### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](building.xhtml "4. 构建C/C++扩展") |
- [上一页](newtypes_tutorial.xhtml "2. 自定义扩展类型:教程") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [扩展和嵌入 Python 解释器](index.xhtml) »
- $('.inline-search').show(0); |
# 3. 定义扩展类型:已分类主题
本章节目标是提供一个各种你可以实现的类型方法及其功能的简短介绍。
这是C类型 [`PyTypeObject`](../c-api/type.xhtml#c.PyTypeObject "PyTypeObject") 的定义,省略了只用于调试构建的字段:
```
typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
/* Methods to implement standard operations */
destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */
reprfunc tp_repr;
/* Method suites for standard classes */
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;
/* More standard operations (here for binary compatibility) */
hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;
/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;
/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;
const char *tp_doc; /* Documentation string */
/* call function for all accessible objects */
traverseproc tp_traverse;
/* delete references to contained objects */
inquiry tp_clear;
/* rich comparisons */
richcmpfunc tp_richcompare;
/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;
/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
Py_ssize_t tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
destructor tp_del;
/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;
destructor tp_finalize;
} PyTypeObject;
```
这里有 *很多* 方法。但是不要太担心,如果你要定义一个类型,通常只需要实现少量的方法。
正如你猜到的一样,我们正要一步一步详细介绍各种处理程序。因为有大量的历史包袱影响字段的排序,所以我们不会根据它们在结构体里定义的顺序讲解。通常非常容易找到一个包含你需要的字段的例子,然后改变值去适应你新的类型。
```
const char *tp_name; /* For printing */
```
类型的名字 - 上一章提到过的,会出现在很多地方,几乎全部都是为了诊断目的。尝试选择一个好名字,对于诊断很有帮助。
```
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
```
这些字段告诉运行时在创造这个类型的新对象时需要分配多少内存。Python为了可变长度的结构(想下:字符串,元组)有些内置支持,这是 [`tp_itemsize`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_itemsize "PyTypeObject.tp_itemsize") 字段存在的原由。这部分稍后解释。
```
const char *tp_doc;
```
这里你可以放置一段字符串(或者它的地址),当你想在Python脚本引用 `obj.__doc__` 时返回这段文档字符串。
现在我们来看一下基本类型方法 - 大多数扩展类型将实现的方法。
## 3.1. 终结和内存释放
```
destructor tp_dealloc;
```
当您的类型实例的引用计数减少为零并且Python解释器想要回收它时,将调用此函数。如果你的类型有内存可供释放或执行其他清理,你可以把它放在这里。 对象本身也需要在这里释放。 以下是此函数的示例:
```
static void
newdatatype_dealloc(newdatatypeobject *obj)
{
free(obj->obj_UnderlyingDatatypePtr);
Py_TYPE(obj)->tp_free(obj);
}
```
One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has already been set. Any actions which a deallocator performs which may cause additional Python code to be executed may detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way to protect against this is to save a pending exception before performing the unsafe action, and restoring it when done. This can be done using the [`PyErr_Fetch()`](../c-api/exceptions.xhtml#c.PyErr_Fetch "PyErr_Fetch") and [`PyErr_Restore()`](../c-api/exceptions.xhtml#c.PyErr_Restore "PyErr_Restore") functions:
```
static void
my_dealloc(PyObject *obj)
{
MyObject *self = (MyObject *) obj;
PyObject *cbresult;
if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;
/* This saves the current exception state */
PyErr_Fetch(&err_type, &err_value, &err_traceback);
cbresult = PyObject_CallObject(self->my_callback, NULL);
if (cbresult == NULL)
PyErr_WriteUnraisable(self->my_callback);
else
Py_DECREF(cbresult);
/* This restores the saved exception state */
PyErr_Restore(err_type, err_value, err_traceback);
Py_DECREF(self->my_callback);
}
Py_TYPE(obj)->tp_free((PyObject*)self);
}
```
注解
There are limitations to what you can safely do in a deallocator function. First, if your type supports garbage collection (using [`tp_traverse`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_traverse "PyTypeObject.tp_traverse")and/or [`tp_clear`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_clear "PyTypeObject.tp_clear")), some of the object's members can have been cleared or finalized by the time [`tp_dealloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_dealloc "PyTypeObject.tp_dealloc") is called. Second, in [`tp_dealloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_dealloc "PyTypeObject.tp_dealloc"), your object is in an unstable state: its reference count is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up calling [`tp_dealloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_dealloc "PyTypeObject.tp_dealloc") again, causing a double free and a crash.
从 Python 3.4 开始,推荐不要在 [`tp_dealloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_dealloc "PyTypeObject.tp_dealloc") 放复杂的终结代码,而是使用新的 [`tp_finalize`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_finalize "PyTypeObject.tp_finalize") 类型方法。
参见
[**PEP 442**](https://www.python.org/dev/peps/pep-0442) \[https://www.python.org/dev/peps/pep-0442\] 解释了新的终结方案。
## 3.2. 对象展示
In Python, there are two ways to generate a textual representation of an object: the [`repr()`](../library/functions.xhtml#repr "repr") function, and the [`str()`](../library/stdtypes.xhtml#str "str") function. (The [`print()`](../library/functions.xhtml#print "print")function just calls [`str()`](../library/stdtypes.xhtml#str "str").) These handlers are both optional.
```
reprfunc tp_repr;
reprfunc tp_str;
```
The [`tp_repr`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_repr "PyTypeObject.tp_repr") handler should return a string object containing a representation of the instance for which it is called. Here is a simple example:
```
static PyObject *
newdatatype_repr(newdatatypeobject * obj)
{
return PyUnicode_FromFormat("Repr-ified_newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);
}
```
If no [`tp_repr`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_repr "PyTypeObject.tp_repr") handler is specified, the interpreter will supply a representation that uses the type's [`tp_name`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_name "PyTypeObject.tp_name") and a uniquely-identifying value for the object.
The [`tp_str`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_str "PyTypeObject.tp_str") handler is to [`str()`](../library/stdtypes.xhtml#str "str") what the [`tp_repr`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_repr "PyTypeObject.tp_repr") handler described above is to [`repr()`](../library/functions.xhtml#repr "repr"); that is, it is called when Python code calls [`str()`](../library/stdtypes.xhtml#str "str") on an instance of your object. Its implementation is very similar to the [`tp_repr`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_repr "PyTypeObject.tp_repr") function, but the resulting string is intended for human consumption. If [`tp_str`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_str "PyTypeObject.tp_str") is not specified, the [`tp_repr`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_repr "PyTypeObject.tp_repr") handler is used instead.
Here is a simple example:
```
static PyObject *
newdatatype_str(newdatatypeobject * obj)
{
return PyUnicode_FromFormat("Stringified_newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);
}
```
## 3.3. Attribute Management
For every object which can support attributes, the corresponding type must provide the functions that control how the attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to set attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed to the handler is *NULL*.
Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions for one pair. The difference is that one pair takes the name of the attribute as a `char*`, while the other accepts a [`PyObject*`](../c-api/structures.xhtml#c.PyObject "PyObject"). Each type can use whichever pair makes more sense for the implementation's convenience.
```
getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;
/* ... */
getattrofunc tp_getattro; /* PyObject * version */
setattrofunc tp_setattro;
```
If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic implementations which can be used to provide the [`PyObject*`](../c-api/structures.xhtml#c.PyObject "PyObject") version of the attribute management functions. The actual need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there are many examples which have not been updated to use some of the new generic mechanism that is available.
