatible audio devices
- 国际化
- gettext — 多语种国际化服务
- locale — 国际化服务
- 程序框架
- turtle — 海龟绘图
- cmd — 支持面向行的命令解释器
- shlex — Simple lexical analysis
- Tk图形用户界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滚动文字控件
- IDLE
- 其他图形用户界面(GUI)包
- 开发工具
- typing — 类型标注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 单元测试框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自动将 Python 2 代码转为 Python 3 代码
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 调试和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 测量小代码片段的执行时间
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 软件打包和分发
- distutils — 构建和安装 Python 模块
- ensurepip — Bootstrapping the pip installer
- venv — 创建虚拟环境
- zipapp — Manage executable Python zip archives
- Python运行时服务
- sys — 系统相关的参数和函数
- sysconfig — Provide access to Python's configuration information
- builtins — 内建对象
- main — 顶层脚本环境
- warnings — Warning control
- dataclasses — 数据类
- contextlib — Utilities for with-statement contexts
- abc — 抽象基类
- atexit — 退出处理器
- traceback — Print or retrieve a stack traceback
- future — Future 语句定义
- gc — 垃圾回收器接口
- inspect — 检查对象
- site — Site-specific configuration hook
- 自定义 Python 解释器
- code — Interpreter base classes
- codeop — Compile Python code
- 导入模块
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找脚本使用的模块
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 语言服务
- parser — Access Python parse trees
- ast — 抽象语法树
- symtable — Access to the compiler's symbol tables
- symbol — 与 Python 解析树一起使用的常量
- token — 与Python解析树一起使用的常量
- keyword — 检验Python关键字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊缩进检测
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字节码反汇编器
- pickletools — Tools for pickle developers
- 杂项服务
- formatter — Generic output formatting
- Windows系统相关模块
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注册表访问
- winsound — Sound-playing interface for Windows
- Unix 专有服务
- posix — The most common POSIX system calls
- pwd — 用户密码数据库
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 终端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 库例程
- 被取代的模块
- optparse — Parser for command line options
- imp — Access the import internals
- 未创建文档的模块
- 平台特定模块
- 扩展和嵌入 Python 解释器
- 推荐的第三方工具
- 不使用第三方工具创建扩展
- 使用 C 或 C++ 扩展 Python
- 自定义扩展类型:教程
- 定义扩展类型:已分类主题
- 构建C/C++扩展
- 在Windows平台编译C和C++扩展
- 在更大的应用程序中嵌入 CPython 运行时
- Embedding Python in Another Application
- Python/C API 参考手册
- 概述
- 代码标准
- 包含文件
- 有用的宏
- 对象、类型和引用计数
- 异常
- 嵌入Python
- 调试构建
- 稳定的应用程序二进制接口
- The Very High Level Layer
- Reference Counting
- 异常处理
- Printing and clearing
- 抛出异常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 标准异常
- 标准警告类别
- 工具
- 操作系统实用程序
- 系统功能
- 过程控制
- 导入模块
- Data marshalling support
- 语句解释及变量编译
- 字符串转换与格式化
- 反射
- 编解码器注册与支持功能
- 抽象对象层
- Object Protocol
- 数字协议
- Sequence Protocol
- Mapping Protocol
- 迭代器协议
- 缓冲协议
- Old Buffer Protocol
- 具体的对象层
- 基本对象
- 数值对象
- 序列对象
- 容器对象
- 函数对象
- 其他对象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置变量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 内存管理
- 概述
- 原始内存接口
- Memory Interface
- 对象分配器
- 默认内存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 对象实现支持
- 在堆中分配对象
- Common Object Structures
- Type 对象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使对象类型支持循环垃圾回收
- API 和 ABI 版本管理
- 分发 Python 模块
- 关键术语
- 开源许可与协作
- 安装工具
- 阅读指南
- 我该如何...?
- ...为我的项目选择一个名字?
- ...创建和分发二进制扩展?
- 安装 Python 模块
- 关键术语
- 基本使用
- 我应如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安装 pip ?
- ... 只为当前用户安装软件包?
- ... 安装科学计算类 Python 软件包?
- ... 使用并行安装的多个 Python 版本?
