企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
### 导航 - [索引](../genindex.xhtml "总目录") - [模块](../py-modindex.xhtml "Python 模块索引") | - [下一页](pydoc.xhtml "pydoc --- Documentation generator and online help system") | - [上一页](development.xhtml "开发工具") | - ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png) - [Python](https://www.python.org/) » - zh\_CN 3.7.3 [文档](../index.xhtml) » - [Python 标准库](index.xhtml) » - [开发工具](development.xhtml) » - $('.inline-search').show(0); | # [`typing`](#module-typing "typing: Support for type hints (see PEP 484).") --- 类型标注支持 3\.5 新版功能. **源码:** [Lib/typing.py](https://github.com/python/cpython/tree/3.7/Lib/typing.py) \[https://github.com/python/cpython/tree/3.7/Lib/typing.py\] 注解 typing 模块以 [暂定状态](../glossary.xhtml#term-provisional-api) 包含在标准库中。如果核心开发人员认为有必要,可能会添加新功能,甚至可能会在次要版本之间改变 API。 - - - - - - 此模块支持 [**PEP 484**](https://www.python.org/dev/peps/pep-0484) \[https://www.python.org/dev/peps/pep-0484\] 和 [**PEP 526**](https://www.python.org/dev/peps/pep-0526) \[https://www.python.org/dev/peps/pep-0526\] 指定的类型提示。最基本的支持由 [`Any`](#typing.Any "typing.Any"),[`Union`](#typing.Union "typing.Union"),[`Tuple`](#typing.Tuple "typing.Tuple"),[`Callable`](#typing.Callable "typing.Callable"),[`TypeVar`](#typing.TypeVar "typing.TypeVar") 和 [`Generic`](#typing.Generic "typing.Generic") 类型组成。有关完整的规范,请参阅 [**PEP 484**](https://www.python.org/dev/peps/pep-0484) \[https://www.python.org/dev/peps/pep-0484\]。有关类型提示的简单介绍,请参阅 [**PEP 483**](https://www.python.org/dev/peps/pep-0483) \[https://www.python.org/dev/peps/pep-0483\]。 函数接受并返回一个字符串,注释像下面这样: ``` def greeting(name: str) -> str: return 'Hello ' + name ``` 在函数 `greeting` 中,参数 `name` 预期是 [`str`](stdtypes.xhtml#str "str") 类型,并且返回 [`str`](stdtypes.xhtml#str "str") 类型。子类型允许作为参数。 ## 类型别名 类型别名通过将类型分配给别名来定义。在这个例子中, `Vector` 和 `List[float]` 将被视为可互换的同义词: ``` from typing import List Vector = List[float] def scale(scalar: float, vector: Vector) -> Vector: return [scalar * num for num in vector] # typechecks; a list of floats qualifies as a Vector. new_vector = scale(2.0, [1.0, -4.2, 5.4]) ``` 类型别名可用于简化复杂类型签名。例如: ``` from typing import Dict, Tuple, Sequence ConnectionOptions = Dict[str, str] Address = Tuple[str, int] Server = Tuple[Address, ConnectionOptions] def broadcast_message(message: str, servers: Sequence[Server]) -> None: ... # The static type checker will treat the previous type signature as # being exactly equivalent to this one. def broadcast_message( message: str, servers: Sequence[Tuple[Tuple[str, int], Dict[str, str]]]) -> None: ... ``` 请注意,`None` 作为类型提示是一种特殊情况,并且由 `type(None)` 取代。 ## NewType 使用 [`NewType()`](#typing.NewType "typing.NewType") 辅助函数创建不同的类型: ``` from typing import NewType UserId = NewType('UserId', int) some_id = UserId(524313) ``` 静态类型检查器会将新类型视为它是原始类型的子类。这对于帮助捕捉逻辑错误非常有用: ``` def get_user_name(user_id: UserId) -> str: ... # typechecks user_a = get_user_name(UserId(42351)) # does not typecheck; an int is not a UserId user_b = get_user_name(-1) ``` 您仍然可以对 `UserId` 类型的变量执行所有的 `int` 支持的操作,但结果将始终为 `int` 类型。这可以让你在需要 `int` 的地方传入 `UserId`,但会阻止你以无效的方式无意中创建 `UserId`: ``` # 'output' is of type 'int', not 'UserId' output = UserId(23413) + UserId(54341) ``` 请注意,这些检查仅通过静态类型检查程序强制执行。在运行时,`Derived = NewType('Derived',Base)` 将 `Derived` 一个函数,该函数立即返回您传递它的任何参数。这意味着表达式 `Derived(some_value)` 不会创建一个新的类或引入任何超出常规函数调用的开销。 更确切地说,表达式 `some_value is Derived(some_value)` 在运行时总是为真。 这也意味着无法创建 `Derived` 的子类型,因为它是运行时的标识函数,而不是实际的类型: ``` from typing import NewType UserId = NewType('UserId', int) # Fails at runtime and does not typecheck class AdminUserId(UserId): pass ``` 但是,可以基于'derived' `NewType` 创建 [`NewType()`](#typing.NewType "typing.NewType") ``` from typing import NewType UserId = NewType('UserId', int) ProUserId = NewType('ProUserId', UserId) ``` 并且 `ProUserId` 的类型检查将按预期工作。 有关更多详细信息,请参阅 [**PEP 484**](https://www.python.org/dev/peps/pep-0484) \[https://www.python.org/dev/peps/pep-0484\]。 注解 回想一下,使用类型别名声明两种类型彼此 *等效* 。`Alias = Original` 将使静态类型检查对待所有情况下 `Alias` *完全等同于*`Original`。当您想简化复杂类型签名时,这很有用。 相反,`NewType` 声明一种类型是另一种类型的子类型。`Derived = NewType('Derived', Original)` 将使静态类型检查器将 `Derived` 当作 `Original` 的 *子类* ,这意味着 `Original` 类型的值不能用于 `Derived` 类型的值需要的地方。当您想以最小的运行时间成本防止逻辑错误时,这非常有用。 3\.5.2 新版功能. ## Callable 期望特定签名的回调函数的框架可以将类型标注为 `Callable[[Arg1Type, Arg2Type], ReturnType]`。 例如: ``` from typing import Callable def feeder(get_next_item: Callable[[], str]) -> None: # Body def async_query(on_success: Callable[[int], None], on_error: Callable[[int, Exception], None]) -> None: # Body ``` 通过用文字省略号替换类型提示中的参数列表: `Callable[...,ReturnType]`,可以声明可调用的返回类型,而无需指定调用签名。 ## 泛型(Generic) 由于无法以通用方式静态推断有关保存在容器中的对象的类型信息,因此抽象基类已扩展为支持订阅以表示容器元素的预期类型。 ``` from typing import Mapping, Sequence def notify_by_email(employees: Sequence[Employee], overrides: Mapping[str, str]) -> None: ... ``` 泛型可以通过使用typing模块中名为 [`TypeVar`](#typing.TypeVar "typing.TypeVar") 的新工厂进行参数化。 ``` from typing import Sequence, TypeVar T = TypeVar('T') # Declare type variable def first(l: Sequence[T]) -> T: # Generic function return l[0] ``` ## 用户定义的泛型类型 用户定义的类可以定义为泛型类。 ``` from typing import TypeVar, Generic from logging import Logger T = TypeVar('T') class LoggedVar(Generic[T]): def __init__(self, value: T, name: str, logger: Logger) -> None: self.name = name self.logger = logger self.value = value def set(self, new: T) -> None: self.log('Set ' + repr(self.value)) self.value = new def get(self) -> T: self.log('Get ' + repr(self.value)) return self.value def log(self, message: str) -> None: self.logger.info('%s: %s', self.name, message) ``` `Generic[T]` 作为基类定义了类 `LoggedVar` 采用单个类型参数 `T`。这也使得 `T` 作为类体内的一个类型有效。 [`Generic`](#typing.Generic "typing.Generic") 基类使用定义了 [`__getitem__()`](../reference/datamodel.xhtml#object.__getitem__ "object.__getitem__") 的元类,以便 `LoggedVar[t]` 作为类型有效: ``` from typing import Iterable def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None: for var in vars: var.set(0) ``` 泛型类型可以有任意数量的类型变量,并且类型变量可能会受到限制: ``` from typing import TypeVar, Generic ... T = TypeVar('T') S = TypeVar('S', int, str) class StrangePair(Generic[T, S]): ... ``` [`Generic`](#typing.Generic "typing.Generic") 每个参数的类型变量必须是不同的。这是无效的: ``` from typing import TypeVar, Generic ... T = TypeVar('T') class Pair(Generic[T, T]): # INVALID ... ``` 您可以对 [`Generic`](#typing.Generic "typing.Generic") 使用多重继承: ``` from typing import TypeVar, Generic, Sized T = TypeVar('T') class LinkedList(Sized, Generic[T]): ... ``` 从泛型类继承时,某些类型变量可能是固定的: ``` from typing import TypeVar, Mapping T = TypeVar('T') class MyDict(Mapping[str, T]): ... ``` 在这种情况下,`MyDict` 只有一个参数,`T`。 在不指定类型参数的情况下使用泛型类别会为每个位置假设 [`Any`](#typing.Any "typing.Any")。在下面的例子中,`MyIterable` 不是泛型,但是隐式继承自 `Iterable[Any]`: ``` from typing import Iterable class MyIterable(Iterable): # Same as Iterable[Any] ``` 用户定义的通用类型别名也受支持。例子: ``` from typing import TypeVar, Iterable, Tuple, Union S = TypeVar('S') Response = Union[Iterable[S], int] # Return type here is same as Union[Iterable[str], int] def response(query: str) -> Response[str]: ... T = TypeVar('T', int, float, complex) Vec = Iterable[Tuple[T, T]] def inproduct(v: Vec[T]) -> T: # Same as Iterable[Tuple[T, T]] return sum(x*y for x, y in v) ``` [`Generic`](#typing.Generic "typing.Generic") 使用的元类是 [`abc.ABCMeta`](abc.xhtml#abc.ABCMeta "abc.ABCMeta") 的子类。泛型类可以通过包含抽象方法或属性成为ABC,并且泛型类也可以使用ABCs作为基类而不存在元类冲突。不支持泛型元类。参数化泛型的结果被缓存,并且typing模块中的大部分类型都是可散列的,并且可以比较是否相等。 ## [`Any`](#typing.Any "typing.Any") 类型 [`Any`](#typing.Any "typing.Any") 是一种特殊的类型。静态类型检查器将所有类型视为与 [`Any`](#typing.Any "typing.Any") 兼容,反之亦然, [`Any`](#typing.Any "typing.Any") 也与所有类型相兼容。 这意味着可对类型为 [`Any`](#typing.Any "typing.Any") 的值执行任何操作或方法调用,并将其赋值给任何变量: ``` from typing import Any a = None # type: Any a = [] # OK a = 2 # OK s = '' # type: str s = a # OK def foo(item: Any) -> int: # Typechecks; 'item' could be any type, # and that type might have a 'bar' method item.bar() ... ``` 需要注意的是,将 [`Any`](#typing.Any "typing.Any") 类型的值赋值给另一个更具体的类型时,Python不会执行类型检查。例如,当把 `a` 赋值给 `s` 时,即使 `s` 被声明为 [`str`](stdtypes.xhtml#str "str") 类型,在运行时接收到的是 [`int`](functions.xhtml#int "int") 值,静态类型检查器也不会报错。 此外,所有返回值无类型或形参无类型的函数将隐式地默认使用 [`Any`](#typing.Any "typing.Any") 类型: ``` def legacy_parser(text): ... return data # A static type checker will treat the above # as having the same signature as: def legacy_parser(text: Any) -> Any: ... return data ``` 当需要混用动态类型和静态类型的代码时,上述行为可以让 [`Any`](#typing.Any "typing.Any") 被用作 *应急出口* 。 [`Any`](#typing.Any "typing.Any") 和 [`object`](functions.xhtml#object "object") 的行为对比。与 [`Any`](#typing.Any "typing.Any") 相似,所有的类型都是 [`object`](functions.xhtml#object "object") 的子类型。然而不同于 [`Any`](#typing.Any "typing.Any"),反之并不成立: [`object`](functions.xhtml#object "object") *不是* 其他所有类型的子类型。 这意味着当一个值的类型是 [`object`](functions.xhtml#object "object") 的时候,类型检查器会拒绝对它的几乎所有的操作。把它赋值给一个指定了类型的变量(或者当作返回值)是一个类型错误。比如说: ``` def hash_a(item: object) -> int: # Fails; an object does not have a 'magic' method. item.magic() ... def hash_b(item: Any) -> int: # Typechecks item.magic() ... # Typechecks, since ints and strs are subclasses of object hash_a(42) hash_a("foo") # Typechecks, since Any is compatible with all types hash_b(42) hash_b("foo") ``` 使用 [`object`](functions.xhtml#object "object") 示意一个值可以类型安全地兼容任何类型。使用 [`Any`](#typing.Any "typing.Any") 示意一个值地类型是动态定义的。 ## 类,函数和修饰器. 这个模块定义了如下的类,模块和修饰器. *class* `typing.``TypeVar`类型变量 用法: ``` T = TypeVar('T') # Can be anything A = TypeVar('A', str, bytes) # Must be str or bytes ``` Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See class Generic for more information on generic types. Generic functions work as follows: ``` def repeat(x: T, n: int) -> Sequence[T]: """Return a list containing n references to x.""" return [x]*n def longest(x: A, y: A) -> A: """Return the longest of two strings.""" return x if len(x) >= len(y) else y ``` The latter example's signature is essentially the overloading of `(str, str) -> str` and `(bytes, bytes) -> bytes`. Also note that if the arguments are instances of some subclass of [`str`](stdtypes.xhtml#str "str"), the return type is still plain [`str`](stdtypes.xhtml#str "str"). `isinstance(x, T)` 会在运行时抛出 [`TypeError`](exceptions.xhtml#TypeError "TypeError") 异常。一般地说, [`isinstance()`](functions.xhtml#isinstance "isinstance") 和 [`issubclass()`](functions.xhtml#issubclass "issubclass") 不应该和类型一起使用。 Type variables may be marked covariant or contravariant by passing `covariant=True` or `contravariant=True`. See [**PEP 484**](https://www.python.org/dev/peps/pep-0484) \[https://www.python.org/dev/peps/pep-0484\] for more details. By default type variables are invariant. Alternatively, a type variable may specify an upper bound using `bound=<type>`. This means that an actual type substituted (explicitly or implicitly) for the type variable must be a subclass of the boundary type, see [**PEP 484**](https://www.python.org/dev/peps/pep-0484) \[https://www.python.org/dev/peps/pep-0484\]. *class* `typing.``Generic`Abstract base class for generic types. A generic type is typically declared by inheriting from an instantiation of this class with one or more type variables. For example, a generic mapping type might be defined as: ``` class Mapping(Generic[KT, VT]): def __getitem__(self, key: KT) -> VT: ... # Etc. ``` 这个类之后可以被这样用: ``` X = TypeVar('X') Y = TypeVar('Y') def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y: try: return mapping[key] except KeyError: return default ``` *class* `typing.``Type`(*Generic\[CT\_co\]*)A variable annotated with `C` may accept a value of type `C`. In contrast, a variable annotated with `Type[C]` may accept values that are classes themselves -- specifically, it will accept the *class object* of `C`. For example: ``` a = 3 # Has type 'int' b = int # Has type 'Type[int]' c = type(a) # Also has type 'Type[int]' ``` Note that `Type[C]` is covariant: ``` class User: ... class BasicUser(User): ... class ProUser(User): ... class TeamUser(User): ... # Accepts User, BasicUser, ProUser, TeamUser, ... def make_new_user(user_class: Type[User]) -> User: # ... return user_class() ``` The fact that `Type[C]` is covariant implies that all subclasses of `C` should implement the same constructor signature and class method signatures as `C`. The type checker should flag violations of this, but should also allow constructor calls in subclasses that match the constructor calls in the indicated base class. How the type checker is required to handle this particular case may change in future revisions of [**PEP 484**](https://www.python.org/dev/peps/pep-0484) \[https://www.python.org/dev/peps/pep-0484\]. The only legal parameters for [`Type`](#typing.Type "typing.Type") are classes, [`Any`](#typing.Any "typing.Any"), [type variables](#generics), and unions of any of these types. For example: ``` def new_non_team_user(user_class: Type[Union[BaseUser, ProUser]]): ... ``` `Type[Any]` is equivalent to `Type` which in turn is equivalent to `type`, which is the root of Python's metaclass hierarchy. 3\.5.2 新版功能. *class* `typing.``Iterable`(*Generic\[T\_co\]*)[`collections.abc.Iterable`](collections.abc.xhtml#collections.abc.Iterable "collections.abc.Iterable") 的泛型版本。 *class* `typing.``Iterator`(*Iterable\[T\_co\]*)[`collections.abc.Iterator`](collections.abc.xhtml#collections.abc.Iterator "collections.abc.Iterator") 的泛型版本。 *class* `typing.``Reversible`(*Iterable\[T\_co\]*)[`collections.abc.Reversible`](collections.abc.xhtml#collections.abc.Reversible "collections.abc.Reversible") 的泛型版本。 *class* `typing.``SupportsInt`An ABC with one abstract method `__int__`. *class* `typing.``SupportsFloat`An ABC with one abstract method `__float__`. *class* `typing.``SupportsComplex`An ABC with one abstract method `__complex__`. *class* `typing.``SupportsBytes`An ABC with one abstract method `__bytes__`. *class* `typing.``SupportsAbs`An ABC with one abstract method `__abs__` that is covariant in its return type. *class* `typing.``SupportsRound`An ABC with one abstract method `__round__`that is covariant in its return type. *class* `typing.``Container`(*Generic\[T\_co\]*)[`collections.abc.Container`](collections.abc.xhtml#collections.abc.Container "collections.abc.Container") 的泛型版本。 *class* `typing.``Hashable`[`collections.abc.Hashable`](collections.abc.xhtml#collections.abc.Hashable "collections.abc.Hashable") 的别名。 *class* `typing.``Sized`[`collections.abc.Sized`](collections.abc.xhtml#collections.abc.Sized "collections.abc.Sized") 的别名。 *class* `typing.``Collection`(*Sized, Iterable\[T\_co\], Container\[T\_co\]*)[`collections.abc.Collection`](collections.abc.xhtml#collections.abc.Collection "collections.abc.Collection") 的泛型版本。 3\.6 新版功能. *class* `typing.``AbstractSet`(*Sized, Collection\[T\_co\]*)[`collections.abc.Set`](collections.abc.xhtml#collections.abc.Set "collections.abc.Set") 的泛型版本。 *class* `typing.``MutableSet`(*AbstractSet\[T\]*)[`collections.abc.MutableSet`](collections.abc.xhtml#collections.abc.MutableSet "collections.abc.MutableSet") 的泛型版本。 *class* `typing.``Mapping`(*Sized, Collection\[KT\], Generic\[VT\_co\]*)[`collections.abc.Mapping`](collections.abc.xhtml#collections.abc.Mapping "collections.abc.Mapping") 的泛型版本。这个类型可以如下使用: ``` def get_position_in_index(word_list: Mapping[str, int], word: str) -> int: return word_list[word] ``` *class* `typing.``MutableMapping`(*Mapping\[KT, VT\]*)[`collections.abc.MutableMapping`](collections.abc.xhtml#collections.abc.MutableMapping "collections.abc.MutableMapping") 的泛型版本。 *class* `typing.``Sequence`(*Reversible\[T\_co\], Collection\[T\_co\]*)[`collections.abc.Sequence`](collections.abc.xhtml#collections.abc.Sequence "collections.abc.Sequence") 的泛型版本。 *class* `typing.``MutableSequence`(*Sequence\[T\]*)[`collections.abc.MutableSequence`](collections.abc.xhtml#collections.abc.MutableSequence "collections.abc.MutableSequence") 的泛型版本。 *class* `typing.``ByteString`(*Sequence\[int\]*)[`collections.abc.ByteString`](collections.abc.xhtml#collections.abc.ByteString "collections.abc.ByteString") 的泛型版本。 This type represents the types [`bytes`](stdtypes.xhtml#bytes "bytes"), [`bytearray`](stdtypes.xhtml#bytearray "bytearray"), and [`memoryview`](stdtypes.xhtml#memoryview "memoryview"). As a shorthand for this type, [`bytes`](stdtypes.xhtml#bytes "bytes") can be used to annotate arguments of any of the types mentioned above. *class* `typing.``Deque`(*deque, MutableSequence\[T\]*)[`collections.deque`](collections.xhtml#collections.deque "collections.deque") 的泛型版本。 3\.6.1 新版功能. *class* `typing.``List`(*list, MutableSequence\[T\]*)Generic version of [`list`](stdtypes.xhtml#list "list"). Useful for annotating return types. To annotate arguments it is preferred to use an abstract collection type such as [`Sequence`](#typing.Sequence "typing.Sequence") or [`Iterable`](#typing.Iterable "typing.Iterable"). 这个类型可以这样用: ``` T = TypeVar('T', int, float) def vec2(x: T, y: T) -> List[T]: return [x, y] def keep_positives(vector: Sequence[T]) -> List[T]: return [item for item in vector if item > 0] ``` *class* `typing.``Set`(*set, MutableSet\[T\]*)A generic version of [`builtins.set`](stdtypes.xhtml#set "set"). Useful for annotating return types. To annotate arguments it is preferred to use an abstract collection type such as [`AbstractSet`](#typing.AbstractSet "typing.AbstractSet"). *class* `typing.``FrozenSet`(*frozenset, AbstractSet\[T\_co\]*)A generic version of [`builtins.frozenset`](stdtypes.xhtml#frozenset "frozenset"). *class* `typing.``MappingView`(*Sized, Iterable\[T\_co\]*)[`collections.abc.MappingView`](collections.abc.xhtml#collections.abc.MappingView "collections.abc.MappingView") 的泛型版本。 *class* `typing.``KeysView`(*MappingView\[KT\_co\], AbstractSet\[KT\_co\]*)[`collections.abc.KeysView`](collections.abc.xhtml#collections.abc.KeysView "collections.abc.KeysView") 的泛型版本。 *class* `typing.``ItemsView`(*MappingView, Generic\[KT\_co, VT\_co\]*)[`collections.abc.ItemsView`](collections.abc.xhtml#collections.abc.ItemsView "collections.abc.ItemsView") 的泛型版本。 *class* `typing.``ValuesView`(*MappingView\[VT\_co\]*)[`collections.abc.ValuesView`](collections.abc.xhtml#collections.abc.ValuesView "collections.abc.ValuesView") 的泛型版本。 *class* `typing.``Awaitable`(*Generic\[T\_co\]*)[`collections.abc.Awaitable`](collections.abc.xhtml#collections.abc.Awaitable "collections.abc.Awaitable") 的泛型版本。 *class* `typing.``Coroutine`(*Awaitable\[V\_co\], Generic\[T\_co T\_contra, V\_co\]*)A generic version of [`collections.abc.Coroutine`](collections.abc.xhtml#collections.abc.Coroutine "collections.abc.Coroutine"). The variance and order of type variables correspond to those of [`Generator`](#typing.Generator "typing.Generator"), for example: ``` from typing import List, Coroutine c = None # type: Coroutine[List[str], str, int] ... x = c.send('hi') # type: List[str] async def bar() -> None: x = await c # type: int ``` *class* `typing.``AsyncIterable`(*Generic\[T\_co\]*)[`collections.abc.AsyncIterable`](collections.abc.xhtml#collections.abc.AsyncIterable "collections.abc.AsyncIterable") 的泛型版本。 *class* `typing.``AsyncIterator`(*AsyncIterable\[T\_co\]*)[`collections.abc.AsyncIterator`](collections.abc.xhtml#collections.abc.AsyncIterator "collections.abc.AsyncIterator") 的泛型版本。 *class* `typing.``ContextManager`(*Generic\[T\_co\]*)[`contextlib.AbstractContextManager`](contextlib.xhtml#contextlib.AbstractContextManager "contextlib.AbstractContextManager") 的泛型版本。 3\.6 新版功能. *class* `typing.``AsyncContextManager`(*Generic\[T\_co\]*)[`contextlib.AbstractAsyncContextManager`](contextlib.xhtml#contextlib.AbstractAsyncContextManager "contextlib.AbstractAsyncContextManager") 的泛型版本。 3\.6 新版功能. *class* `typing.``Dict`(*dict, MutableMapping\[KT, VT\]*)[`dict`](stdtypes.xhtml#dict "dict") 的泛型版本。对标注返回类型比较有用。如果要标注参数的话,使用如 [`Mapping`](#typing.Mapping "typing.Mapping") 的抽象容器类型是更好的选择。 这个类型可以这样使用: ``` def count_words(text: str) -> Dict[str, int]: ... ``` *class* `typing.``DefaultDict`(*collections.defaultdict, MutableMapping\[KT, VT\]*)[`collections.defaultdict`](collections.xhtml#collections.defaultdict "collections.defaultdict") 的泛型版本。 3\.5.2 新版功能. *class* `typing.``OrderedDict`(*collections.OrderedDict, MutableMapping\[KT, VT\]*)[`collections.OrderedDict`](collections.xhtml#collections.OrderedDict "collections.OrderedDict") 的泛型版本。 3\.7.2 新版功能. *class* `typing.``Counter`(*collections.Counter, Dict\[T, int\]*)[`collections.Counter`](collections.xhtml#collections.Counter "collections.Counter") 的泛型版本。 3\.6.1 新版功能. *class* `typing.``ChainMap`(*collections.ChainMap, MutableMapping\[KT, VT\]*)[`collections.ChainMap`](collections.xhtml#collections.ChainMap "collections.ChainMap") 的泛型版本。 3\.6.1 新版功能. *class* `typing.``Generator`(*Iterator\[T\_co\], Generic\[T\_co, T\_contra, V\_co\]*)A generator can be annotated by the generic type `Generator[YieldType, SendType, ReturnType]`. For example: ``` def echo_round() -> Generator[int, float, str]: sent = yield 0 while sent >= 0: sent = yield round(sent) return 'Done' ``` Note that unlike many other generics in the typing module, the `SendType`of [`Generator`](#typing.Generator "typing.Generator") behaves contravariantly, not covariantly or invariantly. If your generator will only yield values, set the `SendType` and `ReturnType` to `None`: ``` def infinite_stream(start: int) -> Generator[int, None, None]: while True: yield start start += 1 ``` Alternatively, annotate your generator as having a return type of either `Iterable[YieldType]` or `Iterator[YieldType]`: ``` def infinite_stream(start: int) -> Iterator[int]: while True: yield start start += 1 ``` *class* `typing.``AsyncGenerator`(*AsyncIterator\[T\_co\], Generic\[T\_co, T\_contra\]*)An async generator can be annotated by the generic type `AsyncGenerator[YieldType, SendType]`. For example: ``` async def echo_round() -> AsyncGenerator[int, float]: sent = yield 0 while sent >= 0.0: rounded = await round(sent) sent = yield rounded ``` Unlike normal generators, async generators cannot return a value, so there is no `ReturnType` type parameter. As with [`Generator`](#typing.Generator "typing.Generator"), the `SendType` behaves contravariantly. If your generator will only yield values, set the `SendType` to `None`: ``` async def infinite_stream(start: int) -> AsyncGenerator[int, None]: while True: yield start start = await increment(start) ``` Alternatively, annotate your generator as having a return type of either `AsyncIterable[YieldType]` or `AsyncIterator[YieldType]`: ``` async def infinite_stream(start: int) -> AsyncIterator[int]: while True: yield start start = await increment(start) ``` 3\.5.4 新版功能. *class* `typing.``Text``Text` is an alias for `str`. It is provided to supply a forward compatible path for Python 2 code: in Python 2, `Text` is an alias for `unicode`. Use `Text` to indicate that a value must contain a unicode string in a manner that is compatible with both Python 2 and Python 3: ``` def add_unicode_checkmark(text: Text) -> Text: return text + u' \u2713' ``` 3\.5.2 新版功能. *class* `typing.``IO`*class* `typing.``TextIO`*class* `typing.``BinaryIO`Generic type `IO[AnyStr]` and its subclasses `TextIO(IO[str])`and `BinaryIO(IO[bytes])`represent the types of I/O streams such as returned by [`open()`](functions.xhtml#open "open"). *class* `typing.``Pattern`*class* `typing.``Match`These type aliases correspond to the return types from [`re.compile()`](re.xhtml#re.compile "re.compile") and [`re.match()`](re.xhtml#re.match "re.match"). These types (and the corresponding functions) are generic in `AnyStr` and can be made specific by writing `Pattern[str]`, `Pattern[bytes]`, `Match[str]`, or `Match[bytes]`. *class* `typing.``NamedTuple`Typed version of [`collections.namedtuple()`](collections.xhtml#collections.namedtuple "collections.namedtuple"). 用法: ``` class Employee(NamedTuple): name: str id: int ``` This is equivalent to: ``` Employee = collections.namedtuple('Employee', ['name', 'id']) ``` To give a field a default value, you can assign to it in the class body: ``` class Employee(NamedTuple): name: str id: int = 3 employee = Employee('Guido') assert employee.id == 3 ``` Fields with a default value must come after any fields without a default. The resulting class has two extra attributes: `_field_types`, giving a dict mapping field names to types, and `_field_defaults`, a dict mapping field names to default values. (The field names are in the `_fields` attribute, which is part of the namedtuple API.) `NamedTuple` subclasses can also have docstrings and methods: ``` class Employee(NamedTuple): """Represents an employee.""" name: str id: int = 3 def __repr__(self) -> str: return f'<Employee {self.name}, id={self.id}>' ``` Backward-compatible usage: ``` Employee = NamedTuple('Employee', [('name', str), ('id', int)]) ``` 在 3.6 版更改: Added support for [**PEP 526**](https://www.python.org/dev/peps/pep-0526) \[https://www.python.org/dev/peps/pep-0526\] variable annotation syntax. 在 3.6.1 版更改: Added support for default values, methods, and docstrings. `typing.``NewType`(*typ*)A helper function to indicate a distinct types to a typechecker, see [NewType](#distinct). At runtime it returns a function that returns its argument. Usage: ``` UserId = NewType('UserId', int) first_user = UserId(1) ``` 3\.5.2 新版功能. `typing.``cast`(*typ*, *val*)Cast a value to a type. This returns the value unchanged. To the type checker this signals that the return value has the designated type, but at runtime we intentionally don't check anything (we want this to be as fast as possible). `typing.``get_type_hints`(*obj*\[, *globals*\[, *locals*\]\])返回一个字典,字典内含有函数、方法、模块或类对象的类型提示。 This is often the same as `obj.__annotations__`. In addition, forward references encoded as string literals are handled by evaluating them in `globals` and `locals` namespaces. If necessary, `Optional[t]` is added for function and method annotations if a default value equal to `None` is set. For a class `C`, return a dictionary constructed by merging all the `__annotations__` along `C.__mro__` in reverse order. `@``typing.``overload`The `@overload` decorator allows describing functions and methods that support multiple different combinations of argument types. A series of `@overload`-decorated definitions must be followed by exactly one non-`@overload`-decorated definition (for the same function/method). The `@overload`-decorated definitions are for the benefit of the type checker only, since they will be overwritten by the non-`@overload`-decorated definition, while the latter is used at runtime but should be ignored by a type checker. At runtime, calling a `@overload`-decorated function directly will raise [`NotImplementedError`](exceptions.xhtml#NotImplementedError "NotImplementedError"). An example of overload that gives a more precise type than can be expressed using a union or a type variable: ``` @overload def process(response: None) -> None: ... @overload def process(response: int) -> Tuple[int, str]: ... @overload def process(response: bytes) -> str: ... def process(response): <actual implementation> ``` See [**PEP 484**](https://www.python.org/dev/peps/pep-0484) \[https://www.python.org/dev/peps/pep-0484\] for details and comparison with other typing semantics. `@``typing.``no_type_check`用于指明标注不是类型提示的装饰器。 此 [decorator](../glossary.xhtml#term-decorator) 装饰器生效于类或函数上。如果作用于类上的话,它会递归地作用于这个类的所定义的所有方法上(但是对于超类或子类所定义的方法不会生效)。 此方法会就地地修改函数。 `@``typing.``no_type_check_decorator`使其它装饰器起到 [`no_type_check()`](#typing.no_type_check "typing.no_type_check") 效果的装饰器。 This wraps the decorator with something that wraps the decorated function in [`no_type_check()`](#typing.no_type_check "typing.no_type_check"). `@``typing.``type_check_only`标记一个类或函数在运行时内不可用的装饰器。 This decorator is itself not available at runtime. It is mainly intended to mark classes that are defined in type stub files if an implementation returns an instance of a private class: ``` @type_check_only class Response: # private or not available at runtime code: int def get_header(self, name: str) -> str: ... def fetch_response() -> Response: ... ``` Note that returning instances of private classes is not recommended. It is usually preferable to make such classes public. `typing.``Any`特殊类型,表明类型没有任何限制。 - 每一个类型都对 [`Any`](#typing.Any "typing.Any") 兼容。 - [`Any`](#typing.Any "typing.Any") 对每一个类型都兼容。 `typing.``NoReturn`标记一个函数没有返回值的特殊类型。比如说: ``` from typing import NoReturn def stop() -> NoReturn: raise RuntimeError('no way') ``` 3\.5.4 新版功能. `typing.``Union`联合类型; `Union[X, Y]` 意味着:要不是 X,要不是 Y。 使用形如 `Union[int, str]` 的形式来定义一个联合类型。细节如下: - 参数必须是类型,而且必须至少有一个参数。 - 联合类型的联合类型会被展开打平,比如: ``` Union[Union[int, str], float] == Union[int, str, float] ``` - 仅有一个参数的联合类型会坍缩成参数自身,比如: ``` Union[int] == int # The constructor actually returns int ``` - 多余的参数会被跳过,比如: ``` Union[int, str, int] == Union[int, str] ``` - 在比较联合类型的时候,参数顺序会被忽略,比如: ``` Union[int, str] == Union[str, int] ``` - 你不能继承或者实例化一个联合类型。 - 你不能写成 `Union[X][Y]` 。 - 你可以使用 `Optional[X]` 作为 `Union[X, None]` 的缩写。 在 3.7 版更改: 不要在运行时内从联合类型中移除显式说明的子类。 `typing.``Optional`Optional type. `Optional[X]` is equivalent to `Union[X, None]`. Note that this is not the same concept as an optional argument, which is one that has a default. An optional argument with a default does not require the `Optional` qualifier on its type annotation just because it is optional. For example: ``` def foo(arg: int = 0) -> None: ... ``` On the other hand, if an explicit value of `None` is allowed, the use of `Optional` is appropriate, whether the argument is optional or not. For example: ``` def foo(arg: Optional[int] = None) -> None: ... ``` `typing.``Tuple`Tuple type; `Tuple[X, Y]` is the type of a tuple of two items with the first item of type X and the second of type Y. Example: `Tuple[T1, T2]` is a tuple of two elements corresponding to type variables T1 and T2. `Tuple[int, float, str]` is a tuple of an int, a float and a string. To specify a variable-length tuple of homogeneous type, use literal ellipsis, e.g. `Tuple[int, ...]`. A plain [`Tuple`](#typing.Tuple "typing.Tuple")is equivalent to `Tuple[Any, ...]`, and in turn to [`tuple`](stdtypes.xhtml#tuple "tuple"). `typing.``Callable`Callable type; `Callable[[int], str]` is a function of (int) -> str. The subscription syntax must always be used with exactly two values: the argument list and the return type. The argument list must be a list of types or an ellipsis; the return type must be a single type. There is no syntax to indicate optional or keyword arguments; such function types are rarely used as callback types. `Callable[..., ReturnType]` (literal ellipsis) can be used to type hint a callable taking any number of arguments and returning `ReturnType`. A plain [`Callable`](#typing.Callable "typing.Callable") is equivalent to `Callable[..., Any]`, and in turn to [`collections.abc.Callable`](collections.abc.xhtml#collections.abc.Callable "collections.abc.Callable"). `typing.``ClassVar`Special type construct to mark class variables. As introduced in [**PEP 526**](https://www.python.org/dev/peps/pep-0526) \[https://www.python.org/dev/peps/pep-0526\], a variable annotation wrapped in ClassVar indicates that a given attribute is intended to be used as a class variable and should not be set on instances of that class. Usage: ``` class Starship: stats: ClassVar[Dict[str, int]] = {} # class variable damage: int = 10 # instance variable ``` [`ClassVar`](#typing.ClassVar "typing.ClassVar") accepts only types and cannot be further subscribed. [`ClassVar`](#typing.ClassVar "typing.ClassVar") is not a class itself, and should not be used with [`isinstance()`](functions.xhtml#isinstance "isinstance") or [`issubclass()`](functions.xhtml#issubclass "issubclass"). [`ClassVar`](#typing.ClassVar "typing.ClassVar") does not change Python runtime behavior, but it can be used by third-party type checkers. For example, a type checker might flag the following code as an error: ``` enterprise_d = Starship(3000) enterprise_d.stats = {} # Error, setting class variable on instance Starship.stats = {} # This is OK ``` 3\.5.3 新版功能. `typing.``AnyStr``AnyStr` is a type variable defined as `AnyStr = TypeVar('AnyStr', str, bytes)`. It is meant to be used for functions that may accept any kind of string without allowing different kinds of strings to mix. For example: ``` def concat(a: AnyStr, b: AnyStr) -> AnyStr: return a + b concat(u"foo", u"bar") # Ok, output has type 'unicode' concat(b"foo", b"bar") # Ok, output has type 'bytes' concat(u"foo", b"bar") # Error, cannot mix unicode and bytes ``` `typing.``TYPE_CHECKING`A special constant that is assumed to be `True` by 3rd party static type checkers. It is `False` at runtime. Usage: ``` if TYPE_CHECKING: import expensive_mod def fun(arg: 'expensive_mod.SomeType') -> None: local_var: expensive_mod.AnotherType = other_fun() ``` Note that the first type annotation must be enclosed in quotes, making it a "forward reference", to hide the `expensive_mod` reference from the interpreter runtime. Type annotations for local variables are not evaluated, so the second annotation does not need to be enclosed in quotes. 3\.5.2 新版功能. ### 导航 - [索引](../genindex.xhtml "总目录") - [模块](../py-modindex.xhtml "Python 模块索引") | - [下一页](pydoc.xhtml "pydoc --- Documentation generator and online help system") | - [上一页](development.xhtml "开发工具") | - ![](https://box.kancloud.cn/a721fc7ec672275e257bbbfde49a4d4e_16x16.png) - [Python](https://www.python.org/) » - zh\_CN 3.7.3 [文档](../index.xhtml) » - [Python 标准库](index.xhtml) » - [开发工具](development.xhtml) » - $('.inline-search').show(0); | © [版权所有](../copyright.xhtml) 2001-2019, Python Software Foundation. Python 软件基金会是一个非盈利组织。 [请捐助。](https://www.python.org/psf/donations/) 最后更新于 5月 21, 2019. [发现了问题](../bugs.xhtml)? 使用[Sphinx](http://sphinx.pocoo.org/)1.8.4 创建。