### 3.3.1. Generic Attribute Management
Most extension types only use *simple* attributes. So, what makes the attributes simple? There are only a couple of conditions that must be met:
1. The name of the attributes must be known when [`PyType_Ready()`](../c-api/type.xhtml#c.PyType_Ready "PyType_Ready") is called.
2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be taken based on the value.
Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or how relevant data is stored.
When [`PyType_Ready()`](../c-api/type.xhtml#c.PyType_Ready "PyType_Ready") is called, it uses three tables referenced by the type object to create [descriptor](../glossary.xhtml#term-descriptor)s which are placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object. Each of the tables is optional; if all three are *NULL*, instances of the type will only have attributes that are inherited from their base type, and should leave the [`tp_getattro`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_getattro "PyTypeObject.tp_getattro") and [`tp_setattro`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_setattro "PyTypeObject.tp_setattro") fields *NULL* as well, allowing the base type to handle attributes.
The tables are declared as three fields of the type object:
```
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
```
If [`tp_methods`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_methods "PyTypeObject.tp_methods") is not *NULL*, it must refer to an array of [`PyMethodDef`](../c-api/structures.xhtml#c.PyMethodDef "PyMethodDef") structures. Each entry in the table is an instance of this structure:
```
typedef struct PyMethodDef {
const char *ml_name; /* method name */
PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */
const char *ml_doc; /* docstring */
} PyMethodDef;
```
One entry should be defined for each method provided by the type; no entries are needed for methods inherited from a base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The `ml_name` field of the sentinel must be *NULL*.
The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive C types are supported, and access may be read-only or read-write. The structures in the table are defined as:
```
typedef struct PyMemberDef {
const char *name;
int type;
int offset;
int flags;
const char *doc;
} PyMemberDef;
```
For each entry in the table, a [descriptor](../glossary.xhtml#term-descriptor) will be constructed and added to the type which will be able to extract a value from the instance structure. The [`type`](../library/functions.xhtml#type "type") field should contain one of the type codes defined in the `structmember.h` header; the value will be used to determine how to convert Python values to and from C values. The `flags` field is used to store flags which control how the attribute can be accessed.
The following flag constants are defined in `structmember.h`; they may be combined using bitwise-OR.
常数
意义
`READONLY`
Never writable.
`READ_RESTRICTED`
Not readable in restricted mode.
`WRITE_RESTRICTED`
Not writable in restricted mode.
`RESTRICTED`
Not readable or writable in restricted mode.
An interesting advantage of using the [`tp_members`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_members "PyTypeObject.tp_members") table to build descriptors that are used at runtime is that any attribute defined this way can have an associated doc string simply by providing the text in the table. An application can use the introspection API to retrieve the descriptor from the class object, and get the doc string using its `__doc__` attribute.
As with the [`tp_methods`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_methods "PyTypeObject.tp_methods") table, a sentinel entry with a `name` value of *NULL* is required.
### 3.3.2. Type-specific Attribute Management
For simplicity, only the `char*` version will be demonstrated here; the type of the name parameter is the only difference between the `char*`and [`PyObject*`](../c-api/structures.xhtml#c.PyObject "PyObject") flavors of the interface. This example effectively does the same thing as the generic example above, but does not use the generic support added in Python 2.2. It explains how the handler functions are called, so that if you do need to extend their functionality, you'll understand what needs to be done.
The [`tp_getattr`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_getattr "PyTypeObject.tp_getattr") handler is called when the object requires an attribute look-up. It is called in the same situations where the [`__getattr__()`](../reference/datamodel.xhtml#object.__getattr__ "object.__getattr__")method of a class would be called.
Here is an example:
```
static PyObject *
newdatatype_getattr(newdatatypeobject *obj, char *name)
{
if (strcmp(name, "data") == 0)
{
return PyLong_FromLong(obj->data);
}
PyErr_Format(PyExc_AttributeError,
"'%.50s' object has no attribute '%.400s'",
tp->tp_name, name);
return NULL;
}
```
The [`tp_setattr`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_setattr "PyTypeObject.tp_setattr") handler is called when the [`__setattr__()`](../reference/datamodel.xhtml#object.__setattr__ "object.__setattr__") or [`__delattr__()`](../reference/datamodel.xhtml#object.__delattr__ "object.__delattr__") method of a class instance would be called. When an attribute should be deleted, the third parameter will be *NULL*. Here is an example that simply raises an exception; if this were really all you wanted, the [`tp_setattr`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_setattr "PyTypeObject.tp_setattr") handler should be set to *NULL*.
```
static int
newdatatype_setattr(newdatatypeobject *obj, char *name, PyObject *v)
{
PyErr_Format(PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;
}
```
## 3.4. Object Comparison
```
richcmpfunc tp_richcompare;
```
The [`tp_richcompare`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_richcompare "PyTypeObject.tp_richcompare") handler is called when comparisons are needed. It is analogous to the [rich comparison methods](../reference/datamodel.xhtml#richcmpfuncs), like [`__lt__()`](../reference/datamodel.xhtml#object.__lt__ "object.__lt__"), and also called by [`PyObject_RichCompare()`](../c-api/object.xhtml#c.PyObject_RichCompare "PyObject_RichCompare") and [`PyObject_RichCompareBool()`](../c-api/object.xhtml#c.PyObject_RichCompareBool "PyObject_RichCompareBool").
This function is called with two Python objects and the operator as arguments, where the operator is one of `Py_EQ`, `Py_NE`, `Py_LE`, `Py_GT`, `Py_LT` or `Py_GT`. It should compare the two objects with respect to the specified operator and return `Py_True` or `Py_False` if the comparison is successful, `Py_NotImplemented` to indicate that comparison is not implemented and the other object's comparison method should be tried, or *NULL*if an exception was set.
Here is a sample implementation, for a datatype that is considered equal if the size of an internal pointer is equal:
```
static PyObject *
newdatatype_richcmp(PyObject *obj1, PyObject *obj2, int op)
{
PyObject *result;
int c, size1, size2;
/* code to make sure that both arguments are of type
newdatatype omitted */
size1 = obj1->obj_UnderlyingDatatypePtr->size;
size2 = obj2->obj_UnderlyingDatatypePtr->size;
switch (op) {
case Py_LT: c = size1 < size2; break;
case Py_LE: c = size1 <= size2; break;
case Py_EQ: c = size1 == size2; break;
case Py_NE: c = size1 != size2; break;
case Py_GT: c = size1 > size2; break;
case Py_GE: c = size1 >= size2; break;
}
result = c ? Py_True : Py_False;
Py_INCREF(result);
return result;
}
```
## 3.5. Abstract Protocol Support
Python supports a variety of *abstract* 'protocols;' the specific interfaces provided to use these interfaces are documented in [抽象对象层](../c-api/abstract.xhtml#abstract).
A number of these abstract interfaces were defined early in the development of the Python implementation. In particular, the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols have been added over time. For protocols which depend on several handler routines from the type implementation, the older protocols have been defined as optional blocks of handlers referenced by the type object. For newer protocols there are additional slots in the main type object, with a flag bit being set to indicate that the slots are present and should be checked by the interpreter. (The flag bit does not indicate that the slot values are non-*NULL*. The flag may be set to indicate the presence of a slot, but a slot may still be unfilled.)
```
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;
```
If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of a structure that implements the C type [`PyNumberMethods`](../c-api/typeobj.xhtml#c.PyNumberMethods "PyNumberMethods"), [`PySequenceMethods`](../c-api/typeobj.xhtml#c.PySequenceMethods "PySequenceMethods"), or [`PyMappingMethods`](../c-api/typeobj.xhtml#c.PyMappingMethods "PyMappingMethods"), respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each of these in the `Objects` directory of the Python source distribution.
```
hashfunc tp_hash;
```
This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a simple example:
```
static Py_hash_t
newdatatype_hash(newdatatypeobject *obj)
{
Py_hash_t result;
result = obj->some_size + 32767 * obj->some_number;
if (result == -1)
result = -2;
return result;
}
```
`Py_hash_t` is a signed integer type with a platform-varying width. Returning `-1` from [`tp_hash`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_hash "PyTypeObject.tp_hash") indicates an error, which is why you should be careful to avoid returning it when hash computation is successful, as seen above.
```
ternaryfunc tp_call;
```
This function is called when an instance of your data type is "called", for example, if `obj1` is an instance of your data type and the Python script contains `obj1('hello')`, the [`tp_call`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_call "PyTypeObject.tp_call") handler is invoked.
This function takes three arguments:
1. *self* is the instance of the data type which is the subject of the call. If the call is `obj1('hello')`, then *self* is `obj1`.
2. *args* is a tuple containing the arguments to the call. You can use [`PyArg_ParseTuple()`](../c-api/arg.xhtml#c.PyArg_ParseTuple "PyArg_ParseTuple") to extract the arguments.
3. *kwds* is a dictionary of keyword arguments that were passed. If this is non-*NULL* and you support keyword arguments, use [`PyArg_ParseTupleAndKeywords()`](../c-api/arg.xhtml#c.PyArg_ParseTupleAndKeywords "PyArg_ParseTupleAndKeywords") to extract the arguments. If you do not want to support keyword arguments and this is non-*NULL*, raise a [`TypeError`](../library/exceptions.xhtml#TypeError "TypeError") with a message saying that keyword arguments are not supported.
Here is a toy `tp_call` implementation:
```
static PyObject *
newdatatype_call(newdatatypeobject *self, PyObject *args, PyObject *kwds)
{
PyObject *result;
const char *arg1;
const char *arg2;
const char *arg3;
if (!PyArg_ParseTuple(args, "sss:call", &arg1, &arg2, &arg3)) {
return NULL;
}
result = PyUnicode_FromFormat(
"Returning -- value: [%d] arg1: [%s] arg2: [%s] arg3: [%s]\n",
obj->obj_UnderlyingDatatypePtr->size,
arg1, arg2, arg3);
return result;
}
```
```
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;
```
These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for which they are being called, and return a new reference. In the case of an error, they should set an exception and return *NULL*. [`tp_iter`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iter "PyTypeObject.tp_iter") corresponds to the Python [`__iter__()`](../reference/datamodel.xhtml#object.__iter__ "object.__iter__") method, while [`tp_iternext`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iternext "PyTypeObject.tp_iternext")corresponds to the Python [`__next__()`](../library/stdtypes.xhtml#iterator.__next__ "iterator.__next__") method.
Any [iterable](../glossary.xhtml#term-iterable) object must implement the [`tp_iter`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iter "PyTypeObject.tp_iter")handler, which must return an [iterator](../glossary.xhtml#term-iterator) object. Here the same guidelines apply as for Python classes:
- For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should be created and returned by each call to [`tp_iter`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iter "PyTypeObject.tp_iter").
- Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can implement [`tp_iter`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iter "PyTypeObject.tp_iter")by returning a new reference to themselves -- and should also therefore implement the [`tp_iternext`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iternext "PyTypeObject.tp_iternext") handler.
Any [iterator](../glossary.xhtml#term-iterator) object should implement both [`tp_iter`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iter "PyTypeObject.tp_iter")and [`tp_iternext`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iternext "PyTypeObject.tp_iternext"). An iterator's [`tp_iter`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iter "PyTypeObject.tp_iter") handler should return a new reference to the iterator. Its [`tp_iternext`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iternext "PyTypeObject.tp_iternext") handler should return a new reference to the next object in the iteration, if there is one. If the iteration has reached the end, [`tp_iternext`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iternext "PyTypeObject.tp_iternext")may return *NULL* without setting an exception, or it may set [`StopIteration`](../library/exceptions.xhtml#StopIteration "StopIteration") *in addition* to returning *NULL*; avoiding the exception can yield slightly better performance. If an actual error occurs, [`tp_iternext`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_iternext "PyTypeObject.tp_iternext") should always set an exception and return *NULL*.
## 3.6. Weak Reference Support
One of the goals of Python's weak reference implementation is to allow any type to participate in the weak reference mechanism without incurring the overhead on performance-critical objects (such as numbers).
参见
Documentation for the [`weakref`](../library/weakref.xhtml#module-weakref "weakref: Support for weak references and weak dictionaries.") module.
For an object to be weakly referencable, the extension type must do two things:
1. Include a [`PyObject*`](../c-api/structures.xhtml#c.PyObject "PyObject") field in the C object structure dedicated to the weak reference mechanism. The object's constructor should leave it *NULL* (which is automatic when using the default [`tp_alloc`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_alloc "PyTypeObject.tp_alloc")).
2. Set the [`tp_weaklistoffset`](../c-api/typeobj.xhtml#c.PyTypeObject.tp_weaklistoffset "PyTypeObject.tp_weaklistoffset") type member to the offset of the aforementioned field in the C object structure, so that the interpreter knows how to access and modify that field.
Concretely, here is how a trivial object structure would be augmented with the required field:
```
typedef struct {
PyObject_HEAD
PyObject *weakreflist; /* List of weak references */
} TrivialObject;
```
And the corresponding member in the statically-declared type object:
```
static PyTypeObject TrivialType = {
PyVarObject_HEAD_INIT(NULL, 0)
/* ... other members omitted for brevity ... */
.tp_weaklistoffset = offsetof(TrivialObject, weakreflist),
};
```
The only further addition is that `tp_dealloc` needs to clear any weak references (by calling `PyObject_ClearWeakRefs()`) if the field is non-*NULL*:
```
static void
Trivial_dealloc(TrivialObject *self)
{
/* Clear weakrefs first before calling any destructors */
if (self->weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */
Py_TYPE(self)->tp_free((PyObject *) self);
}
```
## 3.7. 更多建议
In order to learn how to implement any specific method for your new data type, get the [CPython](../glossary.xhtml#term-cpython) source code. Go to the `Objects` directory, then search the C source files for `tp_` plus the function you want (for example, `tp_richcompare`). You will find examples of the function you want to implement.
When you need to verify that an object is a concrete instance of the type you are implementing, use the [`PyObject_TypeCheck()`](../c-api/object.xhtml#c.PyObject_TypeCheck "PyObject_TypeCheck") function. A sample of its use might be something like the following:
```
if (!PyObject_TypeCheck(some_object, &MyType)) {
PyErr_SetString(PyExc_TypeError, "arg #1 not a mything");
return NULL;
}
```
参见
下载CPython源代码版本。<https://www.python.org/downloads/source/>
GitHub上开发CPython源代码的CPython项目。<https://github.com/python/cpython>
### 导航
- [索引](../genindex.xhtml "总目录")
- [模块](../py-modindex.xhtml "Python 模块索引") |
- [下一页](building.xhtml "4. 构建C/C++扩展") |
- [上一页](newtypes_tutorial.xhtml "2. 自定义扩展类型:教程") |
- ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png)
- [Python](https://www.python.org/) »
- zh\_CN 3.7.3 [文档](../index.xhtml) »
- [扩展和嵌入 Python 解释器](index.xhtml) »
- $('.inline-search').show(0); |
© [版权所有](../copyright.xhtml) 2001-2019, Python Software Foundation.
Python 软件基金会是一个非盈利组织。 [请捐助。](https://www.python.org/psf/donations/)
最后更新于 5月 21, 2019. [发现了问题](../bugs.xhtml)?
使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 创建。
- Python文档内容
- Python 有什么新变化?
- Python 3.7 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- C API 的改变
- 构建的改变
- 性能优化
- 其他 CPython 实现的改变
- 已弃用的 Python 行为
- 已弃用的 Python 模块、函数和方法
- 已弃用的 C API 函数和类型
- 平台支持的移除
- API 与特性的移除
- 移除的模块
- Windows 专属的改变
- 移植到 Python 3.7
- Python 3.7.1 中的重要变化
- Python 3.7.2 中的重要变化
- Python 3.6 有什么新变化A
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 其他改进
- 弃用
- 移除
- 移植到Python 3.6
- Python 3.6.2 中的重要变化
- Python 3.6.4 中的重要变化
- Python 3.6.5 中的重要变化
- Python 3.6.7 中的重要变化
- Python 3.5 有什么新变化
- 摘要 - 发布重点
- 新的特性
- 其他语言特性修改
- 新增模块
- 改进的模块
- Other module-level changes
- 性能优化
- Build and C API Changes
- 弃用
- 移除
- Porting to Python 3.5
- Notable changes in Python 3.5.4
- What's New In Python 3.4
- 摘要 - 发布重点
- 新的特性
- 新增模块
- 改进的模块
- CPython Implementation Changes
- 弃用
- 移除
- Porting to Python 3.4
- Changed in 3.4.3
- What's New In Python 3.3
- 摘要 - 发布重点
- PEP 405: Virtual Environments
- PEP 420: Implicit Namespace Packages
- PEP 3118: New memoryview implementation and buffer protocol documentation
- PEP 393: Flexible String Representation
- PEP 397: Python Launcher for Windows
- PEP 3151: Reworking the OS and IO exception hierarchy
- PEP 380: Syntax for Delegating to a Subgenerator
- PEP 409: Suppressing exception context
- PEP 414: Explicit Unicode literals
- PEP 3155: Qualified name for classes and functions
- PEP 412: Key-Sharing Dictionary
- PEP 362: Function Signature Object
- PEP 421: Adding sys.implementation
- Using importlib as the Implementation of Import
- 其他语言特性修改
- A Finer-Grained Import Lock
- Builtin functions and types
- 新增模块
- 改进的模块
- 性能优化
- Build and C API Changes
- 弃用
- Porting to Python 3.3
- What's New In Python 3.2
- PEP 384: Defining a Stable ABI
- PEP 389: Argparse Command Line Parsing Module
- PEP 391: Dictionary Based Configuration for Logging
- PEP 3148: The concurrent.futures module
- PEP 3147: PYC Repository Directories
- PEP 3149: ABI Version Tagged .so Files
- PEP 3333: Python Web Server Gateway Interface v1.0.1
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 多线程
- 性能优化
- Unicode
- Codecs
- 文档
- IDLE
- Code Repository
- Build and C API Changes
- Porting to Python 3.2
- What's New In Python 3.1
- PEP 372: Ordered Dictionaries
- PEP 378: Format Specifier for Thousands Separator
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- 性能优化
- IDLE
- Build and C API Changes
- Porting to Python 3.1
- What's New In Python 3.0
- Common Stumbling Blocks
- Overview Of Syntax Changes
- Changes Already Present In Python 2.6
- Library Changes
- PEP 3101: A New Approach To String Formatting
- Changes To Exceptions
- Miscellaneous Other Changes
- Build and C API Changes
- 性能
- Porting To Python 3.0
- What's New in Python 2.7
- The Future for Python 2.x
- Changes to the Handling of Deprecation Warnings
- Python 3.1 Features
- PEP 372: Adding an Ordered Dictionary to collections
- PEP 378: Format Specifier for Thousands Separator
- PEP 389: The argparse Module for Parsing Command Lines
- PEP 391: Dictionary-Based Configuration For Logging
- PEP 3106: Dictionary Views
- PEP 3137: The memoryview Object
- 其他语言特性修改
- New and Improved Modules
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.7
- New Features Added to Python 2.7 Maintenance Releases
- Acknowledgements
- Python 2.6 有什么新变化
- Python 3.0
- Changes to the Development Process
- PEP 343: The 'with' statement
- PEP 366: Explicit Relative Imports From a Main Module
- PEP 370: Per-user site-packages Directory
- PEP 371: The multiprocessing Package
- PEP 3101: Advanced String Formatting
- PEP 3105: print As a Function
- PEP 3110: Exception-Handling Changes
- PEP 3112: Byte Literals
- PEP 3116: New I/O Library
- PEP 3118: Revised Buffer Protocol
- PEP 3119: Abstract Base Classes
- PEP 3127: Integer Literal Support and Syntax
- PEP 3129: Class Decorators
- PEP 3141: A Type Hierarchy for Numbers
- 其他语言特性修改
- New and Improved Modules
- Deprecations and Removals
- Build and C API Changes
- Porting to Python 2.6
- Acknowledgements
- What's New in Python 2.5
- PEP 308: Conditional Expressions
- PEP 309: Partial Function Application
- PEP 314: Metadata for Python Software Packages v1.1
- PEP 328: Absolute and Relative Imports
- PEP 338: Executing Modules as Scripts
- PEP 341: Unified try/except/finally
- PEP 342: New Generator Features
- PEP 343: The 'with' statement
- PEP 352: Exceptions as New-Style Classes
- PEP 353: Using ssize_t as the index type
- PEP 357: The 'index' method
- 其他语言特性修改
- New, Improved, and Removed Modules
- Build and C API Changes
- Porting to Python 2.5
- Acknowledgements
- What's New in Python 2.4
- PEP 218: Built-In Set Objects
- PEP 237: Unifying Long Integers and Integers
- PEP 289: Generator Expressions
- PEP 292: Simpler String Substitutions
- PEP 318: Decorators for Functions and Methods
- PEP 322: Reverse Iteration
- PEP 324: New subprocess Module
- PEP 327: Decimal Data Type
- PEP 328: Multi-line Imports
- PEP 331: Locale-Independent Float/String Conversions
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Build and C API Changes
- Porting to Python 2.4
- Acknowledgements
- What's New in Python 2.3
- PEP 218: A Standard Set Datatype
- PEP 255: Simple Generators
- PEP 263: Source Code Encodings
- PEP 273: Importing Modules from ZIP Archives
- PEP 277: Unicode file name support for Windows NT
- PEP 278: Universal Newline Support
- PEP 279: enumerate()
- PEP 282: The logging Package
- PEP 285: A Boolean Type
- PEP 293: Codec Error Handling Callbacks
- PEP 301: Package Index and Metadata for Distutils
- PEP 302: New Import Hooks
- PEP 305: Comma-separated Files
- PEP 307: Pickle Enhancements
- Extended Slices
- 其他语言特性修改
- New, Improved, and Deprecated Modules
- Pymalloc: A Specialized Object Allocator
- Build and C API Changes
- Other Changes and Fixes
- Porting to Python 2.3
- Acknowledgements
- What's New in Python 2.2
- 概述
- PEPs 252 and 253: Type and Class Changes
- PEP 234: Iterators
- PEP 255: Simple Generators
- PEP 237: Unifying Long Integers and Integers
- PEP 238: Changing the Division Operator
- Unicode Changes
- PEP 227: Nested Scopes
- New and Improved Modules
- Interpreter Changes and Fixes
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.1
- 概述
- PEP 227: Nested Scopes
- PEP 236: future Directives
- PEP 207: Rich Comparisons
- PEP 230: Warning Framework
- PEP 229: New Build System
- PEP 205: Weak References
- PEP 232: Function Attributes
- PEP 235: Importing Modules on Case-Insensitive Platforms
- PEP 217: Interactive Display Hook
- PEP 208: New Coercion Model
- PEP 241: Metadata in Python Packages
- New and Improved Modules
- Other Changes and Fixes
- Acknowledgements
- What's New in Python 2.0
- 概述
- What About Python 1.6?
- New Development Process
- Unicode
- 列表推导式
- Augmented Assignment
- 字符串的方法
- Garbage Collection of Cycles
- Other Core Changes
- Porting to 2.0
- Extending/Embedding Changes
- Distutils: Making Modules Easy to Install
- XML Modules
- Module changes
- New modules
- IDLE Improvements
- Deleted and Deprecated Modules
- Acknowledgements
- 更新日志
- Python 下一版
- Python 3.7.3 最终版
- Python 3.7.3 发布候选版 1
- Python 3.7.2 最终版
- Python 3.7.2 发布候选版 1
- Python 3.7.1 最终版
- Python 3.7.1 RC 2版本
- Python 3.7.1 发布候选版 1
- Python 3.7.0 正式版
- Python 3.7.0 release candidate 1
- Python 3.7.0 beta 5
- Python 3.7.0 beta 4
- Python 3.7.0 beta 3
- Python 3.7.0 beta 2
- Python 3.7.0 beta 1
- Python 3.7.0 alpha 4
- Python 3.7.0 alpha 3
- Python 3.7.0 alpha 2
- Python 3.7.0 alpha 1
- Python 3.6.6 final
- Python 3.6.6 RC 1
- Python 3.6.5 final
- Python 3.6.5 release candidate 1
- Python 3.6.4 final
- Python 3.6.4 release candidate 1
- Python 3.6.3 final
- Python 3.6.3 release candidate 1
- Python 3.6.2 final
- Python 3.6.2 release candidate 2
- Python 3.6.2 release candidate 1
- Python 3.6.1 final
- Python 3.6.1 release candidate 1
- Python 3.6.0 final
- Python 3.6.0 release candidate 2
- Python 3.6.0 release candidate 1
- Python 3.6.0 beta 4
- Python 3.6.0 beta 3
- Python 3.6.0 beta 2
- Python 3.6.0 beta 1
- Python 3.6.0 alpha 4
- Python 3.6.0 alpha 3
- Python 3.6.0 alpha 2
- Python 3.6.0 alpha 1
- Python 3.5.5 final
- Python 3.5.5 release candidate 1
- Python 3.5.4 final
- Python 3.5.4 release candidate 1
- Python 3.5.3 final
- Python 3.5.3 release candidate 1
- Python 3.5.2 final
- Python 3.5.2 release candidate 1
- Python 3.5.1 final
- Python 3.5.1 release candidate 1
- Python 3.5.0 final
- Python 3.5.0 release candidate 4
- Python 3.5.0 release candidate 3
- Python 3.5.0 release candidate 2
- Python 3.5.0 release candidate 1
- Python 3.5.0 beta 4
- Python 3.5.0 beta 3
- Python 3.5.0 beta 2
- Python 3.5.0 beta 1
- Python 3.5.0 alpha 4
- Python 3.5.0 alpha 3
- Python 3.5.0 alpha 2
- Python 3.5.0 alpha 1
- Python 教程
- 课前甜点
- 使用 Python 解释器
- 调用解释器
- 解释器的运行环境
- Python 的非正式介绍
- Python 作为计算器使用
- 走向编程的第一步
- 其他流程控制工具
- if 语句
- for 语句
- range() 函数
- break 和 continue 语句,以及循环中的 else 子句
- pass 语句
- 定义函数
- 函数定义的更多形式
- 小插曲:编码风格
- 数据结构
- 列表的更多特性
- del 语句
- 元组和序列
- 集合
- 字典
- 循环的技巧
- 深入条件控制
- 序列和其它类型的比较
- 模块
- 有关模块的更多信息
- 标准模块
- dir() 函数
- 包
- 输入输出
- 更漂亮的输出格式
- 读写文件
- 错误和异常
- 语法错误
- 异常
- 处理异常
- 抛出异常
- 用户自定义异常
- 定义清理操作
- 预定义的清理操作
- 类
- 名称和对象
- Python 作用域和命名空间
- 初探类
- 补充说明
- 继承
- 私有变量
- 杂项说明
- 迭代器
- 生成器
- 生成器表达式
- 标准库简介
- 操作系统接口
- 文件通配符
- 命令行参数
- 错误输出重定向和程序终止
- 字符串模式匹配
- 数学
- 互联网访问
- 日期和时间
- 数据压缩
- 性能测量
- 质量控制
- 自带电池
- 标准库简介 —— 第二部分
- 格式化输出
- 模板
- 使用二进制数据记录格式
- 多线程
- 日志
- 弱引用
- 用于操作列表的工具
- 十进制浮点运算
- 虚拟环境和包
- 概述
- 创建虚拟环境
- 使用pip管理包
- 接下来?
- 交互式编辑和编辑历史
- Tab 补全和编辑历史
- 默认交互式解释器的替代品
- 浮点算术:争议和限制
- 表示性错误
- 附录
- 交互模式
- 安装和使用 Python
- 命令行与环境
- 命令行
- 环境变量
- 在Unix平台中使用Python
- 获取最新版本的Python
- 构建Python
- 与Python相关的路径和文件
- 杂项
- 编辑器和集成开发环境
- 在Windows上使用 Python
- 完整安装程序
- Microsoft Store包
- nuget.org 安装包
- 可嵌入的包
- 替代捆绑包
- 配置Python
- 适用于Windows的Python启动器
- 查找模块
- 附加模块
- 在Windows上编译Python
- 其他平台
- 在苹果系统上使用 Python
- 获取和安装 MacPython
- IDE
- 安装额外的 Python 包
- Mac 上的图形界面编程
- 在 Mac 上分发 Python 应用程序
- 其他资源
- Python 语言参考
- 概述
- 其他实现
- 标注
- 词法分析
- 行结构
- 其他形符
- 标识符和关键字
- 字面值
- 运算符
- 分隔符
- 数据模型
- 对象、值与类型
- 标准类型层级结构
- 特殊方法名称
- 协程
- 执行模型
- 程序的结构
- 命名与绑定
- 异常
- 导入系统
- importlib
- 包
- 搜索
- 加载
- 基于路径的查找器
- 替换标准导入系统
- Package Relative Imports
- 有关 main 的特殊事项
- 开放问题项
- 参考文献
- 表达式
- 算术转换
- 原子
- 原型
- await 表达式
- 幂运算符
- 一元算术和位运算
- 二元算术运算符
- 移位运算
- 二元位运算
- 比较运算
- 布尔运算
- 条件表达式
- lambda 表达式
- 表达式列表
- 求值顺序
- 运算符优先级
- 简单语句
- 表达式语句
- 赋值语句
- assert 语句
- pass 语句
- del 语句
- return 语句
- yield 语句
- raise 语句
- break 语句
- continue 语句
- import 语句
- global 语句
- nonlocal 语句
- 复合语句
- if 语句
- while 语句
- for 语句
- try 语句
- with 语句
- 函数定义
- 类定义
- 协程
- 最高层级组件
- 完整的 Python 程序
- 文件输入
- 交互式输入
- 表达式输入
- 完整的语法规范
- Python 标准库
- 概述
- 可用性注释
- 内置函数
- 内置常量
- 由 site 模块添加的常量
- 内置类型
- 逻辑值检测
- 布尔运算 — and, or, not
- 比较
- 数字类型 — int, float, complex
- 迭代器类型
- 序列类型 — list, tuple, range
- 文本序列类型 — str
- 二进制序列类型 — bytes, bytearray, memoryview
- 集合类型 — set, frozenset
- 映射类型 — dict
- 上下文管理器类型
- 其他内置类型
- 特殊属性
- 内置异常
- 基类
- 具体异常
- 警告
- 异常层次结构
- 文本处理服务
- string — 常见的字符串操作
- re — 正则表达式操作
- 模块 difflib 是一个计算差异的助手
- textwrap — Text wrapping and filling
- unicodedata — Unicode 数据库
- stringprep — Internet String Preparation
- readline — GNU readline interface
- rlcompleter — GNU readline的完成函数
- 二进制数据服务
- struct — Interpret bytes as packed binary data
- codecs — Codec registry and base classes
- 数据类型
- datetime — 基础日期/时间数据类型
- calendar — General calendar-related functions
- collections — 容器数据类型
- collections.abc — 容器的抽象基类
- heapq — 堆队列算法
- bisect — Array bisection algorithm
- array — Efficient arrays of numeric values
- weakref — 弱引用
- types — Dynamic type creation and names for built-in types
- copy — 浅层 (shallow) 和深层 (deep) 复制操作
- pprint — 数据美化输出
- reprlib — Alternate repr() implementation
- enum — Support for enumerations
- 数字和数学模块
- numbers — 数字的抽象基类
- math — 数学函数
- cmath — Mathematical functions for complex numbers
- decimal — 十进制定点和浮点运算
- fractions — 分数
- random — 生成伪随机数
- statistics — Mathematical statistics functions
- 函数式编程模块
- itertools — 为高效循环而创建迭代器的函数
- functools — 高阶函数和可调用对象上的操作
- operator — 标准运算符替代函数
- 文件和目录访问
- pathlib — 面向对象的文件系统路径
- os.path — 常见路径操作
- fileinput — Iterate over lines from multiple input streams
- stat — Interpreting stat() results
- filecmp — File and Directory Comparisons
- tempfile — Generate temporary files and directories
- glob — Unix style pathname pattern expansion
- fnmatch — Unix filename pattern matching
- linecache — Random access to text lines
- shutil — High-level file operations
- macpath — Mac OS 9 路径操作函数
- 数据持久化
- pickle —— Python 对象序列化
- copyreg — Register pickle support functions
- shelve — Python object persistence
- marshal — Internal Python object serialization
- dbm — Interfaces to Unix “databases”
- sqlite3 — SQLite 数据库 DB-API 2.0 接口模块
- 数据压缩和存档
- zlib — 与 gzip 兼容的压缩
- gzip — 对 gzip 格式的支持
- bz2 — 对 bzip2 压缩算法的支持
- lzma — 用 LZMA 算法压缩
- zipfile — 在 ZIP 归档中工作
- tarfile — Read and write tar archive files
- 文件格式
- csv — CSV 文件读写
- configparser — Configuration file parser
- netrc — netrc file processing
- xdrlib — Encode and decode XDR data
- plistlib — Generate and parse Mac OS X .plist files
- 加密服务
- hashlib — 安全哈希与消息摘要
- hmac — 基于密钥的消息验证
- secrets — Generate secure random numbers for managing secrets
- 通用操作系统服务
- os — 操作系统接口模块
- io — 处理流的核心工具
- time — 时间的访问和转换
- argparse — 命令行选项、参数和子命令解析器
- getopt — C-style parser for command line options
- 模块 logging — Python 的日志记录工具
- logging.config — 日志记录配置
- logging.handlers — Logging handlers
- getpass — 便携式密码输入工具
- curses — 终端字符单元显示的处理
- curses.textpad — Text input widget for curses programs
- curses.ascii — Utilities for ASCII characters
- curses.panel — A panel stack extension for curses
- platform — Access to underlying platform's identifying data
- errno — Standard errno system symbols
- ctypes — Python 的外部函数库
- 并发执行
- threading — 基于线程的并行
- multiprocessing — 基于进程的并行
- concurrent 包
- concurrent.futures — 启动并行任务
- subprocess — 子进程管理
- sched — 事件调度器
- queue — 一个同步的队列类
- _thread — 底层多线程 API
- _dummy_thread — _thread 的替代模块
- dummy_threading — 可直接替代 threading 模块。
- contextvars — Context Variables
- Context Variables
- Manual Context Management
- asyncio support
- 网络和进程间通信
- asyncio — 异步 I/O
- socket — 底层网络接口
- ssl — TLS/SSL wrapper for socket objects
- select — Waiting for I/O completion
- selectors — 高级 I/O 复用库
- asyncore — 异步socket处理器
- asynchat — 异步 socket 指令/响应 处理器
- signal — Set handlers for asynchronous events
- mmap — Memory-mapped file support
- 互联网数据处理
- email — 电子邮件与 MIME 处理包
- json — JSON 编码和解码器
- mailcap — Mailcap file handling
- mailbox — Manipulate mailboxes in various formats
- mimetypes — Map filenames to MIME types
- base64 — Base16, Base32, Base64, Base85 数据编码
- binhex — 对binhex4文件进行编码和解码
- binascii — 二进制和 ASCII 码互转
- quopri — Encode and decode MIME quoted-printable data
- uu — Encode and decode uuencode files
- 结构化标记处理工具
- html — 超文本标记语言支持
- html.parser — 简单的 HTML 和 XHTML 解析器
- html.entities — HTML 一般实体的定义
- XML处理模块
- xml.etree.ElementTree — The ElementTree XML API
- xml.dom — The Document Object Model API
- xml.dom.minidom — Minimal DOM implementation
- xml.dom.pulldom — Support for building partial DOM trees
- xml.sax — Support for SAX2 parsers
- xml.sax.handler — Base classes for SAX handlers
- xml.sax.saxutils — SAX Utilities
- xml.sax.xmlreader — Interface for XML parsers
- xml.parsers.expat — Fast XML parsing using Expat
- 互联网协议和支持
- webbrowser — 方便的Web浏览器控制器
- cgi — Common Gateway Interface support
- cgitb — Traceback manager for CGI scripts
- wsgiref — WSGI Utilities and Reference Implementation
- urllib — URL 处理模块
- urllib.request — 用于打开 URL 的可扩展库
- urllib.response — Response classes used by urllib
- urllib.parse — Parse URLs into components
- urllib.error — Exception classes raised by urllib.request
- urllib.robotparser — Parser for robots.txt
- http — HTTP 模块
- http.client — HTTP协议客户端
- ftplib — FTP protocol client
- poplib — POP3 protocol client
- imaplib — IMAP4 protocol client
- nntplib — NNTP protocol client
- smtplib —SMTP协议客户端
- smtpd — SMTP Server
- telnetlib — Telnet client
- uuid — UUID objects according to RFC 4122
- socketserver — A framework for network servers
- http.server — HTTP 服务器
- http.cookies — HTTP state management
- http.cookiejar — Cookie handling for HTTP clients
- xmlrpc — XMLRPC 服务端与客户端模块
- xmlrpc.client — XML-RPC client access
- xmlrpc.server — Basic XML-RPC servers
- ipaddress — IPv4/IPv6 manipulation library
- 多媒体服务
- audioop — Manipulate raw audio data
- aifc — Read and write AIFF and AIFC files
- sunau — 读写 Sun AU 文件
- wave — 读写WAV格式文件
- chunk — Read IFF chunked data
- colorsys — Conversions between color systems
- imghdr — 推测图像类型
- sndhdr — 推测声音文件的类型
- ossaudiodev — Access to OSS-compatible audio devices
- 国际化
- gettext — 多语种国际化服务
- locale — 国际化服务
- 程序框架
- turtle — 海龟绘图
- cmd — 支持面向行的命令解释器
- shlex — Simple lexical analysis
- Tk图形用户界面(GUI)
- tkinter — Tcl/Tk的Python接口
- tkinter.ttk — Tk themed widgets
- tkinter.tix — Extension widgets for Tk
- tkinter.scrolledtext — 滚动文字控件
- IDLE
- 其他图形用户界面(GUI)包
- 开发工具
- typing — 类型标注支持
- pydoc — Documentation generator and online help system
- doctest — Test interactive Python examples
- unittest — 单元测试框架
- unittest.mock — mock object library
- unittest.mock 上手指南
- 2to3 - 自动将 Python 2 代码转为 Python 3 代码
- test — Regression tests package for Python
- test.support — Utilities for the Python test suite
- test.support.script_helper — Utilities for the Python execution tests
- 调试和分析
- bdb — Debugger framework
- faulthandler — Dump the Python traceback
- pdb — The Python Debugger
- The Python Profilers
- timeit — 测量小代码片段的执行时间
- trace — Trace or track Python statement execution
- tracemalloc — Trace memory allocations
- 软件打包和分发
- distutils — 构建和安装 Python 模块
- ensurepip — Bootstrapping the pip installer
- venv — 创建虚拟环境
- zipapp — Manage executable Python zip archives
- Python运行时服务
- sys — 系统相关的参数和函数
- sysconfig — Provide access to Python's configuration information
- builtins — 内建对象
- main — 顶层脚本环境
- warnings — Warning control
- dataclasses — 数据类
- contextlib — Utilities for with-statement contexts
- abc — 抽象基类
- atexit — 退出处理器
- traceback — Print or retrieve a stack traceback
- future — Future 语句定义
- gc — 垃圾回收器接口
- inspect — 检查对象
- site — Site-specific configuration hook
- 自定义 Python 解释器
- code — Interpreter base classes
- codeop — Compile Python code
- 导入模块
- zipimport — Import modules from Zip archives
- pkgutil — Package extension utility
- modulefinder — 查找脚本使用的模块
- runpy — Locating and executing Python modules
- importlib — The implementation of import
- Python 语言服务
- parser — Access Python parse trees
- ast — 抽象语法树
- symtable — Access to the compiler's symbol tables
- symbol — 与 Python 解析树一起使用的常量
- token — 与Python解析树一起使用的常量
- keyword — 检验Python关键字
- tokenize — Tokenizer for Python source
- tabnanny — 模糊缩进检测
- pyclbr — Python class browser support
- py_compile — Compile Python source files
- compileall — Byte-compile Python libraries
- dis — Python 字节码反汇编器
- pickletools — Tools for pickle developers
- 杂项服务
- formatter — Generic output formatting
- Windows系统相关模块
- msilib — Read and write Microsoft Installer files
- msvcrt — Useful routines from the MS VC++ runtime
- winreg — Windows 注册表访问
- winsound — Sound-playing interface for Windows
- Unix 专有服务
- posix — The most common POSIX system calls
- pwd — 用户密码数据库
- spwd — The shadow password database
- grp — The group database
- crypt — Function to check Unix passwords
- termios — POSIX style tty control
- tty — 终端控制功能
- pty — Pseudo-terminal utilities
- fcntl — The fcntl and ioctl system calls
- pipes — Interface to shell pipelines
- resource — Resource usage information
- nis — Interface to Sun's NIS (Yellow Pages)
- Unix syslog 库例程
- 被取代的模块
- optparse — Parser for command line options
- imp — Access the import internals
- 未创建文档的模块
- 平台特定模块
- 扩展和嵌入 Python 解释器
- 推荐的第三方工具
- 不使用第三方工具创建扩展
- 使用 C 或 C++ 扩展 Python
- 自定义扩展类型:教程
- 定义扩展类型:已分类主题
- 构建C/C++扩展
- 在Windows平台编译C和C++扩展
- 在更大的应用程序中嵌入 CPython 运行时
- Embedding Python in Another Application
- Python/C API 参考手册
- 概述
- 代码标准
- 包含文件
- 有用的宏
- 对象、类型和引用计数
- 异常
- 嵌入Python
- 调试构建
- 稳定的应用程序二进制接口
- The Very High Level Layer
- Reference Counting
- 异常处理
- Printing and clearing
- 抛出异常
- Issuing warnings
- Querying the error indicator
- Signal Handling
- Exception Classes
- Exception Objects
- Unicode Exception Objects
- Recursion Control
- 标准异常
- 标准警告类别
- 工具
- 操作系统实用程序
- 系统功能
- 过程控制
- 导入模块
- Data marshalling support
- 语句解释及变量编译
- 字符串转换与格式化
- 反射
- 编解码器注册与支持功能
- 抽象对象层
- Object Protocol
- 数字协议
- Sequence Protocol
- Mapping Protocol
- 迭代器协议
- 缓冲协议
- Old Buffer Protocol
- 具体的对象层
- 基本对象
- 数值对象
- 序列对象
- 容器对象
- 函数对象
- 其他对象
- Initialization, Finalization, and Threads
- 在Python初始化之前
- 全局配置变量
- Initializing and finalizing the interpreter
- Process-wide parameters
- Thread State and the Global Interpreter Lock
- Sub-interpreter support
- Asynchronous Notifications
- Profiling and Tracing
- Advanced Debugger Support
- Thread Local Storage Support
- 内存管理
- 概述
- 原始内存接口
- Memory Interface
- 对象分配器
- 默认内存分配器
- Customize Memory Allocators
- The pymalloc allocator
- tracemalloc C API
- 示例
- 对象实现支持
- 在堆中分配对象
- Common Object Structures
- Type 对象
- Number Object Structures
- Mapping Object Structures
- Sequence Object Structures
- Buffer Object Structures
- Async Object Structures
- 使对象类型支持循环垃圾回收
- API 和 ABI 版本管理
- 分发 Python 模块
- 关键术语
- 开源许可与协作
- 安装工具
- 阅读指南
- 我该如何...?
- ...为我的项目选择一个名字?
- ...创建和分发二进制扩展?
- 安装 Python 模块
- 关键术语
- 基本使用
- 我应如何 ...?
- ... 在 Python 3.4 之前的 Python 版本中安装 pip ?
- ... 只为当前用户安装软件包?
- ... 安装科学计算类 Python 软件包?
- ... 使用并行安装的多个 Python 版本?
- 常见的安装问题
- 在 Linux 的系统 Python 版本上安装
- 未安装 pip
- 安装二进制编译扩展
- Python 常用指引
- 将 Python 2 代码迁移到 Python 3
- 简要说明
- 详情
- 将扩展模块移植到 Python 3
- 条件编译
- 对象API的更改
- 模块初始化和状态
- CObject 替换为 Capsule
- 其他选项
- Curses Programming with Python
- What is curses?
- Starting and ending a curses application
- Windows and Pads
- Displaying Text
- User Input
- For More Information
- 实现描述器
- 摘要
- 定义和简介
- 描述器协议
- 发起调用描述符
- 描述符示例
- Properties
- 函数和方法
- Static Methods and Class Methods
- 函数式编程指引
- 概述
- 迭代器
- 生成器表达式和列表推导式
- 生成器
- 内置函数
- itertools 模块
- The functools module
- Small functions and the lambda expression
- Revision History and Acknowledgements
- 引用文献
- 日志 HOWTO
- 日志基础教程
- 进阶日志教程
- 日志级别
- 有用的处理程序
- 记录日志中引发的异常
- 使用任意对象作为消息
- 优化
- 日志操作手册
- 在多个模块中使用日志
- 在多线程中使用日志
- 使用多个日志处理器和多种格式化
- 在多个地方记录日志
- 日志服务器配置示例
- 处理日志处理器的阻塞
- Sending and receiving logging events across a network
- Adding contextual information to your logging output
- Logging to a single file from multiple processes
- Using file rotation
- Use of alternative formatting styles
- Customizing LogRecord
- Subclassing QueueHandler - a ZeroMQ example
- Subclassing QueueListener - a ZeroMQ example
- An example dictionary-based configuration
- Using a rotator and namer to customize log rotation processing
- A more elaborate multiprocessing example
- Inserting a BOM into messages sent to a SysLogHandler
- Implementing structured logging
- Customizing handlers with dictConfig()
- Using particular formatting styles throughout your application
- Configuring filters with dictConfig()
- Customized exception formatting
- Speaking logging messages
- Buffering logging messages and outputting them conditionally
- Formatting times using UTC (GMT) via configuration
- Using a context manager for selective logging
- 正则表达式HOWTO
- 概述
- 简单模式
- 使用正则表达式
- 更多模式能力
- 修改字符串
- 常见问题
- 反馈
- 套接字编程指南
- 套接字
- 创建套接字
- 使用一个套接字
- 断开连接
- 非阻塞的套接字
- 排序指南
- 基本排序
- 关键函数
- Operator 模块函数
- 升序和降序
- 排序稳定性和排序复杂度
- 使用装饰-排序-去装饰的旧方法
- 使用 cmp 参数的旧方法
- 其它
- Unicode 指南
- Unicode 概述
- Python's Unicode Support
- Reading and Writing Unicode Data
- Acknowledgements
- 如何使用urllib包获取网络资源
- 概述
- Fetching URLs
- 处理异常
- info and geturl
- Openers and Handlers
- Basic Authentication
- Proxies
- Sockets and Layers
- 脚注
- Argparse 教程
- 概念
- 基础
- 位置参数介绍
- Introducing Optional arguments
- Combining Positional and Optional arguments
- Getting a little more advanced
- Conclusion
- ipaddress模块介绍
- 创建 Address/Network/Interface 对象
- 审查 Address/Network/Interface 对象
- Network 作为 Address 列表
- 比较
- 将IP地址与其他模块一起使用
- 实例创建失败时获取更多详细信息
- Argument Clinic How-To
- The Goals Of Argument Clinic
- Basic Concepts And Usage
- Converting Your First Function
- Advanced Topics
- 使用 DTrace 和 SystemTap 检测CPython
- Enabling the static markers
- Static DTrace probes
- Static SystemTap markers
- Available static markers
- SystemTap Tapsets
- 示例
- Python 常见问题
- Python常见问题
- 一般信息
- 现实世界中的 Python
- 编程常见问题
- 一般问题
- 核心语言
- 数字和字符串
- 性能
- 序列(元组/列表)
- 对象
- 模块
- 设计和历史常见问题
- 为什么Python使用缩进来分组语句?
- 为什么简单的算术运算得到奇怪的结果?
- 为什么浮点计算不准确?
- 为什么Python字符串是不可变的?
- 为什么必须在方法定义和调用中显式使用“self”?
- 为什么不能在表达式中赋值?
- 为什么Python对某些功能(例如list.index())使用方法来实现,而其他功能(例如len(List))使用函数实现?
- 为什么 join()是一个字符串方法而不是列表或元组方法?
- 异常有多快?
- 为什么Python中没有switch或case语句?
- 难道不能在解释器中模拟线程,而非得依赖特定于操作系统的线程实现吗?
- 为什么lambda表达式不能包含语句?
- 可以将Python编译为机器代码,C或其他语言吗?
- Python如何管理内存?
- 为什么CPython不使用更传统的垃圾回收方案?
- CPython退出时为什么不释放所有内存?
- 为什么有单独的元组和列表数据类型?
- 列表是如何在CPython中实现的?
- 字典是如何在CPython中实现的?
- 为什么字典key必须是不可变的?
- 为什么 list.sort() 没有返回排序列表?
- 如何在Python中指定和实施接口规范?
- 为什么没有goto?
- 为什么原始字符串(r-strings)不能以反斜杠结尾?
- 为什么Python没有属性赋值的“with”语句?
- 为什么 if/while/def/class语句需要冒号?
- 为什么Python在列表和元组的末尾允许使用逗号?
- 代码库和插件 FAQ
- 通用的代码库问题
- 通用任务
- 线程相关
- 输入输出
- 网络 / Internet 编程
- 数据库
- 数学和数字
- 扩展/嵌入常见问题
- 可以使用C语言中创建自己的函数吗?
- 可以使用C++语言中创建自己的函数吗?
- C很难写,有没有其他选择?
- 如何从C执行任意Python语句?
- 如何从C中评估任意Python表达式?
- 如何从Python对象中提取C的值?
- 如何使用Py_BuildValue()创建任意长度的元组?
- 如何从C调用对象的方法?
- 如何捕获PyErr_Print()(或打印到stdout / stderr的任何内容)的输出?
- 如何从C访问用Python编写的模块?
- 如何从Python接口到C ++对象?
- 我使用Setup文件添加了一个模块,为什么make失败了?
- 如何调试扩展?
- 我想在Linux系统上编译一个Python模块,但是缺少一些文件。为什么?
- 如何区分“输入不完整”和“输入无效”?
- 如何找到未定义的g++符号__builtin_new或__pure_virtual?
- 能否创建一个对象类,其中部分方法在C中实现,而其他方法在Python中实现(例如通过继承)?
- Python在Windows上的常见问题
- 我怎样在Windows下运行一个Python程序?
- 我怎么让 Python 脚本可执行?
- 为什么有时候 Python 程序会启动缓慢?
- 我怎样使用Python脚本制作可执行文件?
- *.pyd 文件和DLL文件相同吗?
- 我怎样将Python嵌入一个Windows程序?
- 如何让编辑器不要在我的 Python 源代码中插入 tab ?
- 如何在不阻塞的情况下检查按键?
- 图形用户界面(GUI)常见问题
- 图形界面常见问题
- Python 是否有平台无关的图形界面工具包?
- 有哪些Python的GUI工具是某个平台专用的?
- 有关Tkinter的问题
- “为什么我的电脑上安装了 Python ?”
- 什么是Python?
- 为什么我的电脑上安装了 Python ?
- 我能删除 Python 吗?
- 术语对照表
- 文档说明
- Python 文档贡献者
- 解决 Bug
- 文档错误
- 使用 Python 的错误追踪系统
- 开始为 Python 贡献您的知识
- 版权
- 历史和许可证
- 软件历史
- 访问Python或以其他方式使用Python的条款和条件
- Python 3.7.3 的 PSF 许可协议
- Python 2.0 的 BeOpen.com 许可协议
- Python 1.6.1 的 CNRI 许可协议
- Python 0.9.0 至 1.2 的 CWI 许可协议
- 集成软件的许可和认可
- Mersenne Twister
- 套接字
- Asynchronous socket services
- Cookie management
- Execution tracing
- UUencode and UUdecode functions
- XML Remote Procedure Calls
- test_epoll
- Select kqueue
- SipHash24
- strtod and dtoa
- OpenSSL
- expat
- libffi
- zlib
- cfuhash
- libmpdec