💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
### 导航 - [索引](../genindex.xhtml "总目录") - [模块](../py-modindex.xhtml "Python 模块索引") | - [下一页](stable.xhtml "稳定的应用程序二进制接口") | - [上一页](index.xhtml "Python/C API 参考手册") | - ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png) - [Python](https://www.python.org/) » - zh\_CN 3.7.3 [文档](../index.xhtml) » - [Python/C API 参考手册](index.xhtml) » - $('.inline-search').show(0); | # 概述 Python 的应用编程接口(API)使得 C 和 C++ 程序员可以在多个层级上访问 Python 解释器。该 API 在 C++ 中同样可用,但为简化描述,通常将其称为 Python/C API。使用 Python/C API 有两个基本的理由。第一个理由是为了特定目的而编写 *扩展模块*;它们是扩展 Python 解释器功能的 C 模块。这可能是最常见的使用场景。第二个理由是将 Python 用作更大规模应用的组件;这种技巧通常被称为在一个应用中 *embedding* Python。 编写扩展模块的过程相对来说更易于理解,可以通过“菜谱”的形式分步骤介绍。使用某些工具可在一定程度上自动化这一过程。虽然人们在其他应用中嵌入 Python 的做法早已有之,但嵌入 Python 的过程没有编写扩展模块那样方便直观。 许多 API 函数在你嵌入或是扩展 Python 这两种场景下都能发挥作用;此外,大多数嵌入 Python 的应用程序也需要提供自定义扩展,因此在尝试在实际应用中嵌入 Python 之前先熟悉编写扩展应该会是个好主意。 ## 代码标准 如果你想要编写可包含于 CPython 的 C 代码,你 **必须** 遵循在 [**PEP 7**](https://www.python.org/dev/peps/pep-0007) \[https://www.python.org/dev/peps/pep-0007\] 中定义的指导原则和标准。这些指导原则适用于任何你所要扩展的 Python 版本。在编写你自己的第三方扩展模块时可以不必遵循这些规范,除非你准备在日后向 Python 贡献这些模块。 ## 包含文件 使用 Python/C API 所需要的全部函数、类型和宏定义可通过下面这行语句包含到你的代码之中: ``` #define PY_SSIZE_T_CLEAN #include <Python.h> ``` 这意味着包含以下标准头文件:`<stdio.h>`,`<string.h>`,`<errno.h>`,`<limits.h>`,`<assert.h>` 和 `<stdlib.h>`(如果可用)。 注解 由于 Python 可能会定义一些能在某些系统上影响标准头文件的预处理器定义,因此在包含任何标准头文件之前,你 *必须* 先包含 `Python.h`。 It is recommended to always define `PY_SSIZE_T_CLEAN` before including `Python.h`. See [语句解释及变量编译](arg.xhtml#arg-parsing) for a description of this macro. Python.h 所定义的全部用户可见名称(由包含的标准头文件所定义的除外)都带有前缀 `Py` 或者 `_Py`。以 `_Py` 打头的名称是供 Python 实现内部使用的,不应被扩展编写者使用。结构成员名称没有保留前缀。 **重要:** 用户代码永远不应该定义以 `Py` `或 ``_Py` 开头的名称。这会使读者感到困惑,并危及用户代码对未来 Python 版本的可移植性,因为未来版本可能会额外定义以这些前缀之一开头的名称。 头文件通常会与 Python 一起安装。在 Unix 上,它们位于以下目录:`prefix/include/pythonversion/` 和 `exec_prefix/include/pythonversion/`,其中 `prefix` 和 `exec_prefix` 是由向 Python 的 **configure** 脚本传入的对应形参所定义,而 *version* 则为 `'%d.%d' % sys.version_info[:2]`。在 Windows 上,头文件安装于 `prefix/include`,其中 `prefix` 是向安装程序指定的安装目录。 要包含头文件,请将两个目录(如果不同)都放到你所用编译器的包含搜索路径中。请 *不要* 将父目录放入搜索路径然后使用 `#include <pythonX.Y/Python.h>`;这将使得多平台编译不可用,因为 `prefix` 下平台无关的头文件需要包含来自 `exec_prefix` 下特定平台的头文件。 C++ 用户应该注意,尽管 API 是完全使用 C 来定义的,但头文件正确地将入口点声明为 `extern "C"`,因此 API 在 C++ 中使用此 API 不必再做任何特殊处理。 ## 有用的宏 Python 头文件中定义了一些有用的宏。许多是在靠近它们被使用的地方定义的(例如 [`Py_RETURN_NONE`](none.xhtml#c.Py_RETURN_NONE "Py_RETURN_NONE"))。其他更为通用的则定义在这里。这里所显示的并不是一个完整的列表。 `Py_UNREACHABLE`()这个可以在你有一个不打算被触及的代码路径时使用。例如,当一个 `switch` 语句中所有可能的值都已被 `case` 子句覆盖了,就可将其用在 `default:` 子句中。当你非常想在某个位置放一个 `assert(0)` 或 `abort()` 调用时也可以用这个。 3\.7 新版功能. `Py_ABS`(x)返回 `x` 的绝对值。 3\.3 新版功能. `Py_MIN`(x, y)返回 `x` 和 `y` 当中的最小值。 3\.3 新版功能. `Py_MAX`(x, y)返回 `x` 和 `y` 当中的最大值。 3\.3 新版功能. `Py_STRINGIFY`(x)将 `x` 转换为 C 字符串。例如 `Py_STRINGIFY(123)` 返回 `"123"`。 3\.4 新版功能. `Py_MEMBER_SIZE`(type, member)返回结构 (`type`) `member` 的大小,以字节表示。 3\.6 新版功能. `Py_CHARMASK`(c)参数必须为 \[-128, 127\] 或 \[0, 255\] 范围内的字符或整数类型。这个宏将 `c` 强制转换为 `unsigned char` 返回。 `Py_GETENV`(s)类似 `getenv(s)` 但会在以下情况返回 *NULL* :如果通过命令行传入 [`-E`](../using/cmdline.xhtml#cmdoption-e) (即设置了 `Py_IgnoreEnvironmentFlag` )。 `Py_UNUSED`(arg)这个可用于函数定义中未使用的参数以隐藏编译器警告,例如 `PyObject* func(PyObject *Py_UNUSED(ignored))`。 3\.4 新版功能. ## 对象、类型和引用计数 大多数 Python/C API 函数都有一个或多个参数以及一个 [`PyObject*`](structures.xhtml#c.PyObject "PyObject") 类型的返回值。此类型是一个指针,指向表示一个任意 Python 对象的不透明数据类型。由于在大多数情况下(例如赋值、作用域规则和参数传递) Python 语言都会以同样的方式处理所有 Python 对象类型,因此它们由一个单独的 C 类型来表示是很适宜的。几乎所有 Python 对象都生存在堆上:你绝不会声明一个 [`PyObject`](structures.xhtml#c.PyObject "PyObject") 类型的自动或静态变量,只有 [`PyObject*`](structures.xhtml#c.PyObject "PyObject") 类型的指针变量可以被声明。唯一的例外是 type 对象;由于此种对象永远不能被释放,所以它们通常是静态 [`PyTypeObject`](type.xhtml#c.PyTypeObject "PyTypeObject") 对象。 所有 Python 对象(甚至 Python 整数)都有一个 *type* 和一个 *reference count*。对象的类型确定它是什么类型的对象(例如整数、列表或用户定义函数;还有更多,如 [标准类型层级结构](../reference/datamodel.xhtml#types) 中所述)。对于每个众所周知的类型,都有一个宏来检查对象是否属于该类型;例如,当(且仅当) *a* 所指的对象是 Python 列表时 `PyList_Check(a)` 为真。 ### 引用计数 The reference count is important because today's computers have a finite (and often severely limited) memory size; it counts how many different places there are that have a reference to an object. Such a place could be another object, or a global (or static) C variable, or a local variable in some C function. When an object's reference count becomes zero, the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There's an obvious problem with objects that reference each other here; for now, the solution is "don't do that.") Reference counts are always manipulated explicitly. The normal way is to use the macro [`Py_INCREF()`](refcounting.xhtml#c.Py_INCREF "Py_INCREF") to increment an object's reference count by one, and [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF") to decrement it by one. The [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF") macro is considerably more complex than the incref one, since it must check whether the reference count becomes zero and then cause the object's deallocator to be called. The deallocator is a function pointer contained in the object's type structure. The type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a compound object type, such as a list, as well as performing any additional finalization that's needed. There's no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory locations in virtual memory (assuming `sizeof(Py_ssize_t) >= sizeof(void*)`). Thus, the reference count increment is a simple operation. It is not necessary to increment an object's reference count for every local variable that contains a pointer to an object. In theory, the object's reference count goes up by one when the variable is made to point to it and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count hasn't changed. The only real reason to use the reference count is to prevent the object from being deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as long as our variable, there is no need to increment the reference count temporarily. An important situation where this arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the call mechanism guarantees to hold a reference to every argument for the duration of the call. However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its reference count. Some other operation might conceivably remove the object from the list, decrementing its reference count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code which could do this; there is a code path which allows control to flow back to the user from a [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF"), so almost any operation is potentially dangerous. A safe approach is to always use the generic operations (functions whose name begins with `PyObject_`, `PyNumber_`, `PySequence_` or `PyMapping_`). These operations always increment the reference count of the object they return. This leaves the caller with the responsibility to call [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF") when they are done with the result; this soon becomes second nature. #### Reference Count Details The reference count behavior of functions in the Python/C API is best explained in terms of *ownership of references*. Ownership pertains to references, never to objects (objects are not owned: they are always shared). "Owning a reference" means being responsible for calling Py\_DECREF on it when the reference is no longer needed. Ownership can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually decref'ing it by calling [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF") or [`Py_XDECREF()`](refcounting.xhtml#c.Py_XDECREF "Py_XDECREF")when it's no longer needed---or passing on this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a *new* reference. When no ownership is transferred, the caller is said to *borrow* the reference. Nothing needs to be done for a borrowed reference. Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function *steals* a reference to the object, or it does not. *Stealing a reference* means that when you pass a reference to a function, that function assumes that it now owns that reference, and you are not responsible for it any longer. Few functions steal references; the two notable exceptions are [`PyList_SetItem()`](list.xhtml#c.PyList_SetItem "PyList_SetItem") and [`PyTuple_SetItem()`](tuple.xhtml#c.PyTuple_SetItem "PyTuple_SetItem"), which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example, the code to create the tuple `(1, 2, "three")` could look like this (forgetting about error handling for the moment; a better way to code this is shown below): ``` PyObject *t; t = PyTuple_New(3); PyTuple_SetItem(t, 0, PyLong_FromLong(1L)); PyTuple_SetItem(t, 1, PyLong_FromLong(2L)); PyTuple_SetItem(t, 2, PyUnicode_FromString("three")); ``` Here, [`PyLong_FromLong()`](long.xhtml#c.PyLong_FromLong "PyLong_FromLong") returns a new reference which is immediately stolen by [`PyTuple_SetItem()`](tuple.xhtml#c.PyTuple_SetItem "PyTuple_SetItem"). When you want to keep using an object although the reference to it will be stolen, use [`Py_INCREF()`](refcounting.xhtml#c.Py_INCREF "Py_INCREF") to grab another reference before calling the reference-stealing function. Incidentally, [`PyTuple_SetItem()`](tuple.xhtml#c.PyTuple_SetItem "PyTuple_SetItem") is the *only* way to set tuple items; [`PySequence_SetItem()`](sequence.xhtml#c.PySequence_SetItem "PySequence_SetItem") and [`PyObject_SetItem()`](object.xhtml#c.PyObject_SetItem "PyObject_SetItem") refuse to do this since tuples are an immutable data type. You should only use [`PyTuple_SetItem()`](tuple.xhtml#c.PyTuple_SetItem "PyTuple_SetItem") for tuples that you are creating yourself. Equivalent code for populating a list can be written using [`PyList_New()`](list.xhtml#c.PyList_New "PyList_New")and [`PyList_SetItem()`](list.xhtml#c.PyList_SetItem "PyList_SetItem"). However, in practice, you will rarely use these ways of creating and populating a tuple or list. There's a generic function, [`Py_BuildValue()`](arg.xhtml#c.Py_BuildValue "Py_BuildValue"), that can create most common objects from C values, directed by a *format string*. For example, the above two blocks of code could be replaced by the following (which also takes care of the error checking): ``` PyObject *tuple, *list; tuple = Py_BuildValue("(iis)", 1, 2, "three"); list = Py_BuildValue("[iis]", 1, 2, "three"); ``` It is much more common to use [`PyObject_SetItem()`](object.xhtml#c.PyObject_SetItem "PyObject_SetItem") and friends with items whose references you are only borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference counts is much saner, since you don't have to increment a reference count so you can give a reference away ("have it be stolen"). For example, this function sets all items of a list (actually, any mutable sequence) to a given item: ``` int set_all(PyObject *target, PyObject *item) { Py_ssize_t i, n; n = PyObject_Length(target); if (n < 0) return -1; for (i = 0; i < n; i++) { PyObject *index = PyLong_FromSsize_t(i); if (!index) return -1; if (PyObject_SetItem(target, index, item) < 0) { Py_DECREF(index); return -1; } Py_DECREF(index); } return 0; } ``` The situation is slightly different for function return values. While passing a reference to most functions does not change your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the only reference to the object. Therefore, the generic functions that return object references, like [`PyObject_GetItem()`](object.xhtml#c.PyObject_GetItem "PyObject_GetItem") and [`PySequence_GetItem()`](sequence.xhtml#c.PySequence_GetItem "PySequence_GetItem"), always return a new reference (the caller becomes the owner of the reference). It is important to realize that whether you own a reference returned by a function depends on which function you call only --- *the plumage* (the type of the object passed as an argument to the function) *doesn't enter into it!*Thus, if you extract an item from a list using [`PyList_GetItem()`](list.xhtml#c.PyList_GetItem "PyList_GetItem"), you don't own the reference --- but if you obtain the same item from the same list using [`PySequence_GetItem()`](sequence.xhtml#c.PySequence_GetItem "PySequence_GetItem") (which happens to take exactly the same arguments), you do own a reference to the returned object. Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using [`PyList_GetItem()`](list.xhtml#c.PyList_GetItem "PyList_GetItem"), and once using [`PySequence_GetItem()`](sequence.xhtml#c.PySequence_GetItem "PySequence_GetItem"). ``` long sum_list(PyObject *list) { Py_ssize_t i, n; long total = 0, value; PyObject *item; n = PyList_Size(list); if (n < 0) return -1; /* Not a list */ for (i = 0; i < n; i++) { item = PyList_GetItem(list, i); /* Can't fail */ if (!PyLong_Check(item)) continue; /* Skip non-integers */ value = PyLong_AsLong(item); if (value == -1 && PyErr_Occurred()) /* Integer too big to fit in a C long, bail out */ return -1; total += value; } return total; } ``` ``` long sum_sequence(PyObject *sequence) { Py_ssize_t i, n; long total = 0, value; PyObject *item; n = PySequence_Length(sequence); if (n < 0) return -1; /* Has no length */ for (i = 0; i < n; i++) { item = PySequence_GetItem(sequence, i); if (item == NULL) return -1; /* Not a sequence, or other failure */ if (PyLong_Check(item)) { value = PyLong_AsLong(item); Py_DECREF(item); if (value == -1 && PyErr_Occurred()) /* Integer too big to fit in a C long, bail out */ return -1; total += value; } else { Py_DECREF(item); /* Discard reference ownership */ } } return total; } ``` ### 类型 There are few other data types that play a significant role in the Python/C API; most are simple C types such as `int`, `long`, `double` and `char*`. A few structure types are used to describe static tables used to list the functions exported by a module or the data attributes of a new object type, and another is used to describe the value of a complex number. These will be discussed together with the functions that use them. ## 异常 Python程序员只需要处理特定需要处理的错误异常;未处理的异常会自动传递给调用者,然后传递给调用者的调用者,依此类推,直到他们到达顶级解释器,在那里将它们报告给用户并伴随堆栈回溯。 For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise exceptions, unless an explicit claim is made otherwise in a function's documentation. In general, when a function encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not documented otherwise, this indicator is either *NULL* or `-1`, depending on the function's return type. A few functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors with [`PyErr_Occurred()`](exceptions.xhtml#c.PyErr_Occurred "PyErr_Occurred"). These exceptions are always explicitly documented. Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application). A thread can be in one of two states: an exception has occurred, or not. The function [`PyErr_Occurred()`](exceptions.xhtml#c.PyErr_Occurred "PyErr_Occurred") can be used to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and *NULL* otherwise. There are a number of functions to set the exception state: [`PyErr_SetString()`](exceptions.xhtml#c.PyErr_SetString "PyErr_SetString") is the most common (though not the most general) function to set the exception state, and [`PyErr_Clear()`](exceptions.xhtml#c.PyErr_Clear "PyErr_Clear") clears the exception state. The full exception state consists of three objects (all of which can be *NULL*): the exception type, the corresponding exception value, and the traceback. These have the same meanings as the Python result of `sys.exc_info()`; however, they are not the same: the Python objects represent the last exception being handled by a Python [`try`](../reference/compound_stmts.xhtml#try) ... [`except`](../reference/compound_stmts.xhtml#except) statement, while the C level exception state only exists while an exception is being passed on between C functions until it reaches the Python bytecode interpreter's main loop, which takes care of transferring it to `sys.exc_info()` and friends. Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call the function [`sys.exc_info()`](../library/sys.xhtml#sys.exc_info "sys.exc_info"), which returns the per-thread exception state for Python code. Also, the semantics of both ways to access the exception state have changed so that a function which catches an exception will save and restore its thread's exception state so as to preserve the exception state of its caller. This prevents common bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback. As a general principle, a function that calls another function to perform some task should check whether the called function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns, and return an error indicator, but it should *not* set another exception --- that would overwrite the exception that was just raised, and lose important information about the exact cause of the error. A simple example of detecting exceptions and passing them on is shown in the `sum_sequence()` example above. It so happens that this example doesn't need to clean up any owned references when it detects an error. The following example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code: ``` def incr_item(dict, key): try: item = dict[key] except KeyError: item = 0 dict[key] = item + 1 ``` Here is the corresponding C code, in all its glory: ``` int incr_item(PyObject *dict, PyObject *key) { /* Objects all initialized to NULL for Py_XDECREF */ PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL; int rv = -1; /* Return value initialized to -1 (failure) */ item = PyObject_GetItem(dict, key); if (item == NULL) { /* Handle KeyError only: */ if (!PyErr_ExceptionMatches(PyExc_KeyError)) goto error; /* Clear the error and use zero: */ PyErr_Clear(); item = PyLong_FromLong(0L); if (item == NULL) goto error; } const_one = PyLong_FromLong(1L); if (const_one == NULL) goto error; incremented_item = PyNumber_Add(item, const_one); if (incremented_item == NULL) goto error; if (PyObject_SetItem(dict, key, incremented_item) < 0) goto error; rv = 0; /* Success */ /* Continue with cleanup code */ error: /* Cleanup code, shared by success and failure path */ /* Use Py_XDECREF() to ignore NULL references */ Py_XDECREF(item); Py_XDECREF(const_one); Py_XDECREF(incremented_item); return rv; /* -1 for error, 0 for success */ } ``` This example represents an endorsed use of the `goto` statement in C! It illustrates the use of [`PyErr_ExceptionMatches()`](exceptions.xhtml#c.PyErr_ExceptionMatches "PyErr_ExceptionMatches") and [`PyErr_Clear()`](exceptions.xhtml#c.PyErr_Clear "PyErr_Clear") to handle specific exceptions, and the use of [`Py_XDECREF()`](refcounting.xhtml#c.Py_XDECREF "Py_XDECREF") to dispose of owned references that may be *NULL* (note the `'X'` in the name; [`Py_DECREF()`](refcounting.xhtml#c.Py_DECREF "Py_DECREF") would crash when confronted with a *NULL* reference). It is important that the variables used to hold owned references are initialized to *NULL* for this to work; likewise, the proposed return value is initialized to `-1` (failure) and only set to success after the final call made is successful. ## 嵌入Python The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter can only be used after the interpreter has been initialized. The basic initialization function is [`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize"). This initializes the table of loaded modules, and creates the fundamental modules [`builtins`](../library/builtins.xhtml#module-builtins "builtins: The module that provides the built-in namespace."), [`__main__`](../library/__main__.xhtml#module-__main__ "__main__: The environment where the top-level script is run."), and [`sys`](../library/sys.xhtml#module-sys "sys: Access system-specific parameters and functions."). It also initializes the module search path (`sys.path`). [`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize") does not set the "script argument list" (`sys.argv`). If this variable is needed by Python code that will be executed later, it must be set explicitly with a call to `PySys_SetArgvEx(argc, argv, updatepath)`after the call to [`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize"). On most systems (in particular, on Unix and Windows, although the details are slightly different), [`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize") calculates the module search path based upon its best guess for the location of the standard Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it looks for a directory named `lib/pythonX.Y` relative to the parent directory where the executable named `python` is found on the shell command search path (the environment variable `PATH`). For instance, if the Python executable is found in `/usr/local/bin/python`, it will assume that the libraries are in `/usr/local/lib/pythonX.Y`. (In fact, this particular path is also the "fallback" location, used when no executable file named `python` is found along `PATH`.) The user can override this behavior by setting the environment variable [`PYTHONHOME`](../using/cmdline.xhtml#envvar-PYTHONHOME), or insert additional directories in front of the standard path by setting [`PYTHONPATH`](../using/cmdline.xhtml#envvar-PYTHONPATH). The embedding application can steer the search by calling `Py_SetProgramName(file)` *before* calling [`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize"). Note that [`PYTHONHOME`](../using/cmdline.xhtml#envvar-PYTHONHOME) still overrides this and [`PYTHONPATH`](../using/cmdline.xhtml#envvar-PYTHONPATH) is still inserted in front of the standard path. An application that requires total control has to provide its own implementation of [`Py_GetPath()`](init.xhtml#c.Py_GetPath "Py_GetPath"), [`Py_GetPrefix()`](init.xhtml#c.Py_GetPrefix "Py_GetPrefix"), [`Py_GetExecPrefix()`](init.xhtml#c.Py_GetExecPrefix "Py_GetExecPrefix"), and [`Py_GetProgramFullPath()`](init.xhtml#c.Py_GetProgramFullPath "Py_GetProgramFullPath") (all defined in `Modules/getpath.c`). Sometimes, it is desirable to "uninitialize" Python. For instance, the application may want to start over (make another call to [`Py_Initialize()`](init.xhtml#c.Py_Initialize "Py_Initialize")) or the application is simply done with its use of Python and wants to free memory allocated by Python. This can be accomplished by calling [`Py_FinalizeEx()`](init.xhtml#c.Py_FinalizeEx "Py_FinalizeEx"). The function [`Py_IsInitialized()`](init.xhtml#c.Py_IsInitialized "Py_IsInitialized") returns true if Python is currently in the initialized state. More information about these functions is given in a later chapter. Notice that [`Py_FinalizeEx()`](init.xhtml#c.Py_FinalizeEx "Py_FinalizeEx")does *not* free all memory allocated by the Python interpreter, e.g. memory allocated by extension modules currently cannot be released. ## 调试构建 Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks tend to add a large amount of overhead to the runtime so they are not enabled by default. A full list of the various types of debugging builds is in the file `Misc/SpecialBuilds.txt` in the Python source distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this section. Compiling the interpreter with the `Py_DEBUG` macro defined produces what is generally meant by "a debug build" of Python. `Py_DEBUG` is enabled in the Unix build by adding `--with-pydebug` to the `./configure` command. It is also implied by the presence of the not-Python-specific `_DEBUG` macro. When `Py_DEBUG` is enabled in the Unix build, compiler optimization is disabled. 除了前面描述的引用计数调试之外,还执行以下额外检查: - 额外检查将添加到对象分配器。 - 额外的检查将添加到解析器和编译器中。 - Downcasts from wide types to narrow types are checked for loss of information. - 许多断言被添加到字典和集合实现中。另外,集合对象需要 `test_c_api()` 方法。 - 输入参数的完整性检查被添加到框架创建中。 - 使用已知的无效模式初始化整型的存储,以捕获对未初始化数字的引用。 - 添加底层跟踪和额外的异常检查到虚拟机的运行时中。 - Extra checks are added to the memory arena implementation. - 添加额外调试到线程模块。 这里可能没有提到的额外的检查。 Defining `Py_TRACE_REFS` enables reference tracing. When defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every [`PyObject`](structures.xhtml#c.PyObject "PyObject"). Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied by `Py_DEBUG`. 有关更多详细信息,请参阅Python源代码中的 `Misc/SpecialBuilds.txt` 。 ### 导航 - [索引](../genindex.xhtml "总目录") - [模块](../py-modindex.xhtml "Python 模块索引") | - [下一页](stable.xhtml "稳定的应用程序二进制接口") | - [上一页](index.xhtml "Python/C API 参考手册") | - ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png) - [Python](https://www.python.org/) » - zh\_CN 3.7.3 [文档](../index.xhtml) » - [Python/C API 参考手册](index.xhtml) » - $('.inline-search').show(0); | © [版权所有](../copyright.xhtml) 2001-2019, Python Software Foundation. Python 软件基金会是一个非盈利组织。 [请捐助。](https://www.python.org/psf/donations/) 最后更新于 5月 21, 2019. [发现了问题](../bugs.xhtml)? 使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 创建。