- 常见的安装问题
- 在 Linux 的系统 Python 版本上安装
- 未安装 pip
- 安装二进制编译扩展
- Python 常用指引
- 将 Python 2 代码迁移到 Python 3
- 简要说明
- 详情
- 将扩展模块移植到 Python 3
- 条件编译
- 对象API的更改
- 模块初始化和状态
- CObject 替换为 Capsule
- 其他选项
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 实现描述器
- 摘要
- 定义和简介
- 描述器协议
- 发起调用描述符
- 描述符示例
- Properties
- 函数和方法
- Static Methods and Class Methods
- 函数式编程指引
- 概述
- 迭代器
- 生成器表达式和列表推导式
- 生成器
- 内置函数
- itertools 模块
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文献
- 日志 HOWTO
- 日志基础教程
- 进阶日志教程
- 日志级别
- 有用的处理程序
- 记录日志中引发的异常
- 使用任意对象作为消息
- 优化
- 日志操作手册
- 在多个模块中使用日志
- 在多线程中使用日志
- 使用多个日志处理器和多种格式化
- 在多个地方记录日志
- 日志服务器配置示例
- 处理日志处理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正则表达式HOWTO
- 概述
- 简单模式
- 使用正则表达式
- 更多模式能力
- 修改字符串
- 常见问题
- 反馈
- 套接字编程指南
- 套接字
- 创建套接字
- 使用一个套接字
- 断开连接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 关键函数
- Operator 模块函数
- 升序和降序
- 排序稳定性和排序复杂度
- 使用装饰-排序-去装饰的旧方法
- 使用 cmp 参数的旧方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包获取网络资源
- 概述
- Fetching URLs
- 处理异常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 脚注
- Argparse 教程
- 概念
- 基础
- 位置参数介绍
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模块介绍
- 创建 Address/Network/Interface 对象
- 审查 Address/Network/Interface 对象
- Network 作为 Address 列表
- 比较
- 将IP地址与其他模块一起使用
- 实例创建失败时获取更多详细信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 检测CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常见问题
- Python常见问题
- 一般信息
- 现实世界中的 Python
- 编程常见问题
- 一般问题
- 核心语言
- 数字和字符串
- 性能
- 序列(元组/列表)
- 对象
- 模块
- 设计和历史常见问题
- 为什么Python使用缩进来分组语句?
- 为什么简单的算术运算得到奇怪的结果?
- 为什么浮点计算不准确?
- 为什么Python字符串是不可变的?
- 为什么必须在方法定义和调用中显式使用“self”?
- 为什么不能在表达式中赋值?
- 为什么Python对某些功能(例如list.index())使用方法来实现,而其他功能(例如len(List))使用函数实现?
- 为什么 join()是一个字符串方法而不是列表或元组方法?
- 异常有多快?
- 为什么Python中没有switch或case语句?
- 难道不能在解释器中模拟线程,而非得依赖特定于操作系统的线程实现吗?
- 为什么lambda表达式不能包含语句?
- 可以将Python编译为机器代码,C或其他语言吗?
- Python如何管理内存?
- 为什么CPython不使用更传统的垃圾回收方案?
- CPython退出时为什么不释放所有内存?
- 为什么有单独的元组和列表数据类型?
- 列表是如何在CPython中实现的?
- 字典是如何在CPython中实现的?
- 为什么字典key必须是不可变的?
- 为什么 list.sort() 没有返回排序列表?
- 如何在Python中指定和实施接口规范?
- 为什么没有goto?
- 为什么原始字符串(r-strings)不能以反斜杠结尾?
- 为什么Python没有属性赋值的“with”语句?
- 为什么 if/while/def/class语句需要冒号?
- 为什么Python在列表和元组的末尾允许使用逗号?
- 代码库和插件 FAQ
- 通用的代码库问题
- 通用任务
- 线程相关
- 输入输出
- 网络 / Internet 编程
- 数据库
- 数学和数字
- 扩展/嵌入常见问题
- 可以使用C语言中创建自己的函数吗?
- 可以使用C++语言中创建自己的函数吗?
- C很难写,有没有其他选择?
- 如何从C执行任意Python语句?
- 如何从C中评估任意Python表达式?
- 如何从Python对象中提取C的值?
- 如何使用Py_BuildValue()创建任意长度的元组?
- 如何从C调用对象的方法?
- 如何捕获PyErr_Print()(或打印到stdout / stderr的任何内容)的输出?
- 如何从C访问用Python编写的模块?
- 如何从Python接口到C ++对象?
- 我使用Setup文件添加了一个模块,为什么make失败了?
- 如何调试扩展?
- 我想在Linux系统上编译一个Python模块,但是缺少一些文件。为什么?
- 如何区分“输入不完整”和“输入无效”?
- 如何找到未定义的g++符号__builtin_new或__pure_virtual?
- 能否创建一个对象类,其中部分方法在C中实现,而其他方法在Python中实现(例如通过继承)?
- Python在Windows上的常见问题
- 我怎样在Windows下运行一个Python程序?
- 我怎么让 Python 脚本可执行?
- 为什么有时候 Python 程序会启动缓慢?
- 我怎样使用Python脚本制作可执行文件?
- *.pyd 文件和DLL文件相同吗?
- 我怎样将Python嵌入一个Windows程序?
- 如何让编辑器不要在我的 Python 源代码中插入 tab ?
- 如何在不阻塞的情况下检查按键?
- 图形用户界面(GUI)常见问题
- 图形界面常见问题
- Python 是否有平台无关的图形界面工具包?
- 有哪些Python的GUI工具是某个平台专用的?
- 有关Tkinter的问题
- “为什么我的电脑上安装了 Python ?”
- 什么是Python?
- 为什么我的电脑上安装了 Python ?
- 我能删除 Python 吗?
- 术语对照表
- 文档说明
- Python 文档贡献者
- 解决 Bug
- 文档错误
- 使用 Python 的错误追踪系统
- 开始为 Python 贡献您的知识
- 版权
- 历史和许可证
- 软件历史
- 访问Python或以其他方式使用Python的条款和条件
- Python 3.7.3 的 PSF 许可协议
- Python 2.0 的 BeOpen.com 许可协议
- Python 1.6.1 的 CNRI 许可协议
- Python 0.9.0 至 1.2 的 CWI 许可协议
- 集成软件的许可和认可